SMART PARKING SYSTEM WITH REAL-TIME
PARKING LOT STATUS MONITORING USING
INTERNET OF THINGS (I0T) AND RADIO-
FREQUENCY IDENTIFICATION (RFID)

TAN HONG ZHENG

UNIVERSITI TUNKU ABDUL RAHMAN

SMART PARKING SYSTEM WITH REAL-TIME PARKING LOT STATUS
MONITORING USING INTERNET OF THINGS (I0T) AND RADIO-
FREQUENCY IDENTIFICATION (RFID)

TAN HONG ZHENG

A project report submitted in partial fulfilment of the
requirements for the award of

Bachelor of Electronics Engineering With Honours-(EE)

Faculty of Engineering and Green Technology
Universiti Tunku Abdul Rahman

May 2025

DECLARATION

| hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. | also declare that it has
not been previously and concurrently submitted for any other degree or award at
UTAR or other institutions.

Signature ; M&y

|

Name : Tan Hong Zheng

ID No. ; 20AGB02853

Date : 21-05-2025

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SMART PARKING SYSTEM WITH
REAL-TIME PARKING LOT STATUS MONITORING USING INTERNET
OF THINGS (I0T) AND RADIO-FREQUENCY IDENTIFICATION (RFID)”
was prepared by TAN HONG ZHENG has met the required standard for submission
in partial fulfilment of the requirements for the award of Bachelor of Electronics

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,
Signature : r>—
A
Supervisor : Ts. Dr. Toh Pek Lan

Date : 9!/510095

Mobile User

The copyright of this report belongs to the author under the terms of the
copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku
Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2025, Tan Hong Zheng. All right reserved.

Specially dedicated to
my beloved parents, for their unwavering support and endless love.

Vi

ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to everyone who contributed to the
successful completion of this project. My sincere thanks go to my supervisor, Ts Dr.
Toh Pek Lan, for her invaluable advice, guidance, and unwavering patience throughout
the development of this research. Her expertise and insights have been instrumental in

shaping the direction and quality of this work.

In addition, | am also profoundly grateful to my loving parents and friends for
their constant support, encouragement, and assistance. Their belief in my abilities

provided me with the strength and motivation needed to persevere through challenges.

I also appreciate the support of the university’s staff and the resources provided,

which were crucial in completing this research.

Vii

SMART PARKING SYSTEM WITH REAL-TIME PARKING LOT STATUS
MONITORING USING INTERNET OF THINGS (I0T) AND RADIO-
FREQUENCY IDENTIFICATION (RFID)

ABSTRACT

The ever-growing number of vehicles in urban areas has significantly intensified the
challenge of finding available parking spaces, leading to increased frustration for
drivers and contributing to environmental pollution due to prolonged vehicle idling
and unnecessary driving. Real-time updates and efficient space utilization are rare
features of most parking management systems on the market today. Apart from this,
visibility is usually limited, especially in large parking lots, and the signs can be
unclear or difficult to read, which causes drivers to have no idea where the available
parking spots are. This project presents a Smart Parking System using 0T and RFID
Technology designed to address these issues by providing a real-time parking lot status
monitoring solution. The system integrates various hardware components, including
eight IR sensors to detect vehicle presence at the parking slots, two servo motors for
gate control, two ESP32 microcontrollers, two RFID readers with tags, an LCD display
for showing parking status and time, an OLED display for showing RFID scanning
messages, and a buzzer for audio feedback. Additionally, two IR sensors monitor
vehicle presence at each of the gates. Besides that, custom developed HTML-PHP
integrated web pages enable public users to view the status of each parking slot in real-
time, whether it is “AVAILABLE”, “OCCUPIED”, or “RESERVED” and then access
features like sign-up, login, top-up, and reservation, which allow the users to reserve
a parking slot for a particular time before arriving. The user information, RFID
scanning timestamps, reservation user and time, and status of each parking slot are
stored in a MySQL database. Users can obtain parking information on the web page
using their mobile devices by scanning a QR code or by visiting the provided URL

link and logging into their registered accounts. The system operates by detecting

viii

vehicles at the entrance, verifying RFID UID with database, and managing gate
operations based on slot availability and account balance. Furthermore, a ESP32-CAM
is used to capture vehicle images at the gate entrance when the IR sensor detects
movement and save them to Google Drive. The performance of the system will then
be assessed based on its accuracy. Based on the results, the system prototype achieved
100 % accuracy. When compared to other proposed Smart Parking Systems, it is clear
that this method is more cost-effective and reliable. This system aims to reduce
parking-related frustrations and environmental impact to enhance overall urban

mobility and sustainability.

Keywords: IoT, RFID, Smart Parking System, Real-time Monitoring, Reservation

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION ii

COPYRIGHTS iv

DEDICATION PAGE %

ACKNOWLEDGEMENTS Vi

ABSTRACT Vil

TABLE OF CONTENTS iX

LIST OF TABLES Xii

LIST OF FIGURES Xiii

LIST OF SYMBOLS / ABBREVIATIONS XX

LIST OF APPENDICES XXiii
CHAPTER

1 INTRODUCTION......cooiiiie e 1

1.1 INrOAUCTION.....civiiiiiieiieieiee e 1

1.2 Background of the Studyccccoevveviiiecie e, 1

1.3 Problem Statement...........ccocooiiiiiiniinieee e 4

1.4 AIm and ODJECTIVEScccoeiieriiiiirieieiee e 7

1.5 Importance of the Study..........ccocovvriiiniiiii e 7

1.6 Scope and Limitation of the Studyccccevvvviiieiinnnn 8

1.6.1 SCOPE....uiiiiiiie ittt 8

1.6.2 LIMItatioNnS......cccvevvviieiieie e 9

2 LITERATURE REVIEW.......cccooiiiiiiec e 10

2.0 INtrOAUCTION. .. et eeeeenee 10

2.2 Smart Car Parking Mobile Application based on
RFID and 1oT Presented by Saeliw et al. (2019)........... 10
2.3 Smart Parking Guidance System Using 360° Camera
and Haar-Cascade Classifier on 10T System
Presented by Salma, Olanrewaju, and Arman (2019).... 14
2.4 Smart Parking System using 10T Presented by Elakya

et al. (2019)...coiiiceiieee 16

2.5 Intelligent Parking Management Using ANPR
Technology Presented by Lincy et al. (2024)................ 18

2.6 A Smart Real-Time Parking Control and Monitoring
System Presented by Elfaki et al. (2023)..........c.ccoc....... 22
2.7 SUMIMAIY ...ciiiiiiiieiiie st 26
METHODOLOGY AND WORK PLAN........ccoceviieriieens 29
3.1 Design ArchiteCture.........ccevvevieiieve e 29
3.2 The Operation of the Systemc.cccccvveviviiiiecceennnn, 32
3.3 Hardware COMPONENtScccoeerieeerieieene e 42
3.3.1 NodeMCU ESP32........cccovevieieeciecie e 42
3.3.2 Infrared (IR) SENSOISccvevvveviicieieeiece e 43
3.3.3 MFRC522 RFID Reader........cccccccevvevierieniinnns 45
3.3.4 SGI0 Servo MOtOr.......coceeiieiiieiiceiee e 46

3.3.5 Organic Light-Emitting Diode (OLED)
DISPIaY ..o 48
3.3.6 Liquid Crystal Display (LCD).......ccccceeveverueenee. 48
3.3.7 Al-Thinker ESP32-CAM.......cccccoceviiiiereinienns 49
3.3.8 PCF8575 16-bit 1/0O Expandercccceevrvnnne 51
3.4 Software COMPONENTS........ccvreririeieierese e 52
3.4.1 ArduinO IDEc.oooiiiiiiieeeeee e 52
3.4.2 Network Time Protocol (NTP) Server............... 55
3.4.3 XAMPP PacKageccccvrerineiieieic s 56
3.4.4 MySQL Database..........cccooveririeiniiiiieniiiins 57
3.4.3 PHP SCIIPLS...vviiiiiiie e 61

3.4.4 The Roles of Each PHP, CSS, JSON Files
Used in This Project.........ccccoovvvniiencncnininnns 63

3.4.5 Ngrok Tunneling.......ccccceveveeieninnieie e 65

3.5 Project Management / Gantt Chart...........ccccccoeeverennenne. 66
3.6 Cost of COMPONENLSocvveivieieiierie e 67
4 RESULTS AND DISCUSSIONS ... 68
4.1 Schematic Diagram..........cccooviiiiniiniicieienese e 68
4.2 Webpages/User Interface.........cccccevveveieenicieiieeseenenn, 74
4.2.1 LOQIN PaQE....ccveieiiecieecie e 74
4.2.2 Parking Lot Status Monitoring Page
(Accessible After Successful Login) 77
4.2.3 TOP-UP Page.....cvvviiiiiiiiiiiiii i 80
4.2.4 Account Registration / Sign-Up Page................ 83
4.2.5 ReServation Pageccocuvveeienenene e 86
4.3 Hardware Prototypecccoceveririninieieie e 95
4.3.1 OVEIVIEW....ooviiiiieiie sttt 95
4.3.2 LCD Display Resultscccccovvevveieenecieseee 97
4.3.3 ESP32-CAM ReSUItSocoveieieiicce e 98
4.3.4 Entrance and Exit Gate Resultscc.ccceueenee. 99
4.3.5 OLED Display Resultsccccccvvevieieernrennenn. 100
4.3.6 Parking Lot ReSUlts..........cccccceeveveeieiieciec, 101
4.4 DeteCtion ACCUIACYccooerveruerieniieiieieieie e 109
5 CONCLUSION AND RECOMMENDATIONS.............. 110
5.1 CoNCIUSION ...oviiiiiiiieiee s 110
5.2 RecOmMMENdatioNnS..........ccoovrerireeieierienie e 111
REFERENGCES. ...t 112

APPENDICES ... 116

TABLE

2.1

3.1

3.2

3.3

3.4

4.1

LIST OF TABLES

TITLE

Literature Review Summary

Summary of Pins Defined for Main ESP32 and Second
ESP32 Connected Components

Gantt Chart for FYP 1
Gantt Chart for FYP 2
Components List with Price

Detection Accuracy of the IR Sensor

PAGE

26

54

66

66

67

109

Xii

FIGURE

11

1.2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

LIST OF FIGURES

TITLE

Major Components of Internet of Things (Rajiv, 2018)

A Pie Chart lllustrating the Percentage of Malaysians who
Own a Car in 2024

The Block Diagram of the System (Saeliw et al., 2019)

The Android Application Login and Registration Interface
(Saeliw et al., 2019)

Car Parking Status Interface and Line Mobile Application
Notification Update (Saeliw et al., 2019)

Car Parking Management and Daily Usage Report Interface
(Saeliw et al., 2019)

The Whole Process of the Smart Parking Guidance System

(Salma, Olanrewaju, and Arman, 2019)

Vehicle Detection Image Processing for the Prototype (Salma,

Olanrewaju, and Arman, 2019)
GSM Module (Elakya et al., 2019)
ANPR Process Flow (Lincy et al., 2024)

Vacant Slot Detection Process Flow (Lincy et al., 2024)

12

12

13

13

15

16

18

20

21

Xiii

PAGE

2.10

211

212

2.13

2.14

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

License Plate Detection (ANPR) Graphical User Interface
(Lincy et al., 2024)

Vacant Slot Detection (Lincy et al., 2024)

The Monitoring Unit Consists of Motion Sensor and Camera
(Elfaki et al., 2023)

The Monitoring Unit Consists of Range Finder Sensor and
Camera (Elfaki et al., 2023)

Mobile Application Reservation Function for User (Elfaki et
al., 2023)

The Block Diagram of the Overall IoT RFID Smart Parking
System

The Working Principle of the Two Entrance IR Sensors

The Flowchart Showing the Operation of the Smart Parking
System in General (First Part)

The Flowchart Showing the Operation of the Smart Parking

System in General (Second Part)

The Flowchart Showing the Operation of the Smart Parking
System in General (Third Part)

The Flowchart Showing the Operation of the Smart Parking
System in General (Fourth Part)

Step-by-Step Process for Regular Users Accessing and Exiting
the Parking Lot

Step-by-Step Process for Reserved Users Accessing and

Exiting the Parking Lot

21

22

24

24

25

30

31

34

35

36

37

38

39

Xiv

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

The Flowchart Showing the Operation of the ESP32-CAM at
the Entrance Gate

Pinout Diagram of the ESP32-DevKitC Development Board
(30 GPI10s) (Wilson, 2020)

The Diagram of an Infrared (IR) Sensor (Ch'ng, 2019)
The Working Principle of an IR Sensor (Ch'ng, 2019)

The Working Principle of RFID (Last Minute Engineers,
2018)

Pinout Diagram of MFRC522 RFID Reader Module
MIFARE 1K 13.56 MHz RFID Tags

SG90 Servo Motor (Ch'ng, 2019)

4-Channel 3.3 V to 5 V Logic Level Shifter

0.96-inch OLED Display

20 x 4 12C LCD

Al-Thinker ESP32-CAM

Al-Thinker ESP32-CAM Pinout Diagram (Santos, 2019)
Hardware Connection to Program ESP32-CAM Using CH340
Top View and Bottom View of PCF8575 16-bit 1/0 Expander
WiFi Setup Code for Main ESP32 and Second ESP32

NTP Server Setup Code to Print the Date and Time

Starting the Server Using XAMPP Control Panel

41

43

44

44

45

46

46

47

47

48

49

49

50

o1

o1

53

55

56

XV

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

The ‘parking_system’ Database with Three Tables, Which are

‘parking_status’, ‘rfid scan log’, and ‘rfid user info’
The ‘parking_status’ Table

The ‘rfid user info’ Table

The ‘rfid scan log’ Table

The ‘reservations’ Table

An Example of Creating a Database and a Table

The ‘db_connect.php’ File That Is Used to Connect to the
Database

The Location where all the PHP Scripts are Stored
Current Source and Current Sink Configuration of a LED
Zoomed in View of ESP32 and PCF8575 1/O Expander Pinout

Schematic Diagram of 10T RFID Smart Parking System (Main
ESP32)

Schematic Diagram of loT RFID Smart Parking System
(Second ESP32)

Schematic Diagram of ESP32-CAM Image Capturing Camera
System at the Entrance

The Overview of Login Page (login.php)

Zoomed in View of Login Page with Login Credentials Filled

in

Account (Bob) and Password (Bob123) Stored in Database

S7

58

58

59

59

60

61

62

69

70

71

72

73

74

75

75

XVi

4.9

4.10

411

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

Login Attempt Using the Correct Account with Incorrect
Letter Case (bob)

Login Failed

The Overview of Parking Lot Status Monitoring Page
(parking_status.php)

Zoomed in View of Parking Lot Status Monitoring Page where
All Slots are Available

Zoomed in View of Parking Lot Status Monitoring Page where
Slot 2, 4, 6, 8 are Occupied

Zoomed in View of Parking Lot Status Monitoring Page where

All Slots are Occupied

The Popped-Up Message Indicates Parking Full

The Overview of Top-Up Page (topup.php)

The Top-Up Amount Drop Down Selection List

The Security Measure (Password) of the Top-Up Function
Top Up Successful if Password Is Correct

Top Up Unsuccessful if Password Is Wrong

The Parking Lot Status Monitoring Page Account Balance

Updated Immediately After Top-Up Successful
The Overview of Sign-Up Page (signup.php)
Zoomed in View of Sign-Up Page with Information Filled in

Sign-Up Successful Message

76

76

77

78

78

79

79

80

81

81

82

82

82

83

84

84

XVii

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

4.33

4.34

4.35

4.36

4.37

Database “rfid user info” Table Updated with the Newly
Registered Account

The Overview of Reservation Page (reservation.php)
Zoomed in View of Reservation Page

Demonstration of Attempting to Reserve a Parking Slot with
an Unregistered Owner Name (Case-Sensitive Input Required)

Pop-Up Error Message Indicating User Not Found in the
System

Demonstration of Attempting to Reserve a Parking Slot with a
Registered User (Case-Sensitive) and Filling in Other

Information
Selecting Reservation Date and Time
Pop-up Message Indicating Reservation Successful

Database “reservations” Table Automatically Updated with

Reservation Details

Parking Lot Status Monitoring Page Automatically Updates
Slot 1 Status to “RESERVED” when Reaching the

Reservation Time

Parking Lot Status Monitoring Page Automatically Updates
Slot 1 Status to “OCCUPIED” when the User Parks in the
Reserved Slot

Parking Lot Status Monitoring Page Automatically Updates
Slot 1 Status to “AVAILABLE” After Reservation Time
Passes (No Vehicle in Slot 1)

Demonstration of an Attempt to Reserve a Parking Slot that Is

Currently Occupied (Not Available)

xviii

85

86

87

87

88

88

89

89

90

90

91

91

92

4.38

4.39

4.40

441

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

451

4.52

4.53

Pop-Up Error Message Indicating the Selected Slot Is Not
Available for Reservation

Demonstration of Attempting to Reserve a Parking Slot

Already Reserved for the Specified Time

Pop-Up Error Message Indicating Time Conflict with an
Existing Reservation for the Selected Slot

Top View of the Hardware Prototype
Front View of the Hardware Prototype

Two ESP32 Microcontrollers Soldered onto a Stripboard and
Embedded Inside a Black PVC Box

Entrance Display Board Showing Parking Fees and LED Light

Meanings

LCD Display Showing the Current Time, Number of Available
Parking Slots, and the Status of Each Slot

ESP32-CAM and IR Sensor Image-Capturing System at the

Entrance

Captured Image Renamed Using the Timestamp and Stored in
Google Drive

Entrance Gate Servo Motor with Access LEDs

Exit Gate Servo Motor

OLED Display Showing Welcome Page

OLED Display Showing Access Authorized Messages
OLED Display Showing Access Denied Messages

OLED Display Showing Insufficient Balance Messages

93

93

04

95

96

96

97

97

98

98

99

99

100

100

100

100

XiX

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

Parking Slots 1, 2, 3, and 4
Parking Slots 5, 6, 7, and 8
Parking Lot when All Slots are Available

Parking Lot when Slots 1, 3, 5, and 7 are Available, while Slots
2,4, 6, and 8 are Occupied

Parking Lot when All Slots are Occupied (Parking Full)

LCD Messages when All Parking Slots are Occupied (Parking
Full)

Slot 1 Yellow LED Lights Up at the Reserved Time to Indicate

the Slot Is Reserved

Slot 1 Red LED Lights Up After the User Parks in the

Reserved Slot

Slot 1 Green LED Lights Up After Reservation Time Passes

101

101

102

103

104

105

106

107

108

XX

%

AC

Al
ANPR
CO2
CPU
CSS
DC
GMT
GPIO
GPS
GSM
GUI
HTML
HTTP
HTTPS

loT
12C
JSON
LCD
LED
LiDAR
Mbps
MISO

LIST OF SYMBOLS / ABBREVIATIONS

Degree

Percent

Alternating Current

Artificial Intelligence

Automatic Number Plate Recognition
Carbon Dioxide

Central Processing Unit

Cascading Style Sheets

Direct Current

Greenwich Mean Time

General Purpose Input/Output
Global Positioning System

Global System for Mobile Communications
Graphical User Interface

Hypertext Markup Language
Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure
Infrared

Internet of Things

Inter-Integrated Circuit

JavaScript Object Notation

Liquid Crystal Display

Light Emitting Diode

Light Detection and Ranging
Megabits per Second

Master In Slave Out

XXi

MOSI
MP
MySQL
NTP
OCR
OLED
OpenCV
PHP
PIR
PWM
QR
RFID
RTC
SCL
SDA
SMS
SPI
SRAM
UART
uIiD
uUSB
UTC
WiFi
YOLO

XXii

Master Out Slave In

Megapixels

My Structured Query Language
Network Time Protocol

Optical Character Recognition
Organic Light Emitting Diode

Open Source Computer Vision Library
Hypertext Preprocessor (originally Personal Home Page)
Passive Infrared

Pulse Width Modulation

Quick Response (Code)

Radio Frequency Identification
Real-Time Clock

Serial Clock Line

Serial Data Line

Short Message Service

Serial Peripheral Interface

Static Random Access Memory
Universal Asynchronous Receiver/Transmitter
Unique Identifier

Universal Serial Bus

Coordinated Universal Time

Wireless Fidelity

You Only Look Once

XXiii

LIST OF APPENDICES

APPENDIX TITLE PAGE
A Ngrok Tunneling Steps 116
B Google Apps Script Deployment and ESP32-CAM 120
Integration
C Demonstration Video and Award Won 128

D Code for ESP32, ESP32-CAM, and Google Apps Script 129

CHAPTER 1

INTRODUCTION

1.1 Introduction

In Chapter 1, the basics of the Internet of Things (loT) and its importance will be
introduced, along with an overview of the key technologies that enable 10T. Following
this, the chapter will present the problem statement, focusing on the parking challenges
in Malaysia and the disadvantages of traditional parking systems. The research aim
and objectives will then be outlined. This chapter will also discuss the significance of
this study, highlighting how smart parking systems can enhance urban mobility and
reduce environmental impact. Lastly, the scope and limitations of the research will be

covered.

1.2 Background of the Study

The Internet of Things (10T) consists of a dynamic network involving physical devices
and objects such as vehicles and appliances that use embedded sensors and software
for connectivity. Through this network devices are able to collect and share data which
leads to the development of diverse applications (Oracle, 2024). IoT devices play a
vital role in modern life by connecting everything from basic smart home appliances

to advanced industrial equipment and transport systems. These 10T devices assist in

environmental farm monitoring, smart vehicle traffic management, controlling factory

operations, and warehouse inventory tracking.

IoT demonstrates its importance by improving operational efficiency,
facilitating informed decision-making based on data, and helping organizations save
costs. Business processes become more productive and efficient when automation and
real-time data are utilised. Besides that, businesses can make informed decisions
because the data generated by 10T devices provide essential information about market
trends, customer behavior, and operational performance. Additionally, 10T reduces
costs by enabling automated processes and energy efficiency optimization which

support sustainable practices.

