

SMART PARKING SYSTEM WITH REAL-TIME

PARKING LOT STATUS MONITORING USING

INTERNET OF THINGS (IOT) AND RADIO-

FREQUENCY IDENTIFICATION (RFID)

TAN HONG ZHENG

UNIVERSITI TUNKU ABDUL RAHMAN

SMART PARKING SYSTEM WITH REAL-TIME PARKING LOT STATUS

MONITORING USING INTERNET OF THINGS (IOT) AND RADIO-

FREQUENCY IDENTIFICATION (RFID)

TAN HONG ZHENG

A project report submitted in partial fulfilment of the

requirements for the award of

Bachelor of Electronics Engineering With Honours-(EE)

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2025

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Tan Hong Zheng

ID No. : 20AGB02853

Date : 21-05-2025

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SMART PARKING SYSTEM WITH

REAL-TIME PARKING LOT STATUS MONITORING USING INTERNET

OF THINGS (IOT) AND RADIO-FREQUENCY IDENTIFICATION (RFID)”

was prepared by TAN HONG ZHENG has met the required standard for submission

in partial fulfilment of the requirements for the award of Bachelor of Electronics

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ts. Dr. Toh Pek Lan

Date :

Mobile User

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2025, Tan Hong Zheng. All right reserved.

v

Specially dedicated to

my beloved parents, for their unwavering support and endless love.

vi

ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to everyone who contributed to the

successful completion of this project. My sincere thanks go to my supervisor, Ts Dr.

Toh Pek Lan, for her invaluable advice, guidance, and unwavering patience throughout

the development of this research. Her expertise and insights have been instrumental in

shaping the direction and quality of this work.

In addition, I am also profoundly grateful to my loving parents and friends for

their constant support, encouragement, and assistance. Their belief in my abilities

provided me with the strength and motivation needed to persevere through challenges.

I also appreciate the support of the university’s staff and the resources provided,

which were crucial in completing this research.

vii

SMART PARKING SYSTEM WITH REAL-TIME PARKING LOT STATUS

MONITORING USING INTERNET OF THINGS (IOT) AND RADIO-

FREQUENCY IDENTIFICATION (RFID)

ABSTRACT

The ever-growing number of vehicles in urban areas has significantly intensified the

challenge of finding available parking spaces, leading to increased frustration for

drivers and contributing to environmental pollution due to prolonged vehicle idling

and unnecessary driving. Real-time updates and efficient space utilization are rare

features of most parking management systems on the market today. Apart from this,

visibility is usually limited, especially in large parking lots, and the signs can be

unclear or difficult to read, which causes drivers to have no idea where the available

parking spots are. This project presents a Smart Parking System using IoT and RFID

Technology designed to address these issues by providing a real-time parking lot status

monitoring solution. The system integrates various hardware components, including

eight IR sensors to detect vehicle presence at the parking slots, two servo motors for

gate control, two ESP32 microcontrollers, two RFID readers with tags, an LCD display

for showing parking status and time, an OLED display for showing RFID scanning

messages, and a buzzer for audio feedback. Additionally, two IR sensors monitor

vehicle presence at each of the gates. Besides that, custom developed HTML-PHP

integrated web pages enable public users to view the status of each parking slot in real-

time, whether it is “AVAILABLE”, “OCCUPIED”, or “RESERVED” and then access

features like sign-up, login, top-up, and reservation, which allow the users to reserve

a parking slot for a particular time before arriving. The user information, RFID

scanning timestamps, reservation user and time, and status of each parking slot are

stored in a MySQL database. Users can obtain parking information on the web page

using their mobile devices by scanning a QR code or by visiting the provided URL

link and logging into their registered accounts. The system operates by detecting

viii

vehicles at the entrance, verifying RFID UID with database, and managing gate

operations based on slot availability and account balance. Furthermore, a ESP32-CAM

is used to capture vehicle images at the gate entrance when the IR sensor detects

movement and save them to Google Drive. The performance of the system will then

be assessed based on its accuracy. Based on the results, the system prototype achieved

100 % accuracy. When compared to other proposed Smart Parking Systems, it is clear

that this method is more cost-effective and reliable. This system aims to reduce

parking-related frustrations and environmental impact to enhance overall urban

mobility and sustainability.