In addition to that, some important technologies that make the loT work
include sensors, actuators, connectivity technologies, cloud, big data analytics, and
security and privacy measures (IBM, 2024). Sensors are devices that can detect
changes in the environment, such as temperature or light. Meanwhile, actuators are
devices that perform actions in response to those changes, like opening a valve or
switching on a motor. Connectivity technologies, which include Wi-Fi, Bluetooth, and
cellular technologies are critical for transmitting data from 10T devices to the cloud.
Cloud computing platforms provide the infrastructure required to store, process, and
analyse data. Advanced analytics technologies, such as machine learning algorithms,
assist in extracting valuable insights from enormous datasets. Furthermore, security
and privacy technologies like encryption and intrusion detection systems are critical
for defending loT devices and the data they generate from cyber threats. Figure 1.1

shows the key components of loT.

Major Components of loT

Thing
or Device Cloud User Interface

-

~

- -

Gateway Analytics

Figure 1.1: Major Components of Internet of Things (Rajiv, 2018)

Next, a notable application of IoT technology is in the realm of parking
management through the use of Radio Frequency Identification (RFID). RFID
technology employs electromagnetic fields to monitor and identify objects
automatically. When combined with 10T, RFID enhances the capabilities of parking

systems, leading to more secure, efficient, and automated processes.

The Smart Parking System proposed shows the integration of 1oT and RFID
technologies in urban areas. This system addresses common parking challenges,
including congestion, inefficient space utilization, and environmental impact. By
incorporating RFID tags into vehicles and equipping parking spaces with RFID readers,
and loT sensors, the Smart Parking System offers real-time monitoring of parking
space availability. Drivers receive real-time information about the location of the
nearest available parking spaces via smartphone apps, websites, or digital displays,
substantially reducing the amount of time spent looking for parking.

1.3 Problem Statement

Malaysia is facing a rising parking challenge as the number of vehicles on the road
grows rapidly. A survey conducted by Rakuten Insight in 2024 found that nearly 73 %
of Malaysians own a car, which is a higher rate of car ownership compared to
neighboring countries (Rakuten Insight, 2024). As of October, 2023, Malaysia had
more than 36.3 million registered vehicles, surpassing the population of 32.4 million
(Daim, 2023). This surge in vehicles has led to severe traffic congestion, particularly
in urban areas like Klang Valley, where people spend an average of 44 hours each
month stuck in traffic (BusinessToday, 2023). Shopping malls such as Sunway
Pyramid, which sees over 50 000 vehicles daily, are struggling to manage the growing
demand for parking (Lee, 2021).

Percentage of Malaysians Who Own a Car in 2024

Do Not Own a Car
27%

)

Own a Car
73%

= OwnaCar = DoNotOwna Car

Figure 1.2: A Pie Chart Illustrating the Percentage of Malaysians who Own a Car in
2024

Next, traditional parking systems are outdated and inefficient. They usually
involve manual processes, where drivers need to stop to collect a ticket and then pay
later at a machine, or they may have to interact with a parking attendant. This process
can create long queues and can cause bottlenecks at the entrances, especially in busy
shopping malls or public venues. The queues not only delay entry but also cause traffic
congestion on surrounding roads, contributing to overall traffic congestion in the area
(Goh, 2024).

Additionally, real-time information regarding available parking spaces is not
provided by traditional parking systems, this forces drivers to circle around parking
lots or streets in search of an open space. On average, it takes about 7.8 minutes to find
a parking spot (Hong et al., 2023). This process can take up to 20 minutes or more in
crowded areas, especially during peak hours. As a result, drivers waste fuel and emit
more greenhouse gases like CO». The lack of smart parking systems also means that
parking spaces are often used inefficiently. During peak times or holidays, the demand

for parking exceeds what is available, leading to even more frustration for drivers.

Besides that, in large parking lots or multi-story garages, it can be difficult for
drivers to find their way, especially if the signage is unclear or if the parking facility
is crowded. Traditional systems do not provide guidance or real-time updates, leaving
drivers to navigate on their own (Elfaki et al., 2023). This can lead to drivers getting
lost, wasting time, and becoming frustrated. In some cases, drivers may even forget

where they parked, causing further delays and stress when trying to locate their vehicle.

Moreover, many traditional parking systems require cash payments, which can
be inconvenient for drivers who do not carry cash or prefer to pay electronically. The
need to find cash or wait in line to pay at a machine can be time-consuming and
frustrating. This inconvenience can lead to longer exit times, further contributing to
congestion at parking facilities. It also detracts from the overall customer experience,
making people less likely to return to that parking facility in the future.

In addition, the environmental consequences of inefficient parking are
significant. Cars that are idling while searching for parking spots consume more fuel
and emit more CO,. Research shows that just one hour of traffic congestion can
increase air pollutants and carbon dioxide emissions by up to 30 % (Elfaki et al., 2023).
This not only contributes to climate change but also worsens air quality, especially in

crowded cities.

Next, security is another concern with traditional parking systems. Traditional
parking systems often lack advanced security measures, making it easier for

unauthorized vehicles to enter or for theft and vandalism to occur. Without real-time

monitoring and tracking, it is difficult for parking operators to ensure the safety of
parked vehicles (Koya et al., 2024). Security concerns can deter people from using
certain parking facilities, especially in areas where crime rates are higher. This can
result in lost revenue for parking operators and increased anxiety for drivers (Goh,
2024).

Operationally, traditional parking systems make it difficult for shopping malls
and other facilities to manage their parking spaces efficiently. They do not provide the
data needed to optimize parking operations, leading to lost revenue and unhappy
customers. In contrast, smart parking systems can analyze parking usage data, helping
management make better decisions about how to run their parking facilities (Hong et
al., 2023).

Given these challenges, the implementation of Smart Parking Systems is not
just a convenience but a necessity. By leveraging the 10T and cloud technologies, these
systems provide real-time information on available parking slots, lead drivers directly
to open spots, and offer flexible payment options through mobile applications. This
approach reduces traffic congestion, minimizes environmental impact, and
significantly enhances the overall driving and parking experience. Moreover, Smart
Parking Systems enhance security by using technologies like RFID and automatic
license plate recognition to monitor and control access to parking facilities, reducing
the risk of theft and vandalism. These systems also enable advanced data analytics,
allowing parking operators to optimize the use of their facilities and improve customer

satisfaction.

Malaysia’s current parking systems are struggling to keep up with the growing
number of vehicles. The lack of smart parking solutions is causing traffic jams,
increasing pollution, and frustrating drivers. Smart parking systems offer a
comprehensive solution to the challenges faced by drivers and parking operators by
improving parking efficiency, reducing environmental impact, and enhancing driver

satisfaction across the nation.

1.4 Aim and Objectives

The aim of this project is to develop a Smart Parking System using loT and RFID

technology that allows real-time parking lot status monitoring and access control.

The objective of this project is to design an IR sensor-based parking lot
monitoring system using two ESP32 microcontrollers with RFID readers for access
control. Besides that, the second objective is to develop custom-designed HTML-PHP
integrated web pages for real-time parking lot status monitoring with a login page,
sign-up page, top-up page, and reservation page. Moreover, the third objective is to
allow users to reserve a parking slot through the reservation page before they arrive.
Next, the fourth objective is to store user information, RFID scanning timestamps,
reservation user and time, and status of each parking slot in the MySQL database.
Furthermore, the fifth objective is to use the ESP32-CAM to capture images and save
them to Google Drive when the IR sensor detects movement at the entrance. Finally,

the sixth objective is to assess the performance of the system based on its accuracy.

1.5 Importance of the Study

The growing urbanization and rise in vehicle numbers on the road have worsened the
parking problem, which caused significant time wastage and increased environmental
pollution levels. Hence, the importance of an efficient parking management system
cannot be ignored. An loT-based smart parking system can provide real-time data on
parking availability, this decreases search durations for parking spots and the

associated environmental impact.

Moreover, integrating RFID technology for access control can enhance
security, streamline the parking process, and eliminate the need for manual labour to
control the gate. This infrastructure's one-time installation cost can help parking lot
owners save on the recurring monthly salary costs of manual labor. The cross-checking

between scanned RFID UID and the UID stored in the database adds another security

layer, this ensures that only authorized users can enter the parking lot. By requiring
users to log in to view parking lot statuses, the system ensures that this information is
accessible only to legitimate users, thereby preventing misuse. Furthermore, the stored
user information from account registration and captured images at the entrance can be
retrieved to assist law enforcement agencies in tracking individuals involved in illegal

activities.

Besides that, the integration of 1oT and RFID technology allows the parking
lot owner to gather information about occupancy rates, and length of stay through the
RFID scanning timestamp stored in the MySQL database. This information can be
used to make better judgements about whether the current parking lot is adequate,
especially during peak hours, whether a new car park should be built, and if yes, where
to build the new car park. For example, by tracking real-time occupancy rates and
adjusting entry prices accordingly, owners can maximize income from paid parking

and ensure that adequate spots are available.

Furthermore, the reservation feature allows users to book a parking slot before
arriving. This reduces the time spent searching for available parking slots, minimizes
congestion, and makes the entire parking experience smoother. The ability to manage
parking spaces efficiently not only benefits individual drivers but also contributes to
the overall optimization of urban infrastructure. This study's significance lies in its
potential to address these issues through innovative technological solutions.

1.6 Scope and Limitation of the Study

1.6.1 Scope

This research focuses on developing a smart parking system with real-time parking lot
status monitoring and access control using IoT and RFID technology. The study
includes designing both the hardware and software components and evaluating the

system’s performance in a controlled environment.

16.2 Limitations

The research is limited to a prototype system and does not encompass large-scale
deployment. For large-scale deployment, more powerful microcontrollers, higher
quality RFID readers, faster internet speed, or other advanced hardware may be
required to maintain system reliability and efficiency. The accuracy of the system may
be influenced by external factors such as hardware and infrastructure limitations, and
environmental conditions such as lighting. Besides that, internet speed can impact the
responsiveness of the web pages, server, and database refresh speed, which may affect
the speed of gate opening and closing due to data verification with the database. This

project assumes access to high-speed internet.

Additionally, the integration of the ESP32-CAM with an IR sensor for motion
detection comes with some limitations. The IR sensor may trigger false detections due
to factors like the movement of small animals. Poor lighting can also reduce image
quality, making the captured photos less reliable. Furthermore, the ESP32-CAM is a
budget camera, so the image quality may not be as clear as higher-end alternatives,
which can affect the overall reliability of the system. Moreover, the Google Drive

cloud storage can fill up quickly if there are frequent detections.

Furthermore, the experiment trials assume an ideal condition in which all of
the vehicles occupying the parking slots are properly parked. As a result, the generated
results might not be a perfect representation of the system’s accuracy when it is
implemented in real life. For example, a poor vehicle parking position can have an
impact on the accuracy of the system. The IR sensor may not be able to detect a car if
it is not parked inside the box drawn in the parking space or if it is positioned too far
away from the sensor, which is outside of its detectable range.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In Chapter 2, a literature review will be conducted to explore the work of various
researchers on smart parking systems. The review will examine the different methods
and technologies proposed by different authors, highlighting both their strengths and
limitations. This analysis will provide a through overview of the current technologies
and identify gaps in existing research. Following this comparison, the chapter will
explain the rationale behind the choices made for this project, based on insights gained
from the literature review. The objective is to demonstrate how this project aligns with

or diverges from existing studies.

2.2 Smart Car Parking Mobile Application based on RFID and loT
Presented by Saeliw et al. (2019)

This paper presents the development of a smart car parking system that integrates
RFID and loT technologies with a mobile application. The system utilises the Arduino
ESP8266 microcontroller and the HY-SRF05 ultrasonic sensor module to monitor the
occupancy status of parking spaces. The data collected by the sensors is transmitted
via Wi-Fi to a server managed by the Apache web server, where it is stored in a
MySQL database and Firebase for real-time data management. The block diagram of

the system is illustrated in Figure 2.1.

11

The system includes an Android-based mobile application that provides users
with real-time updates on parking space availability. The application features a login
and registration interface, where users can create accounts to access the parking data,
as illustrated in Figure 2.2. In addition to the mobile app, the system is integrated with
the Line messaging application, which sends notifications to users about the
availability of parking spots, as illustrated in Figure 2.3. The application is developed
using Java for Android mobile application, PHP for server-side scripting, and
JavaScript, CSS, and Bootstrap for the web interface. Additionally, the system allows

parking managers to generate daily usage reports as illustrated in Figure 2.4.

Advantages:

The system offers real-time monitoring of parking spaces, ensuring that users
have access to the most current information about parking availability. By using the
Line messaging app to notify users when parking status changes, the system makes it
easier for users to find parking by keeping them informed in real-time about available
spaces. The use of RFID technology enhances safety by automating the entry and exit
process, reducing the risk of unauthorized access, and making the process more secure.
Additionally, the system eliminates the need for manual ticketing or cash payments,
which offers a more convenient and efficient user experience. Additionally, the system
includes administrative tools that allow parking managers to update availability and
generate daily usage reports in MS Excel format, which is useful for planning and
operational purposes. The use of open-source software, such as MySQL, Firebase,
Apache, and Android Studio, helps keep the development and deployment costs low.

Disadvantages:

The system is currently limited to Android devices, which restricts its usability
for people using other operating systems. Its effectiveness is also heavily dependent
on having a stable internet connection for real-time updates and notifications, which
could be a challenge in areas with poor connectivity. Additionally, the hardware used,
including the Arduino ESP8266 and ultrasonic sensors, may not be robust enough for

larger or more complex parking environments.

12

Sensor Ultrasonic

Node MCU ESP8266 WIFI

Smart Phane
Appllacation

Figure 2.1: The Block Diagram of the System (Saeliw et al., 2019)

Ol

Smartcar Parking

Figure 2.2: The Android Application Login and Registration Interface (Saeliw et al.,
2019)

13

=~

Parking Status

Figure 2.3: Car Parking Status Interface and Line Mobile Application Notification
Update (Saeliw et al., 2019)

= = o

Car Parking Management Report

December 2017

Date Amount Floor Remark
17-Dec-22 24 1

|7-Da|:.21' 22 .

l7-Dec-20.

17.Dac-19

17-Dec-18

17-DecA7

17-Dec-16

17-Dec15

Figure 2.4: Car Parking Management and Daily Usage Report Interface (Saeliw et al.,
2019)

14

2.3 Smart Parking Guidance System Using 360° Camera and Haar-Cascade
Classifier on 10T System Presented by Salma, Olanrewaju, and Arman
(2019)

This paper presents a Smart Parking Guidance System that integrates 10T technology
with advanced image processing (edge detection) and Haar-Cascade classifiers to
enhance parking management efficiency. Image processing involves the use of
algorithms to analyze and manipulate visual data captured by cameras to allow the
systems to identify and interpret various elements within an image. Haar-Cascade
classifier is a popular technique in image processing, it is used to detect objects within
an image by identifying patterns of light and dark areas that form the boundaries of
objects. The overall process of the system is shown in Figure 2.5. In this system, a 360°
camera is placed in the center of the parking lot to capture images of all parking slots
using the image processing method, as illustrated in Figure 2.6. These images are then
processed by a Raspberry Pi 3 Model B using Python and OpenCV libraries to
determine the occupancy status of the parking slots. The processed data is uploaded in
real-time to a Firebase cloud platform and the mobile application. Then, the user can
access the parking lot information and make reservations on an Android mobile

application developed in Android Studio.

Advantages:

One of the major benefits of this system is its cost-effectiveness. By using a
single 360-degree camera instead of multiple sensors, the system significantly reduces
the cost, making it a more feasible option for large parking facilities. The system
combined with image processing has success rate of 99.74 % in ideal conditions, which
is a very high accuracy. This means the users can trust the information provided about
available parking spots. The real-time updates through the Firebase cloud and Android
app, offer convenience and immediate access to parking data, making it easier for
drivers to find a spot quickly. Moreover, the booking and reservation system adds an
extra layer of convenience, allowing drivers to secure a parking spot before they even

arrive.

15

Disadvantages:

However, there are some downsides. The accuracy of the system can drop
slightly in low-light conditions, which might cause some parking spots to be
incorrectly reported as occupied or vacant. The quality of the camera used (e.g., 5 MP
versus 20 MP) also plays a significant role. Higher resolution cameras can offer better
accuracy and detail in detecting vehicles, but they also increase the cost of the system.
Moreover, the 360° camera also requires a lot of bandwidth, which could slow down
data transmission if the internet connection is weak. Additionally, setting up the system
can be a bit complex and time-consuming, as the Haar-Cascade classifier needs to be
trained with a large number of images to work effectively. Furthermore, while the 360°
camera method is cost-effective for large parking lots, it becomes less practical for
smaller parking facilities. In such cases, the component and development costs are
significantly higher than traditional sensor methods like IR sensors and ultrasonic

sensors, which makes the system less economical for smaller-scale implementations.

Hardware Integration loT and Android App
| 1
Parking lots =k fﬂ : f N ~ _2
‘ - O TS) 3
wiri D *
= 360-Degree == Raspberry Pi 3 Cloud og,
- camera Model B %.
2
o’
SE— Android =
Python Library ansaco Apps
ma

|

Python Program

Digital Image
processing

Figure 2.5: The Whole Process of the Smart Parking Guidance System (Salma,

Olanrewaju, and Arman, 2019)

16

Figure 2.6: Vehicle Detection Image Processing for the Prototype (Salma, Olanrewaju,
and Arman, 2019)

2.4 Smart Parking System using 10T Presented by Elakya et al. (2019)

This paper introduces a Smart Parking System that combines IoT with GSM and RFID
technologies to create a user-friendly and secure parking experience. At the core of the
system is an Arduino Nano microcontroller, which is linked to both a GSM module
and a Wi-Fi module. The GSM module, which is illustrated in Figure 2.7 enables
communication between the parking system and the mobile phones of the users to send
updates about parking availability via SMS or voice messages. The Wi-Fi module is
used to upload data from IR sensors, which detect whether a parking space is occupied
or not to a cloud server. RFID technology is also used so that only registered users can
access the parking facility by scanning their RFID cards at the entrance. Once the card
is scanned, the system checks the parking status stored in the cloud and sends this
information directly to the user's phone. At the end of this paper, the authors also
suggest that for future improvements, GPS, license plate scanner, and reservation

function could be added to improve the user experience.

17

Advantages:

One of the key benefits of this system is the use of GSM technology to provide
real-time parking updates directly to users' phones via SMS. This makes it convenient
and accessible as there is no need for users to download mobile applications or visit
websites as the information is delivered straight to them via SMS. This approach is
particularly useful in areas with limited internet access. Additionally, the use of RFID
technology offers an added level of protection by ensuring that only authorized users
can enter the parking area, which helps protect vehicles from unauthorized access.
Besides that, the use of IR sensors has several advantages, like being cost-effective,
easy to implement, having a fast response time, low power consumption, and capable
of detecting a wide range of objects and distances, depending on the calibration as the

sensitivity can be adjusted.

Disadvantages:

However, the system's reliance on additional hardware like GSM and Wi-Fi
modules adds the complexity and cost of implementation of the system. The Arduino
Nano, by itself, cannot connect to the internet or mobile networks, so Wi-Fi modules
are essential for the system to function. This complicates the circuit design and can
make large-scale deployment more difficult due to higher hardware prices and
potential challenges in handling the extra components. Besides that, the performance
of IR sensors is highly dependent on the surrounding light intensity and can be
significantly affected by the color and surface characteristics of objects. For instance,
darker surfaces tend to absorb more IR rays, resulting in fewer rays being reflected
back to the sensor, which can lead to inaccurate readings. This could cause the system
to mistakenly indicate that a parking slot is available when it is actually occupied.
Therefore, an object with a high reflective index will provide more reliable detection,

and vice-versa.

18

Figure 2.7: GSM Module (Elakya et al., 2019)

2.5 Intelligent Parking Management Using ANPR Technology Presented by
Lincy et al. (2024)

The paper introduces a smart parking system with two main modules, which are the
ANPR (Automatic Number Plate Recognition) module and the Vacant Slot Detection
module. The ANPR module uses YOLO v4 for real-time detection of vehicle license
plates and Tesseract OCR (Optical Character Recognition) for character recognition,
automating the detection of vehicles and logging their entry and exit times. This
module was trained on 1,500 vehicle images under various lighting and weather
conditions to ensure accurate recognition. The Vacant Slot Detection module uses
OpenCV for image processing and applies technigues such as thresholding, contour
detection, and edge detection to determine whether a parking space is occupied or
vacant. This module was trained on 1,000 images of parking spaces (vacant and
occupied) to enhance its accuracy in different environments. The ANPR and Vacant
Slot Detection Process Flow are shown in Figure 2.8 and Figure 2.9, respectively.
Figure 2.10 shows the license plate detection GUI while Figure 2.11 shows the vacant

slot detection interface.

19

Advantages:

The combination of ANPR and Vacant Slot Detection brings modules several
advantages. The ANPR module enhances security by automating vehicle identification,
ensuring only authorized vehicles can enter the facility. It streamlines operations by
removing the need for manual checks and improves overall efficiency. The Vacant
Slot Detection module eliminates the need for multiple physical sensors. Instead, it
uses a single camera to monitor multiple spaces, which reduces the costs of installation
and maintenance. This setup is particularly useful for larger parking lots, where
managing each individual space with sensors would be expensive and complex.
Overall, the system is cost-effective, scalable, and more flexible in terms of

deployment.

Disadvantages:

Despite its benefits, the system does face some limitations. The accuracy of the
ANPR module becomes lower if the captured images are unclear, which can happen
in poor lighting, bad weather, or when plates are damaged. Similarly, the Vacant Slot
Detection module relies on clear, high-quality images for precise detection, meaning
a high-quality camera is essential, which will increase the costs. Both modules also
require significant computing power, which adds to the overall complexity and
expense of the system. Additionally, if the parking layout changes, the system might
need adjustments, which could be time-consuming. ANPR systems also sometimes
struggle with characters that look similar, like '‘O" and '0" or 'B' and '8', which can lead
to occasional errors in vehicle identification. Although this system is efficient, it may

need optimal conditions and infrastructure to perform at its best.

Input (Vehicle visuals captured by Camera)

[Still Image I Video Sequence]

\

Pre-Processing Techniques

\/

Number Plate Extraction

Technigues:
Edge Image Colour Texture Chﬁra cter Combined]
Detection Imformation Features Features Features Features
Character Segmentation
Technigues:
Connected Projection Boundary Extracted Combined
component analysis methods informaticn features algorithms
Character Recognition
Tech niqu 5!
Optical Character [Template Matching Artificial NMeural I Combined
Recognition MNetworks algorithms

V

Output (Recognized vehicle number-plate data)
Post processing of recognized data (If required)

Figure 2.8: ANPR Process Flow (Lincy et al., 2024)

20

21

Figure 2.9: Vacant Slot Detection Process Flow (Lincy et al., 2024)

Vehicle Detection and Classification
Number Plate Detection and Recognition

Vehicles Count :

Figure 2.10: License Plate Detection (ANPR) Graphical User Interface (Lincy et al.,
2024)

22

a Free: 14/69‘m
[-) v

420 —
-y | — "lll
207> "= 2001 SE 2 F]
.
v

Figure 2.11: Vacant Slot Detection (Lincy et al., 2024)

2.6 A Smart Real-Time Parking Control and Monitoring System Presented
by Elfaki et al. (2023)

This paper discusses a smart real-time parking control and monitoring system that
integrates ANPR and reservation management to address parking challenges such as
congestion, inefficiency, and incorrect parking in urban areas. The system consists of
monitoring units at each parking slot, each parking slot is equipped with sensors
(motion sensor like PIR sensor or range-finder sensor like HY-SRFO5 ultrasonic
sensor) to detect vehicles presence and a camera (ESP32-CAM) to capture license

plate images, as shown in Figure 2.12 and Figure 2.13.

Firstly, a mobile application that allows visitors to reserve parking slots was
developed, which is shown in Figure 2.14. The visitor can request a parking slot, the
system will then check slot availability in real-time and assigns a parking slot to the
visitor. The assigned slot information is then communicated back to the visitor through
the application. Upon the arrival of the visitor’s car at the parking slot, the monitoring
unit detects its presence and captures the license plate image, which is processed by
the ANPR system to identify the characters using optical character recognition (OCR).

23

The recognized license plate data is then verified against the reservation records stored
in a cloud server to ensure the vehicle is parked in the correct slot. If the visitors park
in the wrong space, alerts are immediately sent to both the visitors and the parking

administrator.

Next, for the employees, parking slots are assigned to them based on their
official work hours or shifts using a priority queue data structure. Once assigned, the
employees are expected to park in the designated slots. The main function of the
mobile application for employees is to receive notifications or alerts if they park in the

wrong slot, rather than to make reservations manually.

Advantages:

The reservation function offers several advantages, including dynamic slot
allocation based on real-time demand, which optimizes parking space usage and
reduces congestion and time wasted to search for available parking slot. The automatic
detection of vehicles and verification against reservation records enhances parking
security and convenience. The integration of a cloud-based system and mobile
application facilitates efficient communication, with real-time notifications sent to
users for confirmation or alerts if a vehicle is parked at the wrong slot. Additionally,
the use of range-finder sensors provides higher accuracy in vehicle detection, which

makes the system more reliable.

Disadvantages:

However, there are also some limitations. The accuracy of the ANPR module
is highly dependent on the quality of the images captured. Adverse weather conditions,
such as heavy rain, fog, or poor lighting, can reduce the effectiveness of the ANPR
system. Furthermore, out-of-control scenarios like vehicle plate tampering, damaged
plates, or vehicles entering without license plates could prevent the system from
correctly verifying reservations, potentially causing security concerns or unauthorized
access to the facility. Another issue is that the reservation system depends on stable
internet connectivity for real-time updates and synchronization. In areas with
unreliable or weak network infrastructure, this could lead to delays or failures in

verifying reservations, which might cause inconvenience for users. Next, the initial

24

cost of deploying loT devices, sensors, and cameras for each parking slot may be high,
especially for large-scale implementations. Lastly, since parking slots are
automatically assigned based on work shifts, employees have no control over which
slots they get. This could be inconvenient if an assigned slot is far from their workplace

or if they prefer a specific parking area.

Figure 2.12: The Monitoring Unit Consists of Motion Sensor and Camera (Elfaki et
al., 2023)

Figure 2.13: The Monitoring Unit Consists of Range Finder Sensor and Camera (Elfaki
etal., 2023)

25

= Reservation

@ Location

' v 11/9/2022

Reserve a parking slot
from W 2:00pm to W 5:00pm

Search for available parking

Cancel a reservation

Reservation information

Location: 1IRC - Tabuk University
SlotID: A1

Date: 117972022

Duration: 3 hours

Cancel reservation

Figure 2.14: Mobile Application Reservation Function for User (Elfaki et al., 2023)

26

2.7 Summary

The studies included in the literature review were chosen for their range of
technologies and approaches in smart parking systems. These works cover a broad
range, from sensors, RFID, and GSM to camera and ANPR, providing insight into how
different methods are being used to tackle parking issues. The variety in user interfaces,
whether through mobile applications, web applications, or systems that do not require
an application, highlights how user interaction varies, which is a key factor in the
effectiveness of these systems. The works also include both well-established
technologies such as RFID and newer, more innovative solutions, such as ANPR,
which involves advanced image processing algorithm. Table 2.1 shows the summary

of the technologies and user interfaces used by different authors and my project choices.

Table 2.1: Literature Review Summary

Technology User Interface
Reference Web Mobile Without
Sensors Camera ANPR RFID GSM Database Reservation L i -
Application Application Application

Saeliw et al. / / / /
(2019)
Salma, / / /
Olanrewaju,
and Arman
(2019)
Elakya et al. / / / / /
(2019)
Lincy et al. / / / /
(2024)
Elfaki et al. / / / / / /
(2023)
My Project |/ / / / / /

27

Firstly, IR sensors were chosen for their cost-effectiveness, ease of installation,
and consistent performance in detecting vehicles. Compared to ultrasonic sensors,
which are more expensive and require precise calibration to work accurately, IR
sensors are simpler to deploy and maintain. While magnetic sensors are effective in
detecting vehicles, they require more complex installation, such as embedding in the
ground. Camera-based detection with image processing, though highly accurate,
involves significant computational resources and is sensitive to lighting conditions,
making it a more complex and costly option. Hence, IR sensors provide a reliable, low-

maintenance solution that meets the project's needs without unnecessary complexity.

Next, RFID was chosen over ANPR due to its speed, accuracy, and security.
RFID systems do not rely on the quality of visual data like ANPR, which can suffer
from errors due to poor lighting or damaged license plates. RFID ensures reliable
vehicle identification and access control without the complexities associated with

image processing.

Moreover, MySQL database was chosen for several reasons. First, it is an
open-source platform, meaning there are no licensing costs, which is a big plus for
cost-effective development. Additionally, MySQL is very popular in the industry,
known for its reliability and scalability, which makes it a perfect choice for storing the
data needed for this system. In addition, because of its widespread use, MySQL has a
lot of community support and resources, which makes it simpler to debug and expand
as needed.

Furthermore, the decision to use a web application was made to enhance user
accessibility and convenience. The web application was prioritized because it allows
users to easily access parking information, manage their accounts, top up balances, and
make reservations from any device with an internet connection. This approach ensures
that users can interact with the system seamlessly, without needing to install additional
software, which helps to save the phone storage. The web application allows users to
register, log in, view real-time parking availability, make reservations, and top up their
account balance if needed. This makes the parking experience more convenient and

user-friendly.

28

Lastly, the decision to include the ESP32-CAM in the system was made to
enhance security and provide additional visual evidence. The ESP32-CAM will
automatically capture images when the IR sensor detects movement at the entrance.
By saving the images to Google Drive, it ensures that these records are securely stored
and can be easily accessed when necessary, such as for law enforcement use in
investigations in cases of illegal activities, such as theft or unauthorized access. The
ESP32-CAM is an ideal choice for this purpose due to its compact size, low cost, and
built-in Wi-Fi capabilities, which enable seamless image capture and cloud storage

integration.

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Design Architecture

In this project, a Smart Parking System utilizing loT sensors and RFID technology is
developed. The IoT sensors selected for this system are IR sensors, with a total of eight
sensors corresponding to the eight parking slots in the system. Each parking slot is
equipped with one IR sensor to detect the presence of a vehicle. The system uses two
NodeMCU ESP32 microcontrollers, as illustrated in the overall system block diagram
in Figure 3.1. The ESP32 microcontrollers are equipped with built-in WiFi modules,
which enable communication with the database over the internet. The WiFi credentials
of the hotspot or broadband network are embedded in the code, which will be shown
in the “Software” section. For the server and ESP32 to communicate effectively, the

laptop running the server must be connected to the same WiFi network as the ESP32.

To set up the server, the XAMPP package was downloaded and installed, the
package includes both the MySQL database server and Apache web server. The ESP32
microcontrollers communicate with the database by sending HTTP requests. The
Apache web server listens for these requests from the ESP32 and serves the necessary
PHP scripts stored within the laptop's Apache server directory. These PHP scripts are
executed by the Apache server to process the requests from the ESP32, interact with
the MySQL database, and return responses in JSON format. The MySQL database
stores information such as user information, RFID scanning timestamps, reservation
user and time, and status of each parking slot. There is also a custom-designed web

application using HTML, CSS, JavaScript, and PHP scripts. This includes a

30

registration, login, top-up, reservation, and parking status monitoring page, where the
user can view the parking information after successfully logging in.

= —>
—» —>
—» —»
—» —>
f—n —»
g » Red(Occupied), g »| Red(Occupied),
PCF8575 16 CH Yellow (Reserved), PCF8575 16 CH Yellow {Reserved),
/0 Expander [N 1/ Expander (- N
(For Slot 1-4) Green (Available) (For Siot 5-8) Green (Available)
—> LEDs | LEDs
—» —»
—» >
— -l
—m —l
Apache Web Server : T
(XAMPP) :
JSON Response
HTTP GET/POST
HTTP GET/POST JSON Response
entrance_IR1 Red LED parking_IR1
parking_IR2
enfrance_IR2 Green LED
parking_IR3
parking_IR4
exiLIR1 Main ESP32 Second ESP32
parking_IR5
exit_IR2 20x4 LCD parking_IR6
parking_IR7
Use
Entrance RFID OLED
Reader parking_IR8

Y
Logic Level Shifter 5V, 4ADC - | 12v.2ADC Exit RFID
Power Supply 3 Power Supply Reader
Y
" Breadboard
¥ Power Supply
33v

Figure 3.1: The Block Diagram of the Overall 10T RFID Smart Parking System

Power Bank

entrance
servo motor

exit
servo motor

Next, a power bank with a USB cable is used to power up the main ESP32,
while the second ESP32 is powered up using the USB cable that is connected to the
PC. The 5V 4 A DC adapter provides high voltage (HV-5 V) to the logic level shifter.
Both ESP32 and the DC adapter would need to connect to common ground. The ESP32
microcontrollers provide 3.3 V to power all connected IR sensors. Besides the eight
IR sensors to detect the presence of vehicles in the parking lot, there will be two IR
sensors placed at both the entrance and exit gates to detect the presence of vehicles.
The working principle of the two entrance IR sensors is illustrated in Figure 3.2. A

similar principle applies to the two exit IR sensors. Two servo motors would be used

31

to simulate the entrance and exit gates. The main ESP32 is responsible for handling
the input devices like the four IR sensors for entrance and exit gates, the entrance RFID
reader, and the output devices like LEDs, buzzer, LCD, OLED, and the entrance and
exit servo motors. In contrast, the second ESP32 will handle the eight parking slot IR
sensors, the exit RFID reader, and the two PCF8575 1/0 expanders.

OBSTACLE LED ON,
VEHICLE DETECTED

RFID Reader

N7/

(User scan the RFID Tag)

OBSTACLE LED OFF,
NO VEHICLE DETECTED

MAIN ESP32
OBSTACLE LED OFF,

NO VEHICLE DETECTED

entrance IR1

entrance gate

(CLOSED) entrance_IR2

MAIN ESP32
OBSTACLE LED ON,

VEHICLE DETECTED

OBSTACLE LED OFF,
NO VEHICLE DETECTED

L)

entrance gate

entrance_IR1 (OPENED) entrance_IR2
[O
MAIN ESP32

OBSTACLE LED OFF,
NO VEHICLE DETECTED

entrance IR1

entrance gate

(CLOSED) entrance_IR2

Sy

Figure 3.2: The Working Principle of the Two Entrance IR Sensors

32

3.2 The Operation of the System

The operation of the system is illustrated in the flowchart as shown in Figure 3.3,
Figure 3.4, Figure 3.5 and Figure 3.6, respectively. The operation of the Smart Parking
System begins when a vehicle approaches the entrance gate, activating the entrance IR
sensors (entrance_IR1 ON, entrance_IR2 OFF). The user scans their registered RFID
tag at the entrance RFID reader, then, the Main ESP32 will check if the scanned UID
matches the database. If the UID does not match, a buzzer sounds with a long beep
and the red LED turns on, indicating access is denied. If the UID matches, the system
activates a short beep on the buzzer twice and turns on the green LED, displaying the
user's information, such as name, license plate, and latest account balance after parking
fee is deducted on the OLED. Then, the system checks if there are available parking
lots. If none are available, the LCD displays "Sorry, Parking Full”. If parking is
available, the system checks whether the scanned UID has enough account balance, if
enough, it proceeds to open the entrance gate. Then, the ESP32-CAM will take a
picture of the vehicle and save it to Google Drive. As the vehicle passes through, the
IR sensors detect the movement of the vehicle, the gate will not close if the vehicle
does not pass through the entrance_IR2 sensor. When the vehicle fully passes through,

the entrance gate is closed.

Next, the user parks the car, and the Second ESP32 checks for changes in the
parking lot status. If a change is detected, the Second ESP32 sends an HTTP POST
request to update the database, and the Main ESP32 continuously polls the database
by sending HTTP GET requests to the server to keep the LCD updated. The LCD
displays "FREE" for available parking slots, "FILL" for occupied parking slots, and
"RESV" for reserved parking slots. Additionally, it shows the total number of available
parking slots and the current time to ensure that users have real-time information at a
glance. Moreover, the users can visit the web application by scanning the provided QR
code or directly visiting the URL link. If the user does not have an account, they can
register one. The user will need to log in to the registered account in order to see the

real-time parking lot status or make reservations.

33

When the vehicle approaches the exit gate, the exit IR sensors (exit_IR1 ON,
exit_IR2 OFF) are activated. The user scans the RFID tag at the exit RFID reader, and
the Second ESP32 verifies the UID. The system generates a JSON file containing the
user's RFID information, such as UID, car owner name, license plate, and authorization
status. The Main ESP32 will then retrieve the information from this JSON file and
decide the response of the servo motors (gates), LEDs, and buzzer. If the UID does not
match (authorization status is FALSE), the buzzer sounds with a long beep and the red
LED turns on, indicating access is denied. If the UID matches (authorization status is
TRUE), a buzzer sounds with a short beep, the green LED turns on, and the exit gate
opens, indicating access is authorized. As the vehicle exits, the IR sensors detect the

movement, and the exit gate is closed, and the process keeps repeating.

Repeat

‘Vehicle approaches entrance gate,

entrance_|R1 OMN
entrance_|R2 OFF

Display "Sorry, Parking Full”

L J

Buzzer OM (long beep)

Red LED ON

3

NO

NO

on LCD

I
(.

User scan the RFID tag at
the entrance RFID reader

Main ESP32 check whether
scanned UID matches
database UID

Scanned UID matches
database UID?

Buzzer OM (short beep twice]
Green LED ON

Display user name, licensa
plate, account balance on
QOLED

!

otal available parking skt > 07
{rmaximum 3}

34

Figure 3.3: The Flowchart Showing the Operation of the Smart Parking System in

General (First Part)

35

Display "Insufficient
Balance" on OLED

ESP32-CAM captures
vehicle images and sawve itto
Google Dnive

‘“iehicle passing through the gate
entranca_R1 OFF
enfrance_IR2 QM

“ichicke passad through the ga=?
{entrance_IR1 OFF, entrance_|IR2 OFF)

Close Enfrance Gate

¥

Total available parking slot =
Total available parking skot - 1

l

User park the car at any
available parking slot

—

¥

Second ESPA2 check
if the: parking lot
siatus changed

I

[]

Parking lot status
changed?

Figure 3.4: The Flowchart Showing the Operation of the Smart Parking System in

General (Second Part)

36

lYES

Second ESPA2 send HTTP POST
request to the server to update latest
parking lot status in database

¥

Main ESP32 continuously polling the
latest parking lot status from the
database to update the LD

v

[\Webpage continuously polling the latest
parking lof status from the database to
update the parking lot status

Second ESP32 continuously polling the
latest parking lot status from the database to
update the on-site parking slot LEDs throwgh

PCFE575 11O Expander

h

‘ehicle approaches ext gate,
exit |R1 0N
exit_|R2 OFF

-
=

Buzzer OM (long beep) Uszar zcan the RFID tag at
Red LED OM the exit RFI0 reader

Y

¥

Second ESPI2 check
whether scanned UID
matches database UID

¥
Generate a JSOM file
that contain the user
RFID information and
authorization status

¥

Main ESP32 retieves
the information from
the JSOM file

NO

Scanned UID matches
databass UID?

Figure 3.5: The Flowchart Showing the Operation of the Smart Parking System in
General (Third Part)

37

lYES

Buzzer 0N (short beep twice)
Green LEDOMN

‘wiehicle passing through the gate
exit |R1 OFF
exit |R2 OM

-

ehicle paszed through the gaie?
(exit_IR1 OFF, exit_IF2 OFF)

Close Exit Gate

|

Total available parking slot =
Total available parking slot + 1

o

Figure 3.6: The Flowchart Showing the Operation of the Smart Parking System in
General (Fourth Part)

38

Figure 3.7 and Figure 3.8 show the simplified step-by-step process for regular
users and reserved users accessing and exiting the parking lot. Although regular users
and reserved users may differ in terms of when they visit the parking lot, they follow
the same basic process, as shown in the flowchart in Figure 3.3, Figure 3.4, Figure 3.5

and Figure 3.6, respectively.

Users can visit the parking lot at
any time and scan their RFID
tag.

h 4

The system compares the
database UID with the scanned
UID to verify user validity and
ensure the account balance is
sufficient.

h 4

The entrance gate opens if the
UID matches, the account
balance is sufficient, and the
parking lot is not full.

h 4

Users log into their account on the “login
page” and access the "parking lot status
monitoring page" to find an available
slot. Alternatively, the on-site LCD and
LED lights will display each slot's status.

h 4

Isers park their wvehicle in an
availahle slot, and the parking slot
status updates immediately on the

webpages, LCD, and LED light.

h 4

Users scan their RFID tag at the
exit gate and leave the parking
lot.

Figure 3.7: Step-by-Step Process for Regular Users Accessing and Exiting the Parking
Lot

User logs into their account
on the "login page” and
accesses the "parking lot
status monitoring page” to
find an available slot.

v
User accesses the
“reservation page”, selects
an available slot, and
enters their arrival time and

duration.

¥

LIsers visit the parking lot at
the reserved time and scan
their RFID tag.

¥
The system compares the
database UID with the scanned
UID to verify user validity and
ensure the account balance is
sufficient.

¥

The entrance gate opens if
the UID matches, the
account balance is
sufficient, and the parking
lot is not full.

¥

Users park their vehicle in the

reserved slot; the parking slot

status updates immediately on

the webpages, LCD, and LED
light.

¥

Users scan their RFID tag
at the exit gate and leave
the parking lot.

Figure 3.8: Step-by-Step Process for Reserved Users Accessing and Exiting the
Parking Lot

40

In this Smart Parking System, an ESP32-CAM is set up at the entrance to
capture images of vehicles whenever movement is detected by an IR sensor. These
captured images can be retrieved to assist law enforcement agencies in tracking
individuals involved in illegal activities. Initially, the plan was to store the images on
an SD card. However, due to the hardware limitations of the ESP32-CAM, the images
saved on the SD card often appear with a purplish tint and poor color balance. On the
other hand, when using the same camera settings for streaming or saving the images

to Google Drive, the quality is much better.

Therefore, the decision was made to store the images directly on Google Drive.
This not only ensures better image quality but also eliminates the hassle of having to
unplug the SD card to view the images. With Google Drive, the images can be accessed

directly without needing an SD card reader.

The way it operates is when the IR sensor detects vehicles, it triggers the
ESP32-CAM to take an image. The image is then encoded in Base64 format and sent
through an HTTP POST request to a Google Apps Script. The script decodes the image
and saves it to Google Drive. The Base64 encoding library (Base64.h and Base64.cpp)
used in this project is credited to Adam Rudd (Farad, 2020). The flowchart in Figure
3.9 shows the operation of the ESP32-CAM at the entrance gate.

41

Capture Image

Y

h 4

Turmn OFF onboard LED flash
of ESP32-CAM

h 4

Connect to WiFi

h J

MO Encode the captured image

WiFi Connected? in Baset4 format

h 4

Send the encoded image data
fhrough HTTP POST request to
Google Apps Scripts

Check IR Sensor

h
h J

h 4

Google Apps Scripts decode the
image data and save the image
to Google Drive

NO
IR sensor detects

movement?

Turn ON onboard LED flash
of ESP32-CAM

Figure 3.9: The Flowchart Showing the Operation of the ESP32-CAM at the Entrance
Gate

42

3.3 Hardware Components

3.3.1 NodeMCU ESP32

The ESP32-DevKitC is a 30-pin development board based on the ESP32
microcontroller, designed by Espressif Systems for embedded and 10T projects. The
ESP32 uses an Xtensa® dual-core 32-bit LX6 microprocessor with 448 KB of Flash
and 520 KB of SRAM, supporting wireless standards 802.11 b/g/n at up to 150 Mbps
(Wilson, 2020). The board is compact, lightweight, operates at 3.3 V, and can be
powered via USB. It includes 30 GPIO pins, a PWM controller with 16 channels, and
supports SPI, 12C, and UART protocols.

Compared to the Arduino Uno, which lacks built-in wireless connectivity, the
ESP32 stands out with its dual-core processing power, higher number of GPIO pins,
and has a built-in WiFi chip. Both ESP8266 and ESP32 have a built-in WiFi chip.
However, the ESP32 is a dual-core 160 MHz to 240 MHz CPU, while the ESP8266 is
a single-core processor that runs at 80 MHz (Wilson, 2020). Unlike the ESP8266, the
ESP32 is a more powerful successor, offering additional features such as Bluetooth
support, more GP10s, and better overall performance, but at a slightly higher cost. The
ESP32 has advantages like low cost, small size, and open-source nature, combined
with its compatibility with the Arduino IDE, making it a highly accessible and scalable
solution for developers, providing a seamless transition from Arduino boards while
offering much greater functionality. The open-source design ensures easy access to
community support and resources. The board can be powered via USB, making it easy
to set up and use with the Arduino IDE, especially for developers familiar with

Arduino boards.

Figure 3.10 shows the pinout diagram of the ESP32-DevKitC development
board. GP10 21 and 22 are used for 12C communication, connecting the OLED, LCD,
and RTC modules. This setup reduces the number of GPIOs needed since these devices
can share the same lines as long as they have unique 12C addresses. Most GP1Os on
the board can be used for PWM, except for GPIOs 34, 35, 36, and 39. PWM is

important because servo motors require PWM-capable GPIOs to function properly.

43

Lastly, GPIOs 5, 18, 19, and 23 are used for SPI communication, which is used by the
RFID readers.

EN = 13 GPI023 MOSI VSPI_MOSI
VP ADC1_0 GPIO36 @3 GPl022 [SCL
SensVN ADC1_3 GPIO39 GPIO1 UO_TXD CLK3
ADC1_6 GPIO34 GPIO3 UO_RXD CLK2
ADC1_7 GPIO35 GP1021 (SDA

32 Touch9 ADC1_4 GPIO32
32 Touch8 ADC1_5 GPIO33
DAC1 ADC2_8 GPIO25
DAC2 ADC2 9 GPIO26
Touch7 ADC2_7 GPIO27
HSPI CLK Touché ADC2 6 GPIO14
HSPI_MISO Touch5 ADC2 5 GPIO12
HSPI_MOSI Touch4 ADC2 4 GPIO13

GPIO19 MISO VSPI_MISO
GPIO18 SCK VSPI CLK
GPIO5 VSPI CS
elelelele , GPIO17 U2 _TXD
mm - -oF GPIO16 U2 RXD
GPIO4 ADC2 0 Touch0
GPIO2 ADC2 2 Touch2 CS
GPIO15 ADC2 3 Touch3 HSPI CS

VIN GNO D13 D12 Dva D27 D26 D2s D33 D32 Das D3e4 VN

GND (¢ GND
VIN & 3.3V
Power GND EN GPIO SPI 12C
ADC DAC Touch UART Control PWM

Figure 3.10: Pinout Diagram of the ESP32-DevKitC Development Board (30 GPIOs)
(Wilson, 2020)

3.3.2 Infrared (IR) Sensors

An IR sensor is a simple electronic device that uses infrared light to detect objects
nearby. It works by emitting infrared light through an IR LED (Transmitter), and when
this light hits an object such as a car, it reflects back to an IR photodiode (Receiver).
The amount of light received by the photodiode changes its resistance and voltage,
which is how the sensor knows something is there. The sensor also includes an onboard
power LED that lights up when the sensor is powered on. Additionally, there is an
obstacle LED that illuminates when the sensor detects an object, such as a car, within
its detection range. The sensitivity of the IR sensor can be adjusted using the onboard
potentiometer (Ch'ng, 2019). By turning the potentiometer knob clockwise, the

detection range can be increased, and vice versa for counterclockwise.

44

The IR sensors used in this project operate at 3.3 V, and they have three pins,
which are Vcc, GND, and OUT pins. When the IR sensor detects a car, it provides a
‘0’ as an input to the ESP32, indicating that a car is present. A ‘1’ as an input would
indicate that no car is detected. Figure 3.11 shows the diagram of the IR sensor, while

Figure 3.12 shows its working principle.

Distance Adjust

IR

Power LED

[

K IR Emitter

LED

Obstacle LED

Figure 3.11: The Diagram of an Infrared (IR) Sensor (Ch'ng, 2019)

IR Transmitter

IR Receiver

Figure 3.12: The Working Principle of an IR Sensor (Ch'ng, 2019)

45

3.3.3 MFRC522 RFID Reader

Radio Frequency ldentification (RFID) is a wireless system that identifies objects by
transmitting data through radio wave signals. It consists of two main components,
which are an RFID reader and an RFID tag. An electromagnetic field is generated by
the RFID reader to power the tag, which typically has no battery (Last Minute
Engineers, 2018). The tag contains a microchip that stores data, such as a unique
identifier (UID). When the tag is within the range of the reader, it sends its UID back
to the reader. The reader then interprets this data and transfers it to a connected system
for further processing. This technology allows for the efficient and automated
identification of objects without the need for manual intervention. Figure 3.13 shows

the working principle of RFID.

RFID Tag

Antenna RFID Reader/Writer

Figure 3.13: The Working Principle of RFID (Last Minute Engineers, 2018)

In this project, MFRC522 is the specific RFID reader module used to interact
with MIFARE 1K RFID tags. The MFRC522 operates at 13.56 MHz and is based on
the NXP MFRC522 IC. It has eight pins in total, which are Vcc, GND, MISO (Master
In Slave Out), SS/SDA (Slave Select), SCK (Serial Clock), MOSI (Master Out Slave
In), RST (Reset), and IRQ (Interrupt). The IRQ pin is usually left disconnected. It can
support communication using 12C, UART or SPI protocol. SPI protocol is used in this
project due to its faster speed. In the code, the SS and RST pins need to be specified.
The SS pin allows the microcontroller to identify which RFID reader it is
communicating with. The reader module is responsible for generating the
electromagnetic field that powers passive RFID tags, reading their unique identifier

(UID), and sending this data to the microcontroller for processing. The read range is

46

about 5 cm. Figure 3.14 shows the pinout diagram of the MFRC522 RFID Reader
module, while Figure 3.15 shows the MIFARE 1K 13.56 MHz RFID Tags.

G‘f L0l

[=ir=1
L=

ETETEERTE

Ci0 C8 Cs

-~
1,88
c7 cs cil

r=ir=1

@mmm
LIETETEN

D1 R1

Figure 3.14: Pinout Diagram of MFRC522 RFID Reader Module

L‘D & L

‘;CQ‘L

Figure 3.15: MIFARE 1K 13.56 MHz RFID Tags

3.34 SG90 Servo Motor

The SG90 micro servo motor is an affordable, compact, and lightweight servo motor
widely used in robotics and embedded systems. In this project, two SG90 servo motors
are used for controlling the entrance and exit gates in the smart parking system. It
offers a high level of precision with a maximum 180° angle rotation (Ch'ng, 2019).
Therefore, it has the sufficient angle for this project as the opening and closing of the
gate only require 90°. It operates on PWM signals, which means it needs to be

connected to a PWM-capable GPIO pin as specified earlier. The SG90 runs on an

47

operating voltage of 4.8 to 5 V DC. Since the GPIO pins of ESP32 output only 3.3 V,
a four-channel 3.3 V to 5 V logic level shifter is used in this project to ensure the servo
motor receives the correct operating voltage, allowing it to function properly within
the system. Figure 3.16 shows the SG90 servo motor, while Figure 3.17 shows the 4-
channel 3.3V to 5 V logic level shifter. The ‘LV’ pin of the level shifter is connected
to 3.3V, ‘HV’ pin is connected to 5 V, while the PWM-capable GPIO pin of the ESP32
is connected to either of the low voltage channel and the PWM pin of SG90 servo

motor is connected to the corresponding high voltage channel.

RED (+5V)
BROWN (GND)

T
[

Vv

901 :g’gmn

.193

Figure 3.17: 4-Channel 3.3 VV to 5V Logic Level Shifter

48

3.3.5 Organic Light-Emitting Diode (OLED) Display

The 0.96-inch OLED display as shown in Figure 3.18 is a small, low-power
consumption screen with a resolution of 128 x 64 pixels, which is perfect for projects
with limited space. In this project, the OLED has a white display (font) and is
connected to the ESP32 microcontroller using the 12C protocol. It is used to display
RFID scanning messages like the scanning status and the owner's name, license plate,
and account balance. The default address found after running the 12C scanner code is
0 x 3C. It is important to ensure no conflict of address between different 12C devices,
otherwise it will not work. This OLED does not require a backlight, allowing for deep

blacks and high contrast, making it ideal for clear text and simple graphics.

@ @oeee @

GND _VCC SCL SDA

Figure 3.18: 0.96-inch OLED Display

3.3.6 Liquid Crystal Display (LCD)

In this project, the LCD is used to display the real-time clock and the parking lot status
to the users. Figure 3.19 shows the 20 x 4 12C LCD. It has 20 characters per line across
4 lines, therefore, more information could be displayed. The 12C module significantly
simplifies the wiring and minimizes the number of GPIO pins required to control the
display, requiring only two pins (SDA and SCL) for communication with the ESP32.
The default 12C address is 0 x 27. The 12C address can be changed by connecting or
disconnecting the AO, Al, and A2 solder jumpers on the 12C module. Without this 12C
module, at least 7 GPIO pins would be needed for communication with the ESP32.
The contrast of the backlight could be adjusted by turning the potentiometer knob on
the 12C module.

49

AL R C LT EOET LT R AT RO T (W L
o 1 2 3 4 5 & 7 8 8

Figure 3.19: 20 x 4 12C LCD

3.3.7 Al-Thinker ESP32-CAM

The ESP32-CAM is a small and affordable camera module that includes the ESP32-S
chip. It comes with the OV2640 camera, a few GPIOs for attaching peripherals, and a
microSD card slot for storing images (Santos, 2019). Figure 3.20 shows the ESP32-
CAM, whereas Figure 3.21 shows the pinout diagram. In this project, the ESP32-CAM
Is used to take images of vehicles entering the parking lot whenever the IR sensor
detects motion. These images are saved to Google Drive, creating a record that can be
used by law enforcement if there is any criminal activity. Furthermore, the ESP32-

CAM supports live video streaming.

Front-view Back-view

TF/microSD Card Holder

0V2640 Camera

CA TR
= D)
E588888

2
5
o
2
i
&
&
=t
¥
S
-
Sy
oW,
-
)
o¥,
-

on-board LED Flash Lamp

1.?#"’5::’:1;
Jees |

RESET Button

Figure 3.20: Al-Thinker ESP32-CAM

50

GPIO4
GPIO2
GPIO14
GPIO15
GPIO13
GPIO12

Figure 3.21: Al-Thinker ESP32-CAM Pinout Diagram (Santos, 2019)

However, the ESP32-CAM comes with some challenges, such as its limited
number of GP10O pins compared to a standard ESP32, which can restrict the number of
peripherals that can be connected. Besides that, programming the ESP32-CAM
requires an USB to TTL adapter (CH340 is used in this project), as shown in Figure
3.22. To enter flashing mode, GP10O 0 needs to be connected to GND (Santos, 2019).
GPIO 1 and 3 are used to program the ESP32-CAM. The microSD card reader is
connected internally to GPIO 14 (CLK) and GPIO 15 (CMD). The CMD pin sends
commands to the SD card, while the CLK pin provides the timing signal to synchronize
data transfer between the microcontroller and the SD card. By default, the ESP32-
CAM connects to the SD card in 4-bit mode, which uses GPIOs 2, 4, 12, and 13 for
data transfer. However, switching to 1-bit mode allows the use of only GPIO 2 for data
transfer, which frees up GP10 12 and 13 for input or output (Mountain, 2022). While
GPIO 4 is also freed, it is connected to the onboard LED, so it is best left unconnected.
This adjustment is essential when additional GPIOs are needed for other components
or sensors in the project. Despite these challenges, the ESP32-CAM remains an

excellent choice, offering image capture capability at a very affordable price.

o1

| 1o Laptop USB Port

Figure 3.22: Hardware Connection to Program ESP32-CAM Using CH340

3.3.8 PCF8575 16-bit I/0 Expander

The PCF8575 is a 16-bit 1/0O expander designed for 2.5 V to 5.5 V Vcc operation
(Mischianti, 2019). It uses the 12C protocol for communication with microcontrollers
and provides remote 1/0 expansion with 16 quasi-bidirectional input/output pins (PO7—
P00, P17-P10) that can be used for tasks like controlling LEDs (Mischianti, 2019).
These pins feature latched outputs with high-current drive capability and operate in an
active-low configuration, meaning the LED will light up when the pin is set to LOW
(Mischianti, 2019). Figure 3.23 shows the top view and bottom view of the PCF8575.
The default 12C address of the PCF8575 is 0 x 20. The 12C address can be changed by
connecting the address pins (A0, Al, A2) to either Vpp or GND.

. Gh

LI

16-bit IO Expander

Figure 3.23: Top View and Bottom View of PCF8575 16-bit 1/0 Expander

52

Next, two PCF8575 1/0 expanders are used on the second ESP32 in this project,
as there are twenty-four LEDs representing the status of parking slots (three LEDs per
slot), and the GPIOs provided by the ESP32 are insufficient. The LEDs are connected
in a current-sink configuration due to the open-drain behavior of the PCF8575.
Additionally, the 12C address of the first PCF8575 is set to 0 x 20, and it controls the
first twelve LEDs for slots 1 to 4. The 12C address of the second PCF8575 is set to 0

x 24, and it controls the remaining twelve LEDs for slots 5 to 8.

3.4 Software Components

3.41 Arduino IDE

The Arduino IDE is a user-friendly, open-source platform designed for programming
microcontrollers like the ESP32. It allows for writing, compiling, and uploading code
to the microcontroller. In programming with the Arduino IDE, the typical code
structure begins with including the necessary libraries, such as WiFi, RFID, display,
and servo motor. Following this, functions are declared, GPIO pins are defined, and
instances of objects like servo motors or displays are created. Then, global variables

are set up to manage important data.

In the setup() function, hardware components are initialized, and a WiFi
connection is established, it will only run once. The loop() function includes the main
part of the program and executes continuously, managing tasks like reading sensors,

controlling outputs, and communicating with other devices or servers.

53

3.4.1.1 WiFi Setup Function

The code snippet in Figure 3.24 is written to connect the ESP32 to a WiFi network,
which is essential for enabling communication with the Apache web server and the
MySQL database in the project. It starts by including the “WiFi.h library. Next, the
WiFi credentials are defined. In the setup() function, serial communication is
initialized at a baud rate of 115200, which is helpful for debugging through the serial
monitor. The WiFi.begin() function is then called to start the connection process using
the provided SSID and password. Then, the code enters a loop where it continuously
checks if the ESP32 has connected to the WiFi network, and prints "Connecting to
WiFi..." every second until the connection is successful. Once connected, a
confirmation message "Connected to WiFi" is displayed, and the ESP32’s IP address
is printed. The IP address of the laptop can be obtained by running the “ipconfig”
command in the Windows Command Prompt, which can be accessed by pressing the
Windows key and typing “cmd”. This laptop’s IP address is important for
communicating with the server, accessing the database, and it is a part of the URL link
when accessing the web application. After this setup, the ESP32 is ready to interact
with the server, sending and receiving data as needed for the smart parking system.
This code needs to be included in both the code of the main ESP32 and the second
ESP32. For the server and ESP32 to communicate effectively, the laptop running the
server must be connected to the same WiFi network as the ESP32.

$include <WiFi.h> // Include the WiFi likrary to enable WiFi functicnalities

{{ Define your WiFi credentials

char ssid[] = "Example_35ID"; // Replace with your network 55ID

char pass[] = "Example Password"; // Replace with your network password

void setup() [
Serial.begin(115200); S/ Start serial communication at a baud rate of 115200 for debugging
WiFi.begin(ssid, pass); // Begin the WiFi connection using the 55ID and password

while (WiFi.status() !'= WL _CONNECTED) { // Ei
delay (1000} ; oy
Serial.println{"Connecting to WiFi...™); // Print status message while attempting to connect

Serial.println{"Connected to WiFi"); S/ Print a message once connected to WiFi
{"IP Rddress: ") ff Print the label "IP Address: "
ln(WiFi.localIP(}): ff Print the dewvice's IP address after a successfiul connection

/{ Further setup...

Figure 3.24: WiFi Setup Code for Main ESP32 and Second ESP32

3.4.1.2 Defining Main ESP32 and Second ESP32 Pins

In this study, the main and second ESP32 are used. The summary of pins defined for

ESP32 connected components are shown in Table 3.1.

Table 3.1: Summary of Pins Defined for Main ESP32 and Second ESP32 Connected

Components

Electronic Devices

Pin Attached

Second ESP32

Main ESP32

Entrance MFRC522 RFID Reader 5 (SS), 27 (RST)
Buzzer 4

Green LED 13

Red LED 12
entrance_IR1 15
entrance IR2 36
exit_IR1 34
exit_IR2 39
entrance_gate_ SERVO 14
exit_gate SERVO 32
OLED, LCD 21 (SDA), 22 (SCL)

Exit MFRC522 RFID Reader

5 (SS), 27 (RST)

parking_IR1

35

parking_IR2

32

parking_IR3

33

parking_IR4

25

parking_IR5

26

parking_IR6

14

parking_IR7

12

parking_IR8

13

PCF8575 1/0 Expanders

21 (SDA), 22 (SCL)

55

3.4.2 Network Time Protocol (NTP) Server

In this project, an NTP server is used to provide accurate and synchronized time for
the system. NTP is an internet protocol used to synchronize the system clock by
obtaining accurate time from an NTP server. The server provides time in UTC, which
is a global standard (Last Minute Engineers, 2019). The system then adjusts this UTC
time based on its local timezone setting (GMT+8 for Malaysia), converting it to the
correct local time for the region. The code snippet in Figure 3.25 syncs the ESP32's

time with an NTP server and displays the current date and time.

The system originally used an RTC module (DS1304), which caused small
delays. While a few seconds would not be a problem, over time these delays added up,
causing the time to drift by several minutes, which became an issue. By switching to
an NTP server, the system can receive real-time, internet-based time, which ensures
accurate time on the LCD and precise timestamps for RFID scans on OLED. This
change also eliminates the need for battery-powered hardware and guarantees the

system always has the correct time, as long as an internet connection is available.

finclude <WiFi.h>

finclude <time.h>

// NTP server settings

const char* ntpServer = "pool.ntp.org"; // NTP server to get tims (without relying on RTC modules)
const long gmtOffset_sec = 8 * 3600; // GMT+8: 8 hours (B * 3600 seconds) is the time offset for Malaysia
const int daylightOffset_sec = 0; // Mo daylight savings in Malaysia
woid setup() {
Serial .begin(115200); // Initialize serial communication

delay (1000) ;
connectToWiFi () ;
// Configure time with NTP

configTime (gmtOffset_sec, daylightOffset sec, ntpServer);

Serial.println("Time synchronization initiated...™);

void loop() {

struct tm timeinfo;

// Fetch current time

if (!getLocalTime(&timeinfo)) |
Serial.println("Failed to obtain time from NTP server.");
delay (1000); // Retry after 1 second
return;

1

// Display the current date and time in the format "DD/MM/YYYY HH:MM:S3"

Serial.printf ("Time: %02d/%02d/%04d %02d:%02d:%02d\n",
timeinfo.tm mday, timeinfo.tm mon + 1, timeinfo.tm year + 1500
timeinfo.tm hour, timeinfo.tm min, timeinfo.tm sec);

delay (1000); // Update every second

}

Figure 3.25: NTP Server Setup Code to Print the Date and Time

56

3.4.3 XAMPP Package

In this project, XAMPP is used as the local server environment. The XAMPP package
contains Apache (web server), MySQL (database server), and phpMyAdmin (a tool
for managing the database). To get the system running, both Apache and MySQL must
be manually started from the XAMPP control panel, which is shown in Figure 3.26. If

these services are not running, the web pages and database will not be accessible.

The ESP32 microcontrollers collect data from sensors, such as parking slot
availability, and send HTTP requests to the Apache web server. The Apache web
server listens for these requests, processes them, and serves the appropriate PHP scripts.
These PHP scripts communicate with the MySQL database to retrieve and update data,
such as parking statuses, and user information. The results are then returned in JSON
format to be used by the ESP32 or displayed on the web interface. The MySQL
database, accessed through phpMyAdmin, stores all system data, including parking lot

status, RFID user details, RFID scan logs, and reservation details.

[Z] XAMPP Control Panel v3.3.0 [Compiled: Apr 6th 2021] = a >
l_1 XAMPP Control Panel v3.3.0 ¢ Config
Sevre | Mok PID(s) Port(s) _Actions @ Netstat
Apache ?gg;ﬁ 80, 444 Admin Config Logs B shel
My3SQL 91644 3306 Admin Config Logs Explorer
FileZilla Admin Config Logs F Services
Mercury Start Admin Config Logs &) Help
Tomcat Start Admin Config Logs [l Qui

12:49:39 P [mysgl] Status change detected: stopped
12:49:39 PV [Apache] Attempting to stop Apache (PID: 69144)
12:49:39 P [Apache] Attempting to stop Apache (PID: 44160)
12:49:39 P\ [Apache] Status change detected: stopped
12:49:41 P [Apache] Attempting to start Apache app...
12:459:41 PN [Apache] Status change detected: running
12:49:42 PV [mysqgl] Attempting to start MySQL app...
12:49:42 P [mysgl] Status change detected: running

Figure 3.26: Starting the Server Using XAMPP Control Panel

57

3.4.4 MySQL Database

MySQL (phpMyAdmin) is the open-source database used in this project and it is
included in the XAMPP package together with the Apache Web Server. In this project,
the name of the database is ‘parking_system’, which contains four tables, which are
‘parking_status’, ‘reservations’, ‘rfid_scan_log’, and ‘rfid_user_info’, as shown in
Figure 3.27.

PhP L asaven 127.0.0.1 » @ Database: parking_system
~ 8l @ ' @ ¥ Structure L] SQL « Search Query =} Export |« Import ° Operations =< Privileges <% Routines =& Events :
Recent Favorites
Filters
=

r o New
T_ information_schema Containing the word:
‘f— mysql
=~ parking_system Table . Action Rows g Type Collation Size Overhead

e] parking_status Browse [Structure (% Search ¢ Insert & Emply @ Drop 8 InnoDB utfBmbd_general_ci 16.8 Kib

+- i» parking_status . _

|) ~1 reservations Browse (¢ Structure % Search 3&Insert §§ Empty @ Drop 2 InnoDB utfdmb4_general ci 16.8 KiB

+- ¢ reservations = = =

L,, rfid_scan_log Tl rfid_scan_log | Browse [Structure % Search % Insert ¥ Empty @ Drop 63 InnoDB utfémb4_general_ci 16.8 KiE

B4 rid_user_info | rfid_user_info Browse [} Stucture % Search ¢ Insert & Emply @ Drop 5 InnoDB ulfBmb4_general_ci 32.8 KiB
T— performance_schema 4 tables Sum 78 InnoDB utf8mb4_general_ci 88.@ KiB @B
+— . phpmyadmin _
I t [J Checkall With selected i
T_ test
+— | testing

(& Print & Data dictionary
3 Create new table
Table name Mumber of columns
4 Create

Figure 3.27: The ‘parking system’ Database with Four Tables, Which are

‘parking_status’, ‘rfid scan log’, ‘rfid_user info’, and ‘reservations’

Next, the ‘parking_status’ table stores the latest parking lot status, which is
illustrated in Figure 3.28. The second ESP32 writes latest updates of the parking lot
status to this table, while the main ESP32, the web application, and the two PCF8575
I/0 expanders continuously poll it to refresh the LCD display, the web application, and
the parking slot LEDs with the current status. Besides that, the ‘rfid_user_info’ table
stores information about each RFID tag, including the tag UID, car color, license plate,
owner name, account balance, account ID, password, and telephone number, which is
illustrated in Figure 3.29. When a user scans their RFID tag, the ESP32 sends an HTTP
GET request to the server to verify the tag UID. If the UID exists, the server responds
with the relevant information in JSON format, which is then processed by the ESP32.

This table is also where the account balance is updated whenever a tag is scanned or

58

when a new account is registered. Moreover, the ‘rfid_scan_log’ table records each

RFID scan, such as whether the scan was successful or failed, along with the timestamp

of the scan, which is illustrated in Figure 3.30. This allows for tracking the history of

scans and ensuring the integrity of the parking system. Lastly, the ‘reservations’ table

stores the reservation details such as the user name, reserved slot, and reservation time

(arrival time), which is illustrated in Figure 3.31. This table will be updated whenever

a user reserves a slot through the reservation page.

SELECT *

[] Show all

FROM " parking_status®

Mumber of rows:

Extra options

25 w

[C] Profiling [Edit inline] [Edit] [Explain SQL][Create PHF code][Refresh]

Filter rows: | Search this table

— 1= + slot_number status

[&7 Edit 3 Copy @ Delete 1 AVAILABLE

[47 Edit 3 Copy @ Delete 2 AVAILABLE

[0 g7 Edit 3 Copy @ Delete 3 AVAILABLE

1,7 Edit 3 Copy @ Delete 4 AVAILABLE

T g7 Edit 3¢ Copy @ Delete 5 AVAILABLE

[47 Edit % Copy @ Delete 6 AVAILABLE

[0 g7 Edit 3 Copy @ Delete 7 AVAILABLE

[[] o7 Edit % Copy @ Delete 3 AVAILABLE

1 —1 Check all With selected: o7 Edit #< Copy @ Delete = Exporf

H . < :)
Figure 3.28: The ‘parking_status’ Table
SELECT * FROM "rfid_user_info’
_) Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]
("] Show all Numberofrows: |25 v Filter rows: | Search this table Sort by key: | None v

Extra options
— - w id tagUID car_color license_plate owner_name balance account password tel_no
) o Edit < Copy @ Delete 1 142D3DA7 Blue ABC1234 Alice 120 Alice Alice123 011-23456789
] 7 Edt i.e Copy (g Delete 2 24E654BB Black FF1 HZHENG 30 hongzheng hongzheng123 016-4637412
) g7 Edit Fc Copy @ Delete 3 2A6611C1 Green WLVE888 Charlie 180 Charlie Charlie123 011-46375737
[7 Edit 3< Copy @ Delete 4 14DEFADF Green PLV1029 David 130 David David123 017-9678327
] g7 Edit %< Copy @ Delete 13 E420C8DF Red PKB9143 Henry 190 Henry Henry123 019-3472618
] 7 Edit 3 Copy (@ Delete 14 84FCBSDF Red JOL7256 Jack 190 Jack Jack123 012-5628174
() 7 Edit }:‘ Copy @ Delete 15 EC3A5BFF White VWD5678 Olivia 180 Olivia Olivia123 012-8943765
| o Edit 3< Copy @@ Delete 16 93C70C14 White KDT5087 Bob 160 Bob Bob123 016-7289453
t ~] Check all With selected: 7 Edit ;“_4.:‘ Copy @ Delete = Export

Figure 3.29: The ‘rfid user info’ Table

59

SELECT * FROM ~“rfid_scan_log’

) Profiling [Edit inline] [Edit] [Explain SQL][Create PHF code] [Refresh]

== < |20~ > == | Numberofrows: |25 Filter rows: | Search this table Sort by key: | None

T = id taguiD car_color license_plate owner_name scan_status scan_date scan_time

] &7 Edit :'j-E Copy (@ Delete 476 24E654EB Black FF 1 HZHENG SUCCESS 2025-03-02 13:03:49
[o7 Edit 3 Copy @ Delete 477 AD305C21 UNKMNOWN UNKNOWN UNENOWN FAIL 2025-03-02 183:00:41
[0 o7 Edit % Copy @ Delete 478 E3790B27 UNKNOWN UNKNOWN UMENCWN FAIL 2025-03-02 18:09:46
[[] o7 Edit %< Copy (@ Delete 479 14DEFADF Green PLV1029 David SUCCESS 2025-03-02 18:10:54
[g7 Edit 3« Copy @ Delete 420 2AG611C1 Green WLV3ss3 Charlie SUCCESS 2025-03-02 1311:03
1 o7 Edit 3¢ Copy @ Delete 481 24EG54BE Black FF1 HZHEMNG SUCCESS 2025-03-02 18:19:04
[7 Edit % Copy @ Delete 482 2A6611C1 Green WLV3853 Charlie SUCCESS 2025-03-02 182121
[[] o7 Edit 3« Copy @@ Delete 483 142D3DAT Blue ABC1234 Alice SUCCESS 2025-03-02 18:37:06
[0 &7 Edit 3« Copy @ Delete 484 2A6611C1 Green WLvasss Charlie SUCCESS 2025-03-02 183936
[o7 Edit %< Copy (@ Delete 435 2A6611C1 Green WLV33853 Charlie SUCCESS 2025-03-02 18:41:06

] 7 Edit 3¢ Copy @ Delete 486 93C70C14 White KDTS08T Bob SUCCESS 2025-03-02 184408
1 o Edit §¢ Copy (@ Delete 427 93C70C14 White KDTS08T Eob SUCCESS 2025-03-02 191507
[0 o7 Edit % Copy @ Delete 438 93C70C14 White KDTS08T7 Bob SUCCESS 2025-03-02 191837
[] o7 Edit %< Copy (@ Delete 439 93C70C14 White KDT5087 Bob SUCCESS 2025-03-02 19%18:44
[g7 Edit %« Copy @ Delete 490 E420CEDF Red PKE9143 Henry SUCCESS 2025-03-02 191855
1 o7 Edit 3¢ Copy @ Delete 481 142D3DAT7 Blue ABC1234 Alice SUCCESS 2025-03-02 1919:10

| 7 Edit % Copy @ Delete 492 142D3DAT Blue ABC1234 Alice SUCCESS 2025-03-02 19:19:22
[o7 Edit 3¢ Copy @ Delete 493 142D3DAT Blue ABC1234 Alice SUCCESS 2025-03-02 19%19:34
[&7 Edit 3« Copy @ Delete 494 24EG54BE Black FF1 HZHEMNG SUCCESS 2025-03-02 192312
[J o7 Edit %< Copy (@ Delete 495 14DEFADF UNKMOWN UNKNOWN UNKENOWN FAIL 2025-03-02 19:23:57
[47 Edit 3 Copy (@ Delete 496 14DEFADF Green PLV1029 David SUCCESS 2025-03-02 19:24:03
] o Edit 3¢ Copy @ Delete 497 E420C8DF Red PKE9143 Henry SUCCESS 2025-03-02 192553
[7Edit F: Copy @ Delete 498 93C70C14 White KDTS08T Bob SUCCESS 2025-03-02 1926118
[] o7 Edit %< Copy (@ Delete 499 2A6611C1 Green WLV33853 Charlie SUCCESS 2025-03-02 1926237
[&7 Edit % Copy @ Delete 500 EC3IASBFF White VWD5E78 Olivia SUCCESS 2025-03-02 19:27:03
+ [0 Checkall With selected: .7 Edit < Copy @ Delete = Export

Figure 3.30: The ‘rfid scan_log’ Table

SELECT * FROM “reservations®

(O Profiling [Edit inline][Edit] [Explain SQL][Create PHP code] [Refresh]

] Show all | Mumber of rows: | 25 w Filter rows: | Search this table Sort by key: | None v
Extra options |
— 1= w id owner_name tagUID license_plate reserved_slot_number start_time end_time
0 g7 Edit 3 Copy @ Delete 91 HZHENG 24E654BE FF 1 1 2025-03-06 14:36:00 2025-03-06 15:36:00
[J o7 Edit 3¢ Copy @ Delete 92 Bob 93CT0C14 KDT5087 6 2025-03-06 17:37:00 2025-03-06 12:07:00|

t [C] Checkall With selected: .7 Edit F¢ Copy @ Delete =} Export

Figure 3.31: The ‘reservations’ Table

60

3.4.2.1 How to Create a Database and a Table

The code snippet in Figure 3.32 shows an example of creating a database named
‘parking_system’, and creates a table named ‘rfid user info’, with nine columns
where each column corresponds to a variable. The ‘INSERT’ command is used to
insert information into the table. To make the variables case-sensitive, a binary
collation such as ‘utf8mb4_bin’ is applied to the relevant columns. This ensures that
variables like owner’s name, usernames, passwords, and UID are stored and compared
exactly as entered, which can enhance security and data accuracy at the login page and
reservation page. After inserting the code in the ‘SQL’ tab, the ‘Go’ button at the

bottom right of the page is clicked and the database and table will be generated.

| @'Sen'en 127.0.01 » @ Database: parking_system » [Table: rid_user_info

—| Browse @ Structure | L[SQL ., Search = ¥ Insert =} Export [« Import | =9 Privileges

&~ Operations ® Tracking

Run SQL query/queries on table parking_system.rfid_user_info: @

1 CREATE DATABASE parking_system; -- Create the database

3 USE parking_system; -- Select the database

5 CREATE TABLE rfid_user_info
id INT AUTO_IMCREMENT PRIMARY KEY, -- Auto-incremented primary key
tagUID VARCHAR(28) COLLATE utf8mb4_bin NOT NULL, -- Case-sensitive RFID tag UID
car_color VARCHAR(2@), -- Color of the car
license_plate VARCHAR(28) COLLATE utf8mb4_bin, -- Case-sensitive license plate
owner_name VARCHAR(58) COLLATE utf8mbd_bin, -- Case-sensitive name of the car owner

balance DECIMAL(1®, 2}, -- Account balance
account VARCHAR(5@) COLLATE utf8mb4 bin, -- Case-sensitive user account name
password VARCHAR(S58) COLLATE utf8mb4_bin, -- Case-sensitive user password

14 tel_no VARCHAR(28) -- User telephone number

-- Insert sample data into the table
1% INSERT INTO rfid_user_info (taglUID, car_color, license_plate, owner_name, balance, account, password, tel_no
19 WALUES

"142D3DA7', "Blue', 'ABC1234', 'Alice’, 18@, 'Alice’, 'Alicel23", '@11-23456789');

SELECT* SELECT INSERT UFDATE DELETE Clear Format Get auto-zaved query

Eind parameters &

Bookmark this SQL query:

Delimiter |; Show this query here again Retain query box Rollback when finished & Enable foreign key checks GO

Figure 3.32: An Example of Creating a Database and a Table

61

3.4.2.2 How to Connect to the Database

The PHP code in Figure 3.33 called ‘db_connect.php’ is written to enable connection
to the database called ‘parking system’. In the code, the server name, username,
password, and database name need to be specified. This ‘db_connect.php’ needs to be
included at the beginning of every PHP script that requires database interaction, such

as retrieving, updating, inserting, or deleting data.

$servername = “localhost”™;

$username = “root”;

$password = “°;

$dbname = “parking system”;

$conn = new mysqli($servername, $username, $password, $dbname);

if ($conn->connect_error) {
die("Connection failed: " . $conn->connect_error);

}

Figure 3.33: The ‘db_connect.php’ File That Is Used to Connect to the Database

3.4.3 PHP Scripts

In this project, PHP scripts play a crucial role as intermediaries between the ESP32
microcontroller and the MySQL database. Directly connecting the ESP32 to MySQL
might sound simple, but it introduces issues like security risks, heavy resource
demands on the ESP32, and unencrypted data transmission. By using PHP scripts over
HTTP, these problems are avoided. If no PHP scripts were used, all the codes,
including the HTML, CSS, and JavaScript would be written and stored on the ESP32
alone, this would make the code very lengthy and overload the ESP32. By using the
PHP scripts, the codes are stored on the server (laptop) and can be accessed when

needed.

62

Firstly, a folder called ‘parking system’, which is the same name as the
database name was created manually in the XAMPP Apache Web Server file path
folder called ‘htdocs’. Then, all the PHP scripts were written using Microsoft Visual
Studio Code and were stored in the ‘parking system’ folder, which is illustrated in

Figure 3.34.

J > |ThisPC > Main(C) > xampp > htdocs > parking system |[>
T Sort v = View v eee
Name File ownership Type 3 Size

W .vscode File folder

B togin_style.css CSSfile 4KB
B parking_status_style.css CSSfile 3K8
4 reservation_style.css CSSfile 7KB
B signup_style.css CSSfile 2KB
B topup_style.css CSSfile 2KB
B exit_status.json JSON File 1KB
B check_balance.php PHP Source File 2K8
B check _rfid.php PHP Source File 2KB
[#] db_connect.php PHP Source File 1KB
B get_exit_status.php PHP Source File 1KB
B get_parking_status.php PHP Source File 1KB
B log_rfid_scan.php PHP Source File 2KB
B login.php PHP Source File 2KB
B logout.php PHP Source File 1KB
B monitor_reservation_time.php PHP Source File 5KB
B parking_status.php PHP Source File 10KB
B reservation.php PHP Source File 7KB
B signup.php PHP Source File 3KB
B topup.php PHP Source File 2KB
B update_balance.php PHP Source File 1KB
B update_exit_status.php PHP Source File 1KB
B update_parking_status.php PHP Source File 3KB

Figure 3.34: The Location where all the PHP Scripts are Stored

63

3.4.4 The Roles of Each PHP, CSS, JSON Files Used in This Project

All the files in Figure 3.34 have their own purposes. When a vehicle approaches the
entrance and scans the RFID tag, the main ESP32 first uses the ‘check_rfid.php’ script
to verify if the scanned RFID tag exists in the ‘rfid_user_info’ table of the database. If
the RFID tag is valid, this script retrieves details like the owner’s name, license plate,
and account balance and returns this information in a JSON format. The main ESP32
then executes the ‘check_balance.php’ script to query the same table for the user’s
account balance. If the balance is sufficient, the parking fee is deducted and the balance
field in the ‘rfid_user_info’ table is updated using the ‘update_balance.php’ script.
After successfully entering, the RFID scan is logged using ‘log_rfid_scan.php’, which

records the scan event in the ‘rfid_scan_log’ table.

Next, for exit operations, the second ESP32 RFID reader scans the RFID tag
and updates the “exit_status.json’ file using ‘update_exit_status.php’ with details such
as UID, owner’s name, car color, license plate, and the database check status. This
JSON file is then read by the main ESP32 through ‘get_exit_status.php’. If the JSON
file shows database check status success, main ESP32 retrieves the UID, owner’s name,
car colour, license plate from the JSON file and print it on the OLED and serial monitor,
and updates the ‘exitRFIDAuthorized’ flag to open the exit gate accordingly. The
second ESP32 also uses the ‘update parking_status.php’ script to update the
‘parking_status’ table in the database based on the eight IR sensors monitoring the
parking slots whenever there is a change in the IR sensor’s status.

Besides that, the web application includes several pages and functionalities.
For example, ‘login.php’, ‘signup.php’, ‘topup.php’, ‘parking_status.php’, and
‘reservation.php’ manage user login, registration, balance top-ups, parking lot status
monitoring, and parking slots reservation respectively. Each of these scripts integrates
PHP, HTML, CSS, and JavaScript in one place. The ‘login.php’ page allows users to
log in by verifying their account and password against the ‘rfid_user_info’ table. After
successful login, users will be redirected to the ‘parking_status.php’ page, which

displays the parking lot status and their account balance. The parking lot status on the

64

webpage, LCD, and parking slot LEDs are continuously updated by polling the
‘parking_status’ table in the database.

Next, the top-up functionality is handled by ‘topup.php’. The users can select
a top-up amount from a dropdown list and confirm the transaction by entering their
password. After successful top-up, the balance in the ‘rfid_user_info’ table will be
updated, and the user will be redirected to the login page. In addition, the ‘signup.php’
page allows new users to register by entering their RFID tag details and personal

information, which is then stored in the ‘rfid_user_info’ table.

Furthermore, the reservation functionality is handled by ‘reservation.php’. This
page allows users to reserve parking slots by entering their name, license plate, slot
number, arrival time, and duration. The script validates the inputs by checking if the
user exists in the ‘rfid_user_info’ table and if the selected parking slot is available
during the specified time by querying the ‘reservations’ table. If no conflicts are found,
the reservation details are stored in the ‘reservations’ table. The
‘monitor_reservation_time.php’ script's main function is to continuously monitor the
‘reservations’ table in the database and update parking slot statuses accordingly. When
a reservation's start time is reached, it automatically sets the corresponding parking
slot's status to “RESERVED” in the ‘parking_status’ table. For reservations where the
end time has passed or expired, it updates the status to “AVAILABLE”. Additionally,

it cleans up the database by deleting expired reservations.

Lastly, the CSS files like ‘login_style.css’, ‘parking_status_style.css’,
‘signup_style.css’, ‘topup_style.css’, and ‘reservation_style.css’ are used to style the

web pages to ensure that they are visually appealing and user-friendly.

65

3.4.5 Ngrok Tunneling

One limitation of the current setup is that the web application is hosted locally using
the XAMPP package, which means it can only be accessed by users connected to the
same network as the server and the ESP32. There is no point in developing a web
application that only local machines can access but other people in the world using
different networks cannot access. The solution is to use Ngrok, a tool that creates a
secure tunnel by generating a public URL to route traffic from the internet to the local
server. This enables global access to the web application, regardless of the user's
network connection. Ngrok also uses HTTPS encryption, which ensures that data
transmission is secure. The details of how to set up Ngrok to generate a public URL

are illustrated in Appendix A.

Although using Ngrok is sufficient for the webpages to work, it is only a
temporary solution since the server needs to be manually started each time before the
web pages can be accessed. To make the system a permanent solution, public web
hosting services could be used in the future. This would involve purchasing a domain
name. This way, the webpages are always online and do not require starting the server
every time. Alternatively, the XAMPP package could be installed on a Raspberry Pi
and configured to run continuously. Although these alternatives offer long-term
solutions, for now, using XAMPP together with Ngrok is sufficient and will be the

chosen approach for this project.

3.5 Project Management / Gantt Chart

66

The Gantt charts for FYP 1 and FYP 2 are presented in Table 3.2, and Table 3.3,

respectively.

Table 3.2: Gantt Chart for FYP 1

Task

Week

1|23 (4|5|6|7]|8

9

10

11 12

13

14

Dicsussion With Supervisor

FYP Title Selection

Research

Purchase Components Online

Testing Components

Build Hardware Prototype on
Breadboard

Develop Web Application

Literature Review

Introduction

Methodology

FYP 1 Presentation

Table 3.3: Gantt Chart for FYP 2

Task

Week

Build Hardware Prototype on
Stripboard

Final Prototype Testing

Results

Conclusion

10 | 11

12

13

14

FYP Report Formatting Checking

Poster Presentation

FYP 2 Presentation

67

3.6 Cost of Components

In this study, managing the cost used in FYP is a crucial part. It is important to select
components and materials, which able to meet the project requirements. The cost of

components used in this project is shown in Table 3.4.

Table 3.4: Components List with Price

Components Unit Price Quantity Total Price Remarks
(RM) (RM)
1. | NodeMCU ESP32 25.00 2 50.00 Shopee,
Robotronik
2. | IR Sensor 2.90 13 37.70 Shopee,
Robotedu
3. | MFRC522 RFID Reader 5.49 2 10.98 Shopee,
Robotronik
4, SG90 Servo Motor 5.84 2 11.68 Shopee,
Robotedu
. h ,
5. | 12C 2004 LCD Display 19.90 1 19.90 Shopee
Robotedu
6. | OLED Display 14.90 1 14.90 Shopee,
Robotedu
7. | Al-Thinker ESP32-CAM 29.90 1 29.90 Shopee,
Robotedu
8. | PCF8575 /0 Expander 14.00 2 28.00 Shopee,
WeiWang
9. |LED 0.10 26 2.60 Shopee,
Robotedu
10. | 24 AWG Wires (1 m) 1.00 42 42.00 Shopee,
SYNACORP
11. | Jumper Wires 3.20 4 12.80 Shopee,
littlecraft
1 Stripboard 5.00 1 5.00 Shopee,
(10 x 24.5 cm) Robotronik
13 5V 4A AC-DC Power 15.99 1 15.99 Shopee,
Adapter Robotronik
1 12V 2A AC-DC Power 10.09 1 10.09 Shopee,
Adapter Robotronik
TOTAL 201,54 Not including
equipment

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Schematic Diagram

The schematic diagrams of the main ESP32, the second ESP32, and the ESP32-CAM
are shown in Figures 4.3, Figure 4.4, and Figure 4.5, respectively. The main ESP32
handles the input devices, such as four IR sensors for the entrance and exit gates and
the entrance RFID reader. It also controls the output devices, including LEDs, a buzzer,
an LCD, an OLED display, and the entrance and exit servo motors. In contrast, the
second ESP32 manages the eight parking slot IR sensors, the exit RFID reader, and
two PCF8575 1/0 expanders. Both ESP32 share a common ground. The two PCF8575

I/0 expanders manage the twenty-four parking slot status LEDs.

Firstly, the main ESP32 is powered by a power bank. Since the GPIO pins of
the ESP32 only output 3.3 V, a four-channel 3.3 V to 5 V logic level shifter is used to
convert the 3.3 V PWM signal from the ESP32 to 5 V before sending it to the signal
pin of the servo motor. This ensures the servo motor receives the correct operating
voltage (5 V) for proper functioning.

Besides that, the second ESP32 is powered via a USB connection to a PC. Both
the entrance RFID reader on the main ESP32 and the exit RFID reader on the second
ESP32 are powered by an independent breadboard power supply, which itself is
powered by a 12 V / 4 A DC adapter, instead of using the 3.3 V pin on the ESP32.

This ensures that the RFID readers receive a stable 3.3 V operating voltage. When too

69

many components share the same 3.3 V pin on the ESP32, the voltage may not be
sufficient, which could prevent the RFID readers from receiving the correct 3.3 V.

This can lead to the RFID readers failing to read RFID tags or not functioning properly.

Next, the twenty-four LEDs connected to the PCF8575 1/0 expanders are
configured in a current sink configuration, as illustrated in Figure 4.1. In this current
sink configuration, the anode of the LED is connected to Vcc through a current-
limiting resistor, and its cathode is connected to the 1/0O pin of the PCF8575, which
acts as a current sink. When the GPIO pin of the PCF8575 is set to LOW, it creates a
path to the ground, allowing current to flow through the LED. This turns the LED ON.
In contrast, when the GPI10O pin is set to HIGH, the voltage at both ends of the LED is

the same, preventing current from flowing, and the LED remains OFF.

PCF8575 5V

GPIO
R1
LED1
Ya

Source Sink SZQ«

PCF8575
e GPIO .

Figure 4.1: Current Source and Current Sink Configuration of a LED

One of the main advantages of sinking current in this configuration is that it
simplifies the design by allowing the 1/O pin to only handle lower voltage levels and
small amounts of current. This reduces the risk of excessive power dissipation on the
microcontroller, as it does not need to supply the current directly (Bishop, 2023).
Additionally, sinking current helps reduce noise and voltage fluctuations, leading to
more stable operation of the circuit, especially when controlling multiple LEDs or

other output devices (Bishop, 2023).

70

0Td
TTd

£0d
90d

TT o OT
5 fHad RS sodfg—
c —=¢cTd LN vPO0dr———
o I oo I [
o -—=—7Id €0dra—
N x QT TN, 9
—w —=71S1d C_rO C0de
- OT q
Q —¥191d 0O+ T10dFe—
= /LI 17
) ﬂhﬁn_ oon_ml
07 QZmWCALTQZmulH
Z0N0=
GVSSH
123475
| T | [| [| Y|
oY
™M
o
W
LI

Figure 4.2: Zoomed in View of ESP32 and PCF8575 1/O Expander Pinout

71

1 U4 U1z
PowerBank |_ us iz

d
1111

ESP32 (Main)

iy

)= = = = RES22 RFID Reader (Entrande)
O3% -_ e L2l T
= — ! |
= I - — Activs Pizzo Buzzer —— Entrance Gatp
LED-0805RED, oo 2502 evem B —= ' u3 Ut

R TP - | + | FC51 FC-51

= e e .
e o e M T

00
d

— ut w

LLmd

Exit Gate

G\LD LogicLevel-Converter-4CH
45 1vs Hys—
T3 HVI-Z
. 5~ GND GND o=
5V_4A DC_Adapter S-LV+ HV+ o
- - - T V2 HvZss
LCD1 LVl HW1==
LCD DISPLAY 20¥4 12C
] Jtnp | V2
b= 5'..:'CI: OLED 0.86
SDA ;‘_ £ sDA
SCL SCL

entrance_rfid_reader 3.3V Pin
entrance_rfid_reader/System QND)|

Figure 4.3: Schematic Diagram of loT RFID Smart Parking System (Main ESP32) Drawn Using EasyEDA Software

l I | | entrance_rfid_reader 3.3V Pin
entrance_rfid_reader/System GND)|
R R Slot 4 LEDs Slot 3 LEDs Slot 8 LEDs Slot 7 LEDs
3V_4A _DC_Adapter
BRIz
h 4
u17
FC-51
. Slefe|r] sl el sl el
Sl T S L e
vee i 22y
u1s pa 0 PCF8575 ue —2a]
FC-51 —2ilect P 16CH /O | 2cfuo exbander 2
- =l Use " eiezzmzas =
SLoT 2 H: ” Sﬁ??????i
uig
FC-51
SLoT 3 Cﬂ-' = .
= ~ L
uz0
FC-51
~ Ri
sora I = %
=)
Slot 1 LEDs <lot 2 LEDs Slot 5 LEDs Slot 6 LEDs
o]
Cﬂ: L Breadboard Powsr Supgly (Sv & 3.3v)
sLors = p « I —E5P32 (Second) . i
i w on RQ522 RFID Reader (Exit) S
s —iond_ 8
- _ - . Bv
sors = - S it
- 3
u14 = iz
FC5t = M 3.3}.‘
[i N & s A
SLoT 7 - Lo I = = Gnd =
= ~ = = DJ
uio
FC-51
SLOT 8 Cﬂ_‘ = .
. ” el
1= G\D

Figure 4.4: Schematic Diagram of IoT RFID Smart Parking System (Second ESP32) Drawn Using EasyEDA Software

5V 4A DC Adapter(+)
5V 4A DC Adapter(-) T U5
— == ESP32-CAM
—% toa4 GND 1—2
4102 uoT 73
U11 —11014 UOR[;3
FC-51 —| 1015 VCC 35
[211013 GND 7%
| o = .- —={1012 100 175
. GND @ g GND I016 9_
l . x vee SV 3V3

Figure 4.5: Schematic Diagram of ESP32-CAM Image Capturing Camera System at the Entrance Drawn Using EasyEDA Software

74

4.2 Webpages/User Interface

4.2.1 Login Page

Figure 4.6 shows the overview, while Figure 4.7 shows a zoomed-in view of the
“Login Page”. If the user does not have an account, they can press the “Sign Up” button
to go to the “Sign Up Page”. If the user already has an account, they need to enter the
correct username and password. Note that both fields are case-sensitive. In Figure 4.8,
the account stored in the “rfid user info” table of the database is “Bob”, with the
password “Bob123”. In Figure 4.9, the user enters “bob” in the account field. Although
the password is correct, the system does not recognise the account due to the case
difference in the account field. As a result, the login attempt fails, as shown in Figure
4.10.

loT RFID Smart Parking System

Login

Figure 4.6: The Overview of Login Page (login.php)

75

loT RFID Smart Parking System

Login

Account:

Password:

Figure 4.7: Zoomed in View of Login Page with Login Credentials Filled in (Case-

Sensitive)

T — w id tagUID car_color license_plate owner_name balance account password tel_no

O g7 Edit 3 Copy @ Delete 1 142D3DA7 Blue ABC1234 Alice 120 Alice Alice123 011-23456789
(] o7 Edit 3<Copy (@ Delete 2 24E654BB Black FF1 HZHENG 30 hongzheng hongzheng123 016-4637412
[&7 Edit 3¢ Copy @ Delete 3 2A6611C1 Green WLVE888 Charlie 180 Charlie Charlie123 011-46375737
(] o/ Edit 3< Copy @ Delete 4 14DEFADF Green PLV1029 David 130 David David123 017-9678327
[&7 Edit 3z Copy @ Delete 13 E420C8DF Red PKB9143 Henry 190 Henry Henry123 019-3472618
~] 7 Edit 3¢ Copy @ Delete 14 84FCBSDF Red JOL7256 Jack 190 Jack Jack123 012-5628174
() 7 Edit 3<Copy @ Delete 15 EC3A5BFF White VWD5678 Olivia 180 Olivia Olivia123 012-8943765
(‘\I .~ Edit 3« Copy 9 Delete 16 93C70C14 White KDT5087 Bob 160 Bob Bob123 016—7289453'

Figure 4.8: Account (Bob) and Password (Bob123) Stored in Database

76

loT RFID Smart Parking System

Login

Account:

Password:

Figure 4.9: Login Attempt Using the Correct Account with Incorrect Letter Case (bob)

6dc5-115-164-205-194.ngrok-free.app says

Login failed. Invalid username or password.

Figure 4.10: Login Failed

77

4.2.2 Parking Lot Status Monitoring Page (Accessible After Successful Login)

Figure 4.11 shows the overview, while Figure 4.12 shows a zoomed-in view of the
“Parking Lot Status Monitoring Page”. This webpage is only accessible after a
successful login. On this page, the user can view the status of each parking slot and the
account balance.

For example, Figure 4.12 shows that all slots are available, as indicated by the
green-coloured parking slot boxes. In Figure 4.13, slots 2, 4, 6, and 8 are occupied, as
indicated by the red-coloured parking slot boxes. Figure 4.14 shows that all slots are
occupied, and an alert message is sent to the user to indicate that the parking lot is full,

as shown in Figure 4.15.

Next, at the bottom of the webpage, there are three buttons which are “Top Up”,
“Reservation”, and “Log Out”. Pressing the “Top Up” button will navigate the user to
the “Top Up Page”, pressing the “Reservation” button will navigate the user to the
“Reservation Page”, and pressing the “Log Out” button will return the user to the

“Login Page”.

Parking Lot Status

SLOT 1: SLOT 2: SLOT 3: SLOT 4:
(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

SLOT 5: SLOT 6: SLOT 7: SLOT 8:
(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

Hi, Bob. Your Balance: RM 160

Figure 4.11: The Overview of Parking Lot Status Monitoring Page (parking_status.php)

SLOT 1:
(AVAILABLE)

SLOT 5:
(AVAILABLE)

Parking Lot Status

SLOT 2: SLOT 3:
(AVAILABLE) (AVAILABLE)

SLOT 6: SLOT 7:
(AVAILABLE) (AVAILABLE)

Hi, Bob. Your Balance: RM 160

78

SLOT 4:
(AVAILABLE)

SLOT 8:
(AVAILABLE)

Figure 4.12: Zoomed in View of Parking Lot Status Monitoring Page where All Slots

are Available.

SLOT 1:

(AVAILABLE)

SLOT 5:
(AVAILABLE)

Parking Lot Status

SLOT 2: SLOT 3:
(OCCUPIED) (AVAILABLE)

SLOT 6: SLOT 7:
(OCCUPIED) (AVAILABLE)

Hi, Bob. Your Balance: RM 160

SLOT 4:
(OCCUPIED)

SLOT 8:
(OCCUPIED)

Figure 4.13: Zoomed in View of Parking Lot Status Monitoring Page where Slot 2, 4,

6, 8 are Occupied

79

6dc5-115-164-205-194.ngrok-free.app says

Sorry, Parking is FULL.

Parking Lot Status

SLOT 1: SLOT 2: SLOT 3: SLOT 4:
(OCCUPIED) (OCCUPIED) (OCCUPIED) (OCCUPIED)

SLOT 5: SLOT 6: SLOT 7: SLOT 8:
(OCCUPIED) (OCCUPIED) (OCCUPIED) (OCCUPIED)

Hi, Bob. Your Balance: RM 160

Figure 4.14: Zoomed in View of Parking Lot Status Monitoring Page where All Slots

are Occupied

6dc5-115-164-205-194.ngrok-free.app says

Sorry, Parking is FULL.

Figure 4.15: The Popped-Up Message Indicates Parking Full

80

4.2.3 Top-Up Page

Figure 4.16 shows the overview of the “Top Up Page”. The user is required to select a
top-up amount from the drop-down list, which ranges from RM 10 to RM 100. For
example, in Figure 4.17, the user selects RM 30 as the top-up amount. After that, the

user must enter their account password as a security measure, as shown in Figure 4.18.

Next, Figure 4.19 and Figure 4.20 show the top-up success and failure
messages, respectively. When the top-up is successful, the account balance increases
from RM 160 in Figure 4.12 to RM 190 in Figure 4.21. The updated balance will also

be reflected in the “rfid user info” table in the database.

Figure 4.16: The Overview of Top-Up Page (topup.php)

81

Top Up

Select Amount:

RM10 v

RM10
RM20

RM30

Figure 4.17: The Top-Up Amount Drop Down Selection List

Top Up

Select Amount:

Password:

Figure 4.18: The Security Measure (Password) of the Top-Up Function

82

6dc5-115-164-205-194.ngrok-free.app says

Top-up successful!

Figure 4.19: Top Up Successful if Password Is Correct

6dc5-115-164-205-194.ngrok-free.app says

Invalid password!

Figure 4.20: Top Up Unsuccessful if Password Is Wrong

Parking Lot Status

SLOT 1: SLOT 2: SLOT 3: SLOT 4:

(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

SLOT 5: SLOT 6: SLOT 7: SLOT 8:
(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

Hi, Bob. Your Balance: RM 190

Figure 4.21: The Parking Lot Status Monitoring Page Account Balance Updated
Immediately After Top-Up Successful

83

4.2.4 Account Registration / Sign-Up Page

Figure 4.22 shows the overview, while Figure 4.23 shows a zoomed-in view of the
“Sign Up Page”. The user is required to enter information such as tag UID, car colour,
license plate number, owner name, account, password, and telephone number. The tag
UID is provided by the parking lot owner and is obtained using an RFID reader.

After a successful sign-up, as shown in Figure 4.24, the user will be redirected
to the “Login Page”. The newly registered account, with a default balance of RM 0,

will be updated in the “rfid user info” table in the database, as shown in Figure 4.25.

loT RFID Smart Parking System

Sign Up

Figure 4.22: The Overview of Sign-Up Page (signup.php)

loT RFID Smart Parking System

Sign Up
Tag UID:

A1B2C3D4

Car Color:

White

License Plate:

ALM1234

Owner Name:
Testing
Account:

Testing

Password:

012-34567890

Figure 4.23: Zoomed in View of Sign-Up Page with Information Filled in

6dc5-115-164-205-194.ngrok-free.app says

Signup successful. Please login.

Figure 4.24: Sign-Up Successful Message

84

85

SELECT #* FROM “rfid_user_info’

[CJ Profiling [Edit inline][Edit] [Explain SQL][Create PHFP code][Refresh]

[C] Show all | Mumber of rows: | 25 w Filter rows: | Search this table Sort by key: | None -

Extra options

— 1 — + id tagUID car_color license_plate owner_name balance account password tel_no

[0 g7 Edit F Copy @ Delete 1 142D3DAT Blue ABC1234 Alice 120 Alice Alice123 011-23456789
] 47 Edit 3 Copy @ Delete 2 24E654EE Black FF 1 HZHENG 30 hongzheng hongzheng123 016-4637412
[g7 Edit 3 Copy @ Delete 3 2A6611C1 Green WLvaass Charlie 180 Charlie Charlie123 011-46375737
(0 7 Edit 3 Copy @ Delete 4 14DEFADF Green PLV1029 David 130 David David123 017-9678327
(0 7 Edit 3¢ Copy @ Delete 13 E420C8DF Red PKBE9143 Henry 190 Henry Henry123 019-3472618
[o7 Edit 3¢ Copy @ Delete 14 84FCESDF Red JQLT256 Jack 190 Jack Jack123 012-5628174
[0 g7 Edit 3 Copy @ Delete 15 EC3A5SBFF White VWD5678 Olivia 180 Olivia Olivia123 012-8943765
[] 7 Edit 3 Copy @ Delete 16 93C70C14 White KDT5087 Bob 160 Bob Bob123 016-7289453
[0 g7 Edit 3 Copy @ Delete 17 A1B2C3D4 White ALM1234 Testing 0 Testing Testing123 012-3456789

Figure 4.25: Database “rfid user info” Table Updated with the Newly Registered

Account

86

4.25 Reservation Page

Figure 4.26 shows the overview, while Figure 4.27 shows a zoomed-in view of the
“Reservation Page”. This page allows the user to reserve an available parking slot
before arriving at the parking lot. The user is required to enter information such as the
owner name (case-sensitive), license plate number, the slot number they want to

reserve, the reservation start time, and duration in minutes.

In Figure 4.8, the owner name stored in the “rfid user info” table of the
database is “Bob”. However, in Figure 4.28, the user enters “bob” in the owner name
field. Although the name is correct, the system does not recognise it due to the case

difference. As a result, the reservation attempt fails, as shown in Figure 4.29.

If the owner name is entered correctly, the user can proceed to fill in the
remaining information, as shown in Figure 4.30, and select the reservation time, as
shown in Figure 4.31. If the selected slot is available and there is no conflict with

existing reservations, the reservation will be successful, as shown in Figure 4.32.

Parking Slot Reservation

Figure 4.26: The Overview of Reservation Page (reservation.php)

87

Parking Slot Reservation

Owner Name:

Enter your name

License Plate:

ter your licens

Slot Number:

Choose slot number

Start Time:

dd/mm/yyyy --:-- --

Duration (Minutes):

Enter duration in minutes

Reserve

Cancel

Figure 4.27: Zoomed in View of Reservation Page

Parking Slot Reservation

Owner Name:
bob
License Plate:
KDT5087
Slot Number:
1

Start Time:

06/03/2025 06:00 PM

Duration (Minutes):

60

Reserve

Cancel

Figure 4.28: Demonstration of Attempting to Reserve a Parking Slot with an

Unregistered Owner Name (Case-Sensitive Input Required)

88

Parking Slot Reservation

Owner Name:

Enter your name

License Plate:

Slot Number:

Choose slot number

Start Time:

dd/mm/yyyy --:-- --

Duration (Minutes):

Enter duration ir

Reserve

Cancel

Figure 4.29: Pop-Up Error Message Indicating User Not Found in the System

Parking Slot Reservation

Owner Name:

Bob
License Plate:

KDT5087
Slot Number:

1
Start Time:

06/03/2025 06:00 PM
Duration (Minutes):

60

Reserve

Cancel

Figure 4.30: Demonstration of Attempting to Reserve a Parking Slot with a Registered

User (Case-Sensitive) and Filling in Other Information

89

Parking Slot Reservation

Owner Name:
Bob

License Plate:
KDT5087

Slot Number:
1

Start Time:

06/03/2025 06:00 PM

March, 2025 ~ N

M i W T E
23 24 25 26 27 28
3 5 n 7
10 12 13 14
17 19 20 21
24 25 26 27 28
31 1 2 3 4

Today

Figure 4.31: Selecting Reservation Date and Time

Parking Slot Reservation

Back to Parking Lot Status Home Page

Figure 4.32: Pop-up Message Indicating Reservation Successful

Figure 4.33 shows that the 'reservations' table in the database is automatically
updated with reservation details when the correct owner name is provided. The tag
UID is filled in automatically once the system detects the correct owner name, while
the user must manually enter the license plate since one user may have multiple
vehicles. If the user provides the correct owner name, it is assumed that they own the
RFID tag, as each name is unique and set by the user during the sign-up process.

90

SELECT * FROM "reservations’
(O Profiling [Edit inline] [Edit] [Explain SQL][Create PHP code] [Refresh]
] Show all | Mumber of rows: | 25 Filter rows: | Search this table
Extra options
T = _id__owner_name _ tagulD license plate _ reserved slot_number _ start time end_time
0 7 Edit 3 Copy @ Delete 93 Bob 93CT0C14 KDT5087 1 2025-03-06 18:00:00 2025-03-06 19:00:0
T_ () Checkall With sefected: 7 Edit < Copy @ Delete =} Export

Figure 4.33: Database “reservations” Table Automatically Updated with Reservation

Details

Figure 4.34 shows that when the reservation time is reached, the reserved slot
(Slot 1) changes its status to RESERVED, indicated by a yellow parking slot box.
When the user parks in the reserved slot, its status changes to OCCUPIED, as shown
in Figure 4.35. After the user leaves the slot and the reservation expires, the slot status

returns to AVAILABLE, as shown in Figure 4.36.

Parking Lot Status

SLOT 2: SLOT 3: SLOT 4:
(AVAILABLE) (AVAILABLE) (AVAILABLE)

SLOT 5: SLOT 6: SLOT 7: SLOT 8:
(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

Hi, Bob. Your Balance: RM 190

Figure 4.34: Parking Lot Status Monitoring Page Automatically Updates Slot 1 Status

to “RESERVED” when Reaching the Reservation Time

91

Parking Lot Status

SLOT 1: SLOT 2: SLOT 3: SLOT 4:
(OCCUPIED) (AVAILABLE) (AVAILABLE) (AVAILABLE)

SLOT 5: SLOT 6: SLOT 7- SLOT 8:
(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

Hi, Bob. Your Balance: RM 190

TopUp Resenaion Logou
Figure 4.35: Parking Lot Status Monitoring Page Automatically Updates Slot 1 Status
to “OCCUPIED” when the User Parks in the Reserved Slot

Parking Lot Status

SLOT 1: SLoT 2: SLOT 3: SLOT 4:

(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

SLOT 5: SLOT 6: SLOT 7: SLOT 8
(AVAILABLE) (AVAILABLE) (AVAILABLE) (AVAILABLE)

Hi, Bob. Your Balance: RM 190

Figure 4.36: Parking Lot Status Monitoring Page Automatically Updates Slot 1 Status
to “AVAILABLE” After Reservation Time Passes (No Vehicle in Slot 1)

92

Figure 4.37 shows a user attempting to reserve a parking slot (Slot 2) that is
currently OCCUPIED. Since it is unknown when the user will leave the slot, the
reservation cannot be made. Figure 4.38 displays an error message prompting the user
to select another slot that is marked as AVAILABLE. Next, Figure 4.39 shows Alice
attempting to reserve Slot 1 on March 6, 2025, from 6:30 PM to 7:30 PM. However,
as shown in Figure 4.40, the reservation fails because Bob has already reserved that
slot from 6:00 PM to 7:00 PM (refer to Figure 4.33). This causes a reservation conflict.
Alice can either choose a different time or select another available slot.

Parking Slot Reservation

Owner Name:

Bob

License Plate:

KDT5087

Slot Number:

2

Start Time:

21/04/2025 06:13 PM

Duration (Minutes):

1

Reserve

Cancel

Figure 4.37: Demonstration of an Attempt to Reserve a Parking Slot that Is Currently
Occupied (Not Available)

93

Parking Slot Reservation

Owner Name:

OUr Name

License Plate:

Slot Number:

Choose slot number

Start Time:

dd/mm/yyyy --:-- --

Duration (Minutes):

Reserve

Cancel

Figure 4.38: Pop-Up Error Message Indicating the Selected Slot Is Not Available for

Reservation

Parking Slot Reservation

Owner Name:

Alice
License Plate:

ABC1234
Slot Number:

1
Start Time:

06/03/2025 06:38 PM

Duration (Minutes):

60

Reserve

Cancel

Figure 4.39: Demonstration of Attempting to Reserve a Parking Slot Already Reserved
for the Specified Time (Refer Figure 4.33)

94

Parking Slot Reservation

Owner Name:

License Plate:

your license plate (Eg: ABC1234)

Slot Number:

Choose slot number

Start Time:

dd/mm/yyyy --:-- --

Duration (Minutes):

Reserve

Cancel

Figure 4.40: Pop-Up Error Message Indicating Time Conflict with an Existing
Reservation for the Selected Slot (Refer Figure 4.33)

95

4.3 Hardware Prototype

4.3.1 Overview

Figure 4.41 shows the top view while Figure 4.42 shows the front view of the hardware
prototype, built using a two-layer plywood platform with the wiring hidden in the
space between Layer 1 and Layer 2. The roofs of the eight parking slots are custom-
designed and 3D-printed. The two ESP32 microcontrollers are soldered onto a
stripboard and embedded inside a black PVC box to protect them from the external
environment, as shown in Figure 4.43. Additionally, the entrance and exit RFID
readers are positioned at an appropriate distance from each other to avoid
electromagnetic wave interference. RFID readers are prone to signal interference when

using long wires, so the wires need to be as short as possible, ideally less than 15 cm.

Exit
RFID

Exit Gate Reader

Parking
Slot LEDs

OLED

[_OLED]

ESP32-CAM| : / /”&

Entrance
Gate
[== Bl 5 =& Entrance
LCD i I : /
RFID
‘ 9 Reader
e & S et -—mr

Figure 4.41: Top View of the Hardware Prototype

96

Tv.

\\\\\\\,\‘\\\\\\\\\ A\

\

j |

Z
0
”
Z
o,

ZONN

ol —

’ \ ~
’ ‘ ‘ Y s
[y T

>

Figure 4.43: Two ESP32 Microcontrollers Soldered onto a Stripboard and Embedded

Inside a Black PVVC Box

97

PARKING

AVAILABLE

Figure 4.44: Entrance Display Board Showing Parking Fees and LED Light Meanings

4.3.2 LCD Display Results

The time displayed on the LCD in Figure 4.45 is obtained using the NTP server. The
two bottom rows of the LCD show the status of each slot, where RESV means reserved,
FILL means occupied, and FREE means available. It continuously polls the

‘parking_status’ table in the database to retrieve the latest status.

Figure 4.45: LCD Display Showing the Current Time, Number of Available Parking
Slots, and the Status of Each Slot

98

4.3.3 ESP32-CAM Results

The ESP32-CAM, as shown in Figure 4.46, captures a vehicle image when the IR
sensor detects movement, encodes the image in Base64 format, and sends it through
an HTTP POST request to a Google Apps Script. The script decodes the image and
saves it to a Google Drive folder named ESP32_CAM_FYP, as shown in Figure 4.47.

The captured image is automatically renamed based on the timestamp when it is taken.

ESP32-CAM

ESP32-CAM
IR Sensor

Figure 4.46: ESP32-CAM and IR Sensor Image-Capturing System at the Entrance

My Drive > ESP32_ CAM_FYP ~

X 1selected & & B O o

Files

M 20250302 173620j.. } M 20250302 173833jpg }

Figure 4.47: Captured Image Renamed Using the Timestamp and Stored in Google

Drive

99

4.3.4 Entrance and Exit Gate Results

A servo motor is used to simulate the entrance and exit gate, as shown in Figure 4.48
and Figure 4.49, respectively. The gate opens when access is authorized, the account
balance is sufficient, and the parking lot is not full. When the user is authorized, the
green LED lights up, and the buzzer makes a short beep twice. Conversely, if access
is unauthorized or the account balance is insufficient, the red LED lights up, and the
buzzer makes a long beep. After the gate opens, it will only close once the car has
passed through the second IR sensor to prevent it from closing too early and hitting
the car. At the exit gate, the account balance is not checked. The gate opens as long as
the RFID tag is valid.

Second IR Sensor

Entrance Gate

ESP32-CAM

IR Sensor Servo Motor with

Access LEDs

First IR Sensor

Second IR Sensor

Exit Gate
Servo Motor

First IR Sensor

Figure 4.49: Exit Gate Servo Motor

100

4.3.5 OLED Display Results

The OLED display shows the “Welcome Page” by default, as shown in Figure 4.50.
When the user scans the RFID tags, the RFID scanning messages will be shown. For
example, if access is authorized, it displays the timestamp, owner name, license plate,
and account balance, as shown in Figure 4.51. If access is denied, it shows whether the
RFID tag is unregistered or if the account balance is insufficient, as shown in Figure

4.52 and Figure 4.53.

GND VCC SCL SDA

027032025 18:02:53

| Hello!)

’ Please place your
$ Uehicle No: FF 1
Balance: RM 90.00

'.f card at the scanner.

Figure 4.50: OLED Display Showing Figure 4.51: OLED Display Showing

Welcome Page Access Authorized Messages

0270372025 18:09:41

ACCESS DENIED
Insufticient Balance

Balance: RM 0.00

?}-‘)l User:
w | Unregistered user!

- 4 -
Figure 4.52: OLED Display Showing Figure 4.53: OLED Display Showing
Access Denied Messages Insufficient Balance Messages

101

4.3.6 Parking Lot Results

This project includes a total of eight parking slots, each equipped with an IR sensor
and three LEDs to indicate the slot's status. The red LED indicates OCCUPIED, the
green LED indicates AVAILABLE, and the yellow LED indicates RESERVED.
Figure 4.54 shows the parking slots 1, 2, 3, and 4, while Figure 4.55 shows the parking
slots 5, 6, 7, and 8. All the parking slots were custom-designed and produced using 3D
printing. When a vehicle is parked in a slot, the obstacle LED on the IR sensor lights
up, and the second ESP32 sends an HTTP POST request to update the ‘parking_status’
table in the database. The LCD and webpage continuously poll this table to display the
latest parking slot status. Additionally, the second ESP32 polls the table and sends
signals to the PCF8575 1/0 expanders to light up the correct parking slot LED.

Figure 4.55: Parking Slots 5, 6, 7, and 8

102

Figure 4.56 shows that all the parking slots are available, as all green parking
slot LEDs light up. The user may park in any available slot.

L4107 8 101s

"

ﬁ

1

|

Figure 4.56: Parking Lot when All Slots are Available

103

Figure 4.57 shows that parking slots 2, 4, 6, and 8 are occupied, as the red
parking slot LEDs light up. The user can only park in parking slots 1, 3, 5, and 7, where

the slots are available, as the green parking slot LEDs light up.

Figure 4.57: Parking Lot when Slots 1, 3, 5, and 7 are Available, while Slots 2, 4, 6,

and 8 are Occupied

104

Figure 4.58 shows that all the parking slots are occupied, as all red parking slot
LEDs light up. This means the parking lot is full, and the user must wait for a vehicle
to exit before he can enter the parking lot. The LCD displays that the number of
available parking slots is zero, along with a "SORRY, PARKING FULL..." message,

as shown in Figure 4.59.

Figure 4.58: Parking Lot when All Slots are Occupied (Parking Full)

105

Figure 4.59: LCD Messages when All Parking Slots are Occupied (Parking Full)

Referring to Figure 4.33, Bob has reserved Slot 1 from 6:00 PM to 7:00 PM.
Figure 4.60 shows that Slot 1 yellow LED lights up when reaching the reservation time,
which is 6:00 PM. This indicates that Slot 1 is reserved. The user can enter the parking
lot as usual at the reservation time by scanning their RFID tags at the entrance. Once
the user parks in Slot 1, the red LED lights up to show that the slot is occupied, as
shown in Figure 4.61. After the user leaves Slot 1 when the reservation period expires,

the green LED lights up, as shown in Figure 4.62.

Besides that, if the user leaves the slot during the reservation period, the yellow
LED will light up again. This accounts for situations where the user may need to
readjust their vehicle or leave temporarily, without losing the reserved slot.
Additionally, if another user mistakenly parks in the reserved slot and realizes the
mistake, they can leave the slot, at which point the yellow LED will light up again to

indicate that the slot is still reserved.

106

Next, if a user parks in a reserved slot without having made a reservation, their
vehicle will be clamped by security. Security personnel can verify unauthorized
parking by cross-checking the vehicle's license plate, which is provided during the

reservation process.

.

. - . -
- i | - ! te !
SLOT 2 SLOT 3 SLOT &4
..

e

' \
9 1071S L 101S 8 101S

oo [e3]
i g

Figure 4.60: Slot 1 Yellow LED Lights Up at the Reserved Time to Indicate the Slot
Is Reserved

107

0 . . .
SLOT 2 SLOT 3 SLOT 4

l..
L\ S\§

ettt B Y

9107s L 101S 8 101S

J—
—

!

Figure 4.61: Slot 1 Red LED Lights Up After the User Parks in the Reserved Slot

108

Figure 4.62: Slot 1 Green LED Lights Up After Reservation Time Passes

109

4.4 Detection Accuracy

After completing the hardware prototype, a series of tests were conducted to evaluate
the detection accuracy of the IR sensor under different scenarios. Table 4.1 shows the
detection accuracy results. Case 1 tests whether the IR sensor can detect a vehicle as it
enters the parking lot. Case 2 tests whether the IR sensor can detect a vehicle as it exits
the parking lot. Case 3 tests whether the ESP32-CAM successfully captures an image
of the vehicle when entering the parking lot. This depends on whether the IR sensor
detects the vehicle and triggers the ESP32-CAM to take a photo. Case 4 tests whether
the IR sensor can detect a vehicle parked in the designated parking slot.

The results in Table 4.1 indicate that vehicle detection at the entrance, exit, and
parking slot achieved 100 % accuracy. This high accuracy is attributed to the fact that
vehicles must stop at the entrance gate, exit gate, and parking slots, allowing sufficient
time for the IR sensor to detect them. However, the ESP32-CAM achieved 93.33 %
accuracy due to challenges in detecting vehicles moving at high speeds. The IR sensor
requires the vehicle to slow down slightly to ensure proper detection and image capture.
Overall, the core function of the system demonstrated a high level of accuracy, which

proved its effectiveness in vehicle detection.

Table 4.1: Detection Accuracy of the IR Sensor

_ Number of Number of Detection
Scenario

Cars Tested Cars Detected Accuracy

Vehicle Entering the

1) 30 30 100 %
Parking Lot
Vehicle Exiting the

2 _ 30 30 100 %
Parking Lot
ESP32-CAM Capturing

3 30 28 93.33%

the Vehicle Image

4 | Vehicle Parking in the Slot 30 30 100 %

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

51 Conclusion

In conclusion, the proposed Smart Parking System was successfully developed and
achieved all its aims and objectives. A real-time parking lot monitoring system was
implemented using IR sensors, ESP32 microcontrollers, and RFID for access control.
In addition, five webpages were developed using HTML and PHP, including a login
page, sign-up page, top-up page, reservation page, and parking lot status monitoring
page. All the webpages function well. Users can make reservations through the
reservation page before they arrive. All user information, RFID scan logs, reservation
details, and parking lot status are successfully stored in a MySQL database.
Furthermore, the entrance image-capturing system using the ESP32-CAM was
successfully developed. The ESP32-CAM managed to capture vehicle images when
the IR sensor detected movement and saved them to Google Drive. The system
achieved an accuracy rate of 100 % in vehicle detection in parking slots. Besides that,

the smart parking system developed is highly affordable, which is less than RM 300.

However, the system has some disadvantages. Since this is an 10T project, a
stable and high-speed internet connection is very important. The webpages, parking
slot LEDs, and LCD display need to continuously poll the database to update the latest
parking slot status. Similarly, the RFID scanning process also requires internet access
to cross-check UID with the database. If the internet is slow, users may have to wait
longer before the entrance and exit gates respond. Additionally, the ESP32-CAM has

111

limited image quality since it is a budget camera, and the surrounding environment

like lighting can also affect the clarity of the captured images.

5.2 Recommendations

For future improvements, several modifications can be made to further improve the
Smart Parking System. Firstly, instead of using multiple IR sensors for each parking
slot, a camera-based system with image processing and machine learning could
provide more accurate detection while reducing the need for individual sensors. If IR
sensors continue to be used, upgrading to higher-quality IR sensors or integrating
multiple sensors such as ultrasonic sensors and LiDAR sensors could enhance
reliability. Besides that, magnetic sensors could be used since they offer more reliable
vehicle detection by responding only to the magnetic field of a car, reducing false
triggers from people or animals. Magnetic sensors are usually embedded underground,
so they are less affected by environmental conditions such as rain or fog.

Additionally, replacing the ESP32-CAM with a higher-quality camera would
result in clearer images, especially under varying lighting conditions. Furthermore,
integrating Automatic Number Plate Recognition (ANPR) with RFID and facial
recognition could further enhance security and streamline vehicle identification.
Moreover, adding a panic button would improve safety by allowing users to request

assistance when needed.

Furthermore, using a more stable network connection, such as wired Ethernet
could help minimize delays and improve system reliability. Lastly, implementing a
dynamic pricing model, where parking fees adjust based on demand, such as lower
rates during off-peak hours depending on the number of vehicles in the parking lot,

could make the system more efficient and cost-effective for users.

112

REFERENCES

Bishop, J., 2023. Difference between sourcing and sinking in a circuit. [online]
CircuitBread. Awvailable at: <https://www.circuitbread.com/tutorials/difference-

between-sourcing-sinking> [Accessed 28 November 2024].

BusinessToday., 2023. The Average Malaysian Spends 44 Hours In Traffic In A
Month. BusinessToday. [online] 27 January. Available at:
<https://www.businesstoday.com.my/2023/01/27/the-average-malaysian-spends-
44-hours-in-traffic-in-a-month/.> [Accessed 13 August 2024].

Ch'ng, S.F., 2019. Web-Based Car Parking Slot Monitoring System. Bachelor’s
Degree. Universiti Tunku Abdul Rahman. Available at:
<http://eprints.utar.edu.my/id/eprint/3915> [Accessed 21 August 2024].

Daim, N., 2023. 36.3 million vehicles in Malaysia. New Straits Times. [online] 6
December. Available at:
<https://www.nst.com.my/news/nation/2023/12/987062/363-million-vehicles-
malaysia.> [Accessed 13 August 2024].

Elakya, R., Seth, J., Ashritha, P., and Namith, R., 2019. Smart Parking System using
loT. International Journal of Engineering and Advanced Technology (1JEAT), 9(1),
pp.6091-6096. https://doi.org/10.35940/ijeat.A1963.109119

Elfaki, A.O., Messoudi, W., Bushnag, A., Abuzneid, S. and Alhmiedat, T., 2023. A
Smart Real-Time Parking Control and Monitoring System. Sensors, 23(24), p.9741.
https://doi.org/10.3390/s23249741

https://www.circuitbread.com/tutorials/difference-between-sourcing-sinking
https://www.circuitbread.com/tutorials/difference-between-sourcing-sinking
https://doi.org/10.3390/s23249741

113

Fahad, E., 2020. ESP32-CAM send images to Google Drive — loT Security Camera.
[online] Available at: <https://www.electroniclinic.com/esp32-cam-send-images-

to-google-drive-iot-security-camera/> [Accessed 29 November 2024].

Goh, Y., 2023. A Study on Smart Parking System Using loT Technology in Shopping
Mall. Bachelor’s Degree. Universiti Tunku Abdul Rahman. Available at:
<http://eprints.utar.edu.my/id/eprint/6242> [Accessed 13 August 2024].

Hong, S.Y.C., Kang, C.C., Tan, J.D. and Ariannejad, M., 2023. Smart Parking System
Using loT Sensors. Journal of Engineering Technology and Applied Physics, 5(1),
pp.1-10. https://doi.org/10.33093/jetap.2023.5.1.7

IBM., 2024. What is the internet of things? [online] IBM. Available at:
<https://www.ibm.com/topics/internet-of-things.> [Accessed 9 August 2024].

Koya, H., Likhitha, K., Srilatha, K., Saida Babu, G. and Vaishnavi, G., 2024. 10T
Based Smart Vehicle Parking System Using RFID. International Journal for
Modern Trends in Science and Technology, 10(02), pp.53-60.
https://doi.org/10.46501/IIMTST 1002008

Last Minute Engineers, 2018. What is RFID? How It Works? Interface RC522 RFID
Module with Arduino. [online] Last Minute Engineers. Available at:
<https://lastminuteengineers.com/how-rfid-works-rc522-arduino-tutorial/.>
[Accessed 21 August 2024]

Last Minute Engineers, 2019. ESP32 NTP Server - Get Date and Time with NTP
Protocol. [online] Last Minute Engineers. Available at:
<https://lastminuteengineers.com/esp32-ntp-server-date-time-tutorial/> [Accessed
23 December 2024].

Lee, O., 2021. Malaysia's Largest LPR Parking System for Sunway Pyramid. Parking
Network, [online] Available at: <https://www.parking.net/parking-
news/jieshun/malaysias-largest-Ipr-parking-system-for-sunway-pyramid>
[Accessed 13 August 2024].

https://www.electroniclinic.com/esp32-cam-send-images-to-google-drive-iot-security-camera/
https://www.electroniclinic.com/esp32-cam-send-images-to-google-drive-iot-security-camera/
https://doi.org/10.46501/IJMTST1002008
https://lastminuteengineers.com/how-rfid-works-rc522-arduino-tutorial/
https://lastminuteengineers.com/esp32-ntp-server-date-time-tutorial/

114

Lincy, A., Natarajan, V., Murugan, S., Daniel, S., & Madhan, T. 2024. Intelligent
parking management using ANPR technology. International Journal of
Progressive Research in Engineering Management and Science, 4(6), pp. 1362-
1373. https://doi.org/10.58257/IIPREMS34940

Mischianti, R., 2019. PCF8575 12C 16-bit Digital Input/Output Expander. [online]
Available at: <https://www.hackster.io/xreef/pcf8575-i2c-16-bit-digital-input-
output-expander-48a7c6> [Accessed 28 November 2024].

Mountain, D., 2022. Using the SD Card in 1-Bit Mode on the ESP32-CAM from Al-
Thinker. [online]. Available at: <https://dr-mntn.net/2021/02/using-the-sd-card-in-
1-bit-mode-on-the-esp32-cam-from-ai-thinker> [Accessed 9 October 2024].

Oracle., 2024. Accelerate Your Operations with [OT. [online] Available at:

<https://www.oracle.com/my/internet-of-things/.> [Accessed 9 August 2024].

Rajiv., 2018. What are the major components of Internet of Things - RF Page. [online]
Available at: <https://www.rfpage.com/what-are-the-major-components-of-
internet-of-things/.> [Accessed 9 August 2024].

Santos, S., 2019. ESP32-CAM Video Streaming and Face Recognition with Arduino
IDE. Random Nerd Tutorials [online]. Available at:
<https://randomnerdtutorials.com/esp32-cam-video-streaming-face-recognition-
arduino-ide/> [Accessed 21 August 2024].

Saeliw, A., Hualkasin, W., Puttinaovarat, S. and Khaimook, K., 2019. Smart car
parking mobile application based on RFID and IoT. International Journal of
Interactive Mobile Technologies (13IM), 13(5).
https://doi.org/10.3991/ijim.v13i05.10096

Salma, O., Olanrewaju, R.F. and Arman, M.M., 2019. Smart parking guidance system
using 360° camera and Haar-Cascade classifier on 10T system. International
Journal of Recent Technology and Engineering, 8(2S11), pp.864-872.
https://doi.org/10.35940/ijrte.B1142.0982S1119

https://doi.org/10.58257/IJPREMS34940
https://www.hackster.io/xreef/pcf8575-i2c-16-bit-digital-input-output-expander-48a7c6
https://www.hackster.io/xreef/pcf8575-i2c-16-bit-digital-input-output-expander-48a7c6

115

Statista., n.d. Malaysia: car ownership among consumers 2019. [online] Available at:
<https://www.statista.com/statistics/1029277/malaysia-car-ownership-among-

consumers/.> [Accessed 13 August 2024].

Wilson, J., 2020. ESP32 Pinout, Datasheet, Features & Applications - The
Engineering Projects. [online] Available at:
<https://www.theengineeringprojects.com/2020/12/esp32-pinout-datasheet-
features-applications.html.> [Accessed 21 August 2024].

116

APPENDICES

Appendix A: Ngrok Tunneling Steps

Firstly, ngrok is downloaded from this link (click). Then, the location of where
the ‘ngrok.exe’ file is installed is located, as illustrated in Figure A-1. Then, the
directory where the file is installed is added to the system’s path environment variable.
The highlighted directory in Figure A-2 is copied. In Windows 11 PC, “Settings >
System > Advanced system settings” is clicked. In the popped-up window, under the
“Advanced” tab, “Environment Variables” is clicked. In the Environment Variables
window, the "Path" variable under "System variables” is selected, and the “Edit”
button is clicked. Next, the “New” button is clicked, the directory copied earlier in
Figure A-2 is pasted in the blank space, and the “OK” button is pressed on all windows
to apply the changes. The detailed steps are shown in Figure A-3. In addition, a new
ngrok account is registered, the user would be provided with an authentication token
as shown in Figure A-4. The authentication token is copied. Next, in the command
prompt, ‘ngrok config add-authtoken’ followed by the authentication token copied
earlier is typed, as illustrated in Figure A-5. Now, the ngrok is ready to run. The
command ‘ngrok http 80’ is typed and run as shown in Figure A-6, this creates a secure
tunnel, making the local web server running on port 80 accessible from the internet via
a public URL. The public URL is generated as shown in Figure A-7. In order to access
the login page, the public URL, followed by ‘\’, the database name, followed by °\’,
and the PHP file name serving the HTML page is typed, which is illustrated in Figure
A-8. Now, the web application is no longer limited to the local machine, it can be
accessed from anywhere in the world using any network connection, whether WiFi or

mobile data. The URL link can be converted later to a QR code for easier access.

https://ngrok.com/download

117

B ngrok-v3-stable-windows-am¢ X +

& 2> qr (&) [J > Downloads > ngrok-v3-stable-windows-amd64
@ New ~ T Sort ~ = View - aea
£ Home Name Date mudiﬂ;d Type Size
%) Gallery ~ Earlier this month
- I ngrok.exe 14/6/2024 12:16 AM Application 28,904 KB
™ x @ TAN - Personal
> [Desktop
> x B Documents
> ,! Pictures
) Desktop »
| Downloads
H . : 13 H :
Figure A-1: The Location of ‘ngrok.exe’ File.
B8 ngrok-v3-stable-windows-ame¢ X +
& > 4 &} X

@ New ~

Home
& Gallery
V x @ TAN - Personal
B9 Desktop

> % B Documents

> x & Pictures
M Desktop »
' Downloads »

® Music

Pictures

G\

C:\Users\THZ\AppData\Local\Temp\arduino_build_393625

C:\Users\THZ\AppData\Local\Temp\arduino_build_474206

C:\Users\THZ\AppData\Local\Temp\arduino_build_158886

C:\Users\THZ\AppData\Local\Temp\arduino_build_649761

C:\Users\THZ\AppData\Local\Temp\arduino_build_557091

C\Users\THZ\AppData\Local\Temp\arduino_build_246957

Home

Figure A-2: The File Path where ‘ngrok.exe’ Is Installed was Copied.

(1)

Conputer Nave Fardware. System Pretection Remate

Pedomance
Visual effects. prcessor scheduing, memory usage and vitualmemory

Setings
User Profies
Desktop settings related to your signin

Setngs
Stattp and Recovery
System statp, systen failre and debugging infomatior

Setings

User variebles for hz

Varable Value

OneDrive C\User:\THZ\OneDrive

Edit environment variable

C:\Windows\system32

C:\Windows

CWindows\System32\Whbem
C:\Windows\System32\WindowsPowerShell\v1.0\

Patn C:\Users\THZ\AppDatalLocal\Pregrams\Python! Launcher;C:\User..
TEMP C:\Users\THZ\AppData\LocahTemp C:\Windows\System32\OpenSSH\
™ CAUserATHDAppData\Loca\Temp C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common
C\Program Files\NVIDIA Corporation\NVIDIA NvDLISR
c] M
c 0
%SystemRoot¥\system32
New.. Edit. Delete %4SystemRoot%

System variables

Varable Vlue

0S Windows NT

=

OK Cancel

PROCESSOR ARCHITECTURE AMDS4
PROCESSOR_DENTIFIER
PROCESSOR LEVEL 35

PROCESSOR REVISON 5000

AMDGAFamily 25 Model 80 Stepping 0, AuthenticAMD

(4) (G) Paste the directory copied earlier here

%SystemRoot%\System32\Wbem
%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
SSYSTEMROOTS:\System32\OpenSSH\
C:\Program Files\Polyspace\R2019a\runtime\win64
C:\Program Files\Polyspac €\R2019a\bin

Ci\Program Files\Polyspace\R20192\polyspace\bin
Ci\Users\TH; Data\Locall g

:\Usess\THZ\Downlo: -stable-windows-am

Delete

0

Cancel

X

(5)
]

Edit
Browse.

Delete

Move Up

Move Down

Edittext...

Cancel

Figure A-3: The Directory Is Added to the System’s Path Environment Variable.

118

I. hongzheng028l. (. &

i Connect
Establish ingress for your application

Your Authtoken
& Cloud Edge

Endpoints .. Agent

S Choose another platform

Edges SN Windows

Domains.

TCP Addresses

[Installation
% Tunnels

Agents Chocolatey Download

Authtokens B) .

Install ngrok via Chocolatey with the following command:

SSH Public Keys

= choco install ngrok a
=4 Observability

Events

T Tt Run the following command to add your authtoken ta the default ngrokyml configuration file.
o ngrok config add authtokon FEDNSCRORORSDOSTRDIKETS0N3S USEXICKINEDEISTEA
) Security

FY Command Prompt x + v = a X

USAGE :
ngrok [command] [flags]

ngrok http 80
ngrok http ——domain baz.ngrok.dev 8688
ngrok tcp 22

Paid Features:
ngrok http 80 —domain mydomain.com

Flags:
~-h, —help help for ngrok

Microsoft Windows [Version 10.8.22635.3796]
(c) Microsoft Corporation. All rights reserved.

C:\Users\THZ=ngrok'
ngrok - tunnel Local ports to public URLs and inspect traffic

AUTHOR:

ngrok - <support@ngrok.com>
COMMANDS :

config update or migrate ngrok's configuration file

http start an HTTP tunnel

tcp start a TCP tunnel

tunnel start a tunnel for use with a tunnel-group backend
EXAMPLES :

ngrok http 88 ——oauth=google —oauth-allow-email=foo@foo.com

secure public URL for port 8@ web server
port 8880 available at baz.ngrok.dev
tunnel arbitrary TCP traffic to port 22
secure your app with oauth

* 3t o3

run ngrok with your own custom domain

ngrok http 88 —allow-cidr 2600:BcB8::af3c:9lee:fe69:9695/32 # run ngrok with IP policy restrictions
Upgrade your account at https://dashboard.ngrok.com/billing/subscription to access paid features

Upgrade your account at https://dashboard.ngrok.com/billing/subscription to access paid features

Use "ngrok [command] --help" for more information about a command.

C:\Users\THZ>ngrok config add-authtoken 2iDhU3CRDgPOHn5DD3'FBD2kEiid_22F98cXZClechgsn'?&ﬂ‘|

Figure A-5: The Command to Add the Ngrok Authentication Token.

C:\Users\THZ>ngrok http 86

Figure A-6: The Command to Create a Secure Tunnel to Expose Port 80 to the Internet.

119

[+ Command Prompt - ngrok ht X + |~

ngrok

Session Status online

Account hongzheng®281@gmail.com (Plan: Free)

Version 3.11.e

Region Asia Pacific (ap)

Latency 92ms

Web Interface http://127.0.0.1:40U40

Forwarding S/ EES S G 20S IO NGEORSRERaRA > http://Localhost:80
Connections ttl opn rtl rt5 p5@ poe

us 1 0.01 0.82 5.4 92.66

Figure A-7: The Public URL Generated by Ngrok.

https://6dc5-115-164-205-194.ngrok-free.app

loT RFID Smart Parking System

Login

Account:

Figure A-8: The Login Page Accessed Using the Public URL.

120

Appendix B: Google Apps Script Deployment and ESP32-CAM Integration

A Google Apps Script is created to handle the reception and decoding of
images from the ESP32-CAM and store them in Google Drive. Firstly, the Google
Drive is opened, and ‘New > More > Google Apps Script’ is selected, as illustrated in
Figure B-1. Then, a new project is created, as illustrated in Figure B-2. In the script
editor, the default content is replaced with the script provided to process the received
image data, as illustrated in Figure B-3. The script extracts three parameters from the
ESP32-CAM, which are the Base64-encoded image data, the MIME type (jpeg), and
the filename. The script is then renamed and saved, as illustrated in Figure B-4. After
that, the script is deployed as a web app by selecting ‘Deploy > New deployment’, as
illustrated in Figure B-5. The deployment is configured as a web app, a description is
added, and access is set to ‘Anyone’, as illustrated in Figure B-6 and Figure B-7. Once
the script is authorized in Figure B-8, Figure B-9, and Figure B-10, a unique web app
URL is generated and copied for later use, as illustrated in Figure B-11. Then, a new
folder is created in Google Drive with the same name as the script, as illustrated in
Figure B-12.

* 23 drive.google.com

121

Q, Search in Drive

‘ [3 New folder Alt+C then F
[A File upload Alt+C then U
(8 Folder upload Alt+C then |
B Google Docs »
Google Sheets »
gested folders
Google Slides »
B Google Forms » gested files
I Ll g I B Google Drawings
¢ Starred E Google My Maps
E Google Sites
(@ Spam
@ s B Google Apps Script
i
& Storage (72% full) + Connect more apps
18.23 GB of 25 GB used

Figure B-1: Accessing Google Apps Script from Google Drive.

@ - % scriptgoogle.com

= 2¥ Apps Script

I— MNew project

Y7 Starred Projects
0O My Projects
3 Al Projects
&n Shared with me

M Trash

Q

Search

Starred Projects

Figure B-2: Creating a New Google Apps Script Project.

122

a¥ Apps Script

@ e

<> Code.gs

© Ubraries
Services

Untitled project ¢ Unsaved changes

+ |5

Execution log

function doPost(e) §

r data = Utilitie

a ti

var nombreArchivo = Utilities.formatDa

var blob = Uti

=s.newBlob(data, e.p:

folderName

ESP32_CAM_FYP

var folder, folders = ©App . getFold

data

nage (e 23456.3pg")

te(new Date() YyyyMNdd_tenmss”) +

arameters.misetype, nombreArchivo

e r sByName folderNas

1f (folders.hasNext()

folder

folders.next()

folder = Ori

pp.createFolder (folderN:

var file = folder.createFile(blob

" f1cating completion

ompleted')

ice.createTextOutput

Figure B-3: Pasting the Script Into the Google Apps Script Editor.

a¥ Apps Script | ESP32_CAM_FYP v2| @ Savedto Drive

Files + o B Run) Debug doPost

< de.g
d inage data
© Libraries + paraseters.dsta
@ Services + Generate a t ame for the
var nombrerchivo = formatDate nen + ".ipg
> eate a Blob object from the decoded data with the given MIME type and filename
@ r blob t1l1 newBlob(data, e.parameters.mimetype, nombreArchivo
var folderName = "ESP32_CAM_FYP
der with the fied name 1n C Drive
var folder, folder getFoldersByName (folderNase)
(folders.hasNext()
folders.next();
createFolder(folderName)
s e inage file to the desig 1n oo ive
f = folder.createFile(blod
se indicating cospletion
ervice.createTextOutput('Completed
@)

Figure B-4: Renaming the Script.

¥ AppsScript ESP32_CAM_FYP.v2 &

Files + ©

doPost v

Exocution log

New deployment

< 2 f Manage deployments

wcoded image data
D Libraries + base6dDecode (e paransters. data Test deployments
@ Services + ate s t mped f1lens e imsge (e.q., *20250214_123455. 1pg
var nobreArchivo = Ut foraatbate . 8", "yyyyNidd_wimmss®) * *.1pg
t from the decodad dat o g1van KINE typs and 1
var blob newBlob(data, e.parameters. mimetype, nombreArchivo
var folderName = "ESP32_CAM_FYP

var folder, foldes

f (folders.hashext

olders.next()

folder
else
folder 1veApp createFolder (folderName

= folder.createFile(blob

Return a response

eturn Conte

.getFoldersByName(folderNane

e.createTextOutput(Comple

d name in Google Drive

Figure B-5: Deploying the Script.

New deployment

Select type Configuration
Web app | ~ Web app

API Executable

Add-on

Library

CATGULE Oy

(Me (hongzheng0281@1utar.my)

The web app will be authorized to run using your account data.

Who has access

(Only myself

This can also be used as a library. Learn more

Figure B-6: Selecting "Web App" as the Deployment Type.

New deployment
Select type

Web app

@

Configuration

Description

Mew description
(ESPSQ_CAM FYP

Web app

Execute as

(Me (hongzheng0281@1utar.my)

The web app will be authorized to run using your account data.

Who has access
(Anyone

This can also be used as a library. Learn more

Figure B-7: Configuring Deployment Settings and Setting Access Permissions.

123

New deployment

The Web App requires you to authorize access to your data

Authorize access

Cancel

Figure B-8: Authorizing Access for Web App Deployment.

b Sign in - Google Accounts - Google Chrome - m} X

2% acoounts.google.com/o/oauth2/auth/oauthchooseaccount?client_id=153424876855-vphqabh...

(5 Sign in with Google

Choose an account from
Tutarmy

to continue to ESP32_CAM_FYP_v2

HONG ZHENG TAN
hongzheng0281@1utar.my

® Use another account

English (United States) v Help Privacy Terms

Figure B-9: Logging Into Google Account.

124

@ Sign in - Google Accounts - Google Chrome - (u] by

25 accounts.google.com/signin/oauth/consent?authuser=1&part=AJi8hANavh93dNnvFbEjLIkgN...

ESP32_CAM_FYP_v2 wants to
access your Google Account

H hongzheng0281@1utar.my

This will allow ESP32_CAM_FYP_v2 to:

&) See, edit, create, and delete all of your Google (i)
Drive files

Make sure you trust ESP32_CAM_FYP v2

© Learn why you're not seeing links to
Service

Review ESP32_CAM_FYP v2's Privacy Policy and Terms of Service to
understand how ESP32_CAM_FYP_v2 will process and protect your
data.

To make changes at any time, go to your Google Account.

Learn how Google helps you share data safely.

Cancel) Allow

Figure B-10: Granting Permissions to the Web Application.

New deployment
Deployment successfully updated.

Version 1 on Feb 14, 2025, 11:48 PM

Deployment ID
AKfycbwyiZN8bmk7EqTqcKmzller4FgbEjTtfJIBACEKfQXuU1Yp8yjlQ83tr112p-7SqrFmBNA

IO Copy

Web app

URL

https://script.google.com/macros/s/AKfycbwyiZN8bmk7EqTqcKmzllerdFgbEjTHfJIBACEkIQXu1Yp8yjlQ83tr112p-7SqrFm...

Done

Figure B-11: Copying the Web App Deployment URL.

125

126

New folder

ESP32_CAM_FYP_v2

/-"

function doPost(e) { Cancel Create

/{/ Decode the received Basebd-encoded i
var data = Utilities.baseb4Decode(e. pframeters.data);

'/ Generate a timestamped filengfhe for the image (e.g., "28258214_123456.jpg")
var nombreArchivo = UtilitiesformatDate(new Date(), "GMT+8", "yyyyMMdd_HHmmss") + ".jpg”;

{/ Create a Blob object frgm the decoded data with the given MIME type and filename
var bleb = Utilities.newBJob(data, e.parameters.mimetype, nombreArchivo);

f/ Define the folder na where the image will be saved in Google Drive
var folderName = "ESP32_CAM_FYP_v2",

f/ Search for an existing folder with the specified name in Google Drive
var folder, folders = DriveApp.getFoldersByName(folderName) ;
if (folders.hasNext()) {
/f If the folder exists, use it
folder = folders.next();
} else {
// If the folder doesn't exist, create it
folder = DriveApp.createFolder(folderName);

}

// Save the image file to the designated folder in Google Drive
var file = folder.createFile(blob);

'/ Return a response indicating completion
return ContentService.createTextOutput(' Completed');

}

Figure B-12: Manually Creating a New Folder in Google Drive with the Same Name

as the Script.

Next, the Base64 encoding library, credited to Adam Rudd, is obtained. The
Base64.h header file is obtained from this link (click), while the Base64.cpp
implementation file is obtained from this link (click). Both files need to be placed in
the same location as the ESP32_CAM_FYP.ino file, as illustrated in Figure B-13.
Furthermore, some information needs to be changed in the ESP32_CAM_FYP.ino file.
The WiFi credentials must be replaced, and the Web App URL copied in Figure B-11
must be pasted into the highlighted section of the ESP32_CAM_FYP.ino file, as
illustrated in Figure B-14.

https://github.com/gsampallo/esp32cam-gdrive/blob/master/Base64.h
https://github.com/gsampallo/esp32cam-gdrive/blob/master/Base64.cpp

127

) > = UTAR > Year4Sem1 > FYP1 > ESP32_CAM_FYP Search ESP32_CAM_FYP
T Sert v = View v sas
Marne File ownership Date modified Type Size
¥ Basefd.cpp 10/11/2024 5:40 PM C++ Source 3KB
B Baset4h 10/11/2024 5:41 PM C Header Source F... IKB
. ESP32_CAM_FYP.ino 9/2/2025 815 PM IMO File 33 KB

Figure B-13: The ESP32_CAM_FYP.ino File and Base64 Library Are Stored in the

Same Directory.

Web app

10 Copy

J// WiFi credentials

const char* ssid =

"SsID";
char* password = "PRSSWORD";

nst

// Google Rpps Script details for

const char* myDomain =

"script.gogd

$rloading images

e.com" ;

String myScript =

"/macros/s/WEB_RP

" URL/exec"™; I

String myFilename = "filename=ESP3Z-CAM.Jpg"; Filename for the uploadsd imags
String mimeType = "&mimetype=image/jpesg"; // Imags MIME type
String myImage = "&data="; // Prefix for image data in POST regquest

Figure B-14: Some Information That Need to Be Changed in the

ESP32_CAM_FYP.ino File.

128

Appendix C: Demonstration Video and Award Won

The demonstration video, linked to a YouTube video can be accessed by clicking this
link (click) or by scanning the QR code in Figure C-1 for a clearer understanding of
this project. Besides that, this project won a Silver Medal at the International Materials
Technology Challenge (iMTC 9.0), organized by the Malaysia Solid State Science and
Technology Society (MASS) Chapter UPM and co-organized by the Department of
Physics, Selangor Education Department, on December 10, 2024.

O30

O

Figure C-1: QR Code Linked to a YouTube Video Demonstrating This Project.

@

ARBATAN PENDIDIKAN NEGER] SELANGOR

- “TMISTERTIFICATE OF AWARD IS PRESENTED TO
= R

. TAN HONG ZHENG, TS. DR. TOH PEK LAN, TS. DR. LEE HAN KEE

-~ for the invention/innovation of

SMART PARKING SYSTEM WITH REAL-TIME RARKING LOT STATUS
MONITORING USING INTERNET OF THINGS (loT) AND
RADIO-FREQUENCY IDENTIFICATION (RFID)

at the 3
INTERNATIONAL MATERIALS TECHNOLOGY CHALLENGE (iMTC 9.0)

10" DECEMBER 2024
PUTRA HALL 2, FOURTEENTH COLLEGE, UPM
Organized by:

The Malaysian Solid State Science and Technology Society (MASS)
Department of Physics, Faculty of Science, Universiti Putra Malaysia

, FASc

" PRESIDENT
THE MALAYSIAN/SOLID STATE SCIENCE
END TECENOLOGY SOCIETY (MASS)

Figure C-2: Silver Medal Certificate for Participation in iMTC 9.0.

https://www.youtube.com/watch?v=Ki90JYYTtkM

Appendix D: Code for ESP32, ESP32-CAM, and Google Apps Script

Figure D-1: Code for Main ESP32

143

Figure D-2: Code for Secondary ESP32

146

Figure D-3: Code for ESP32-CAM (ESP32_CAM_FYP.ino)

147

Figure D-4: Code for Google Apps Script