Keywords: IoT, RFID, Smart Parking System, Real-time Monitoring, Reservation

ix

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

COPYRIGHTS iv

DEDICATION PAGE v

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS ix

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xxi

LIST OF APPENDICES xxiii

CHAPTER

INTRODUCTION ... 1

1.1 Introduction.. 1

1.2 Background of the Study ... 1

1.3 Problem Statement ... 4

1.4 Aim and Objectives ... 7

1.5 Importance of the Study... 7

1.6 Scope and Limitation of the Study 8

1.6.1 Scope .. 8

1.6.2 Limitations ... 9

LITERATURE REVIEW ... 10

2.1 Introduction.. 10

1

2

x

2.2 Smart Car Parking Mobile Application based on

RFID and IoT Presented by Saeliw et al. (2019)........... 10

2.3 Smart Parking Guidance System Using 360° Camera

and Haar-Cascade Classifier on IoT System

Presented by Salma, Olanrewaju, and Arman (2019).... 14

2.4 Smart Parking System using IoT Presented by Elakya

et al. (2019) .. 16

2.5 Intelligent Parking Management Using ANPR

Technology Presented by Lincy et al. (2024) 18

2.6 A Smart Real-Time Parking Control and Monitoring

System Presented by Elfaki et al. (2023)....................... 22

2.7 Summary .. 26

METHODOLOGY AND WORK PLAN 29

3.1 Design Architecture ... 29

3.2 The Operation of the System ... 32

3.3 Hardware Components .. 42

3.3.1 NodeMCU ESP32 .. 42

3.3.2 Infrared (IR) Sensors ... 43

3.3.3 MFRC522 RFID Reader 45

3.3.4 SG90 Servo Motor ... 46

3.3.5 Organic Light-Emitting Diode (OLED)

Display ... 48

3.3.6 Liquid Crystal Display (LCD) 48

3.3.7 AI-Thinker ESP32-CAM 49

3.3.8 PCF8575 16-bit I/O Expander 51

3.4 Software Components .. 52

3.4.1 Arduino IDE .. 52

3.4.2 Network Time Protocol (NTP) Server 55

3.4.3 XAMPP Package ... 56

3.4.4 MySQL Database ... 57

3.4.3 PHP Scripts .. 61

3.4.4 The Roles of Each PHP, CSS, JSON Files

Used in This Project ... 63

3

xi

3.4.5 Ngrok Tunneling .. 65

3.5 Project Management / Gantt Chart 66

3.6 Cost of Components .. 67

RESULTS AND DISCUSSIONS ... 68

4.1 Schematic Diagram .. 68

4.2 Webpages/User Interface ... 74

4.2.1 Login Page ... 74

4.2.2 Parking Lot Status Monitoring Page

(Accessible After Successful Login) 77

4.2.3 Top-Up Page .. 80

4.2.4 Account Registration / Sign-Up Page 83

4.2.5 Reservation Page ... 86

4.3 Hardware Prototype ... 95

4.3.1 Overview .. 95

4.3.2 LCD Display Results ... 97

4.3.3 ESP32-CAM Results ... 98

4.3.4 Entrance and Exit Gate Results 99

4.3.5 OLED Display Results 100

4.3.6 Parking Lot Results .. 101

4.4 Detection Accuracy ... 109

CONCLUSION AND RECOMMENDATIONS 110

5.1 Conclusion ... 110

5.2 Recommendations.. 111

REFERENCES .. 112

APPENDICES ... 116

4

5

xii

LIST OF TABLES

TABLE TITLE PAGE

2.1 Literature Review Summary 26

3.1 Summary of Pins Defined for Main ESP32 and Second

ESP32 Connected Components

54

3.2 Gantt Chart for FYP 1 66

3.3 Gantt Chart for FYP 2 66

3.4 Components List with Price 67

4.1 Detection Accuracy of the IR Sensor 109

xiii

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 Major Components of Internet of Things (Rajiv, 2018) 3

1.2 A Pie Chart Illustrating the Percentage of Malaysians who

Own a Car in 2024

4

2.1 The Block Diagram of the System (Saeliw et al., 2019) 12

2.2 The Android Application Login and Registration Interface

(Saeliw et al., 2019)

12

2.3 Car Parking Status Interface and Line Mobile Application

Notification Update (Saeliw et al., 2019)

13

2.4 Car Parking Management and Daily Usage Report Interface

(Saeliw et al., 2019)

13

2.5 The Whole Process of the Smart Parking Guidance System

(Salma, Olanrewaju, and Arman, 2019)

15

2.6 Vehicle Detection Image Processing for the Prototype (Salma,

Olanrewaju, and Arman, 2019)

16

2.7 GSM Module (Elakya et al., 2019) 18

2.8 ANPR Process Flow (Lincy et al., 2024) 20

2.9 Vacant Slot Detection Process Flow (Lincy et al., 2024) 21

xiv

2.10 License Plate Detection (ANPR) Graphical User Interface

(Lincy et al., 2024)

21

2.11 Vacant Slot Detection (Lincy et al., 2024) 22

2.12 The Monitoring Unit Consists of Motion Sensor and Camera

(Elfaki et al., 2023)

24

2.13 The Monitoring Unit Consists of Range Finder Sensor and

Camera (Elfaki et al., 2023)

24

2.14 Mobile Application Reservation Function for User (Elfaki et

al., 2023)

25

3.1 The Block Diagram of the Overall IoT RFID Smart Parking

System

30

3.2 The Working Principle of the Two Entrance IR Sensors 31

3.3 The Flowchart Showing the Operation of the Smart Parking

System in General (First Part)

34

3.4 The Flowchart Showing the Operation of the Smart Parking

System in General (Second Part)

35

3.5 The Flowchart Showing the Operation of the Smart Parking

System in General (Third Part)

36

3.6 The Flowchart Showing the Operation of the Smart Parking

System in General (Fourth Part)

37

3.7 Step-by-Step Process for Regular Users Accessing and Exiting

the Parking Lot

38

3.8 Step-by-Step Process for Reserved Users Accessing and

Exiting the Parking Lot

39

xv

3.9 The Flowchart Showing the Operation of the ESP32-CAM at

the Entrance Gate

41

3.10 Pinout Diagram of the ESP32-DevKitC Development Board

(30 GPIOs) (Wilson, 2020)

43

3.11 The Diagram of an Infrared (IR) Sensor (Ch'ng, 2019) 44

3.12 The Working Principle of an IR Sensor (Ch'ng, 2019) 44

3.13 The Working Principle of RFID (Last Minute Engineers,

2018)

45

3.14 Pinout Diagram of MFRC522 RFID Reader Module 46

3.15 MIFARE 1K 13.56 MHz RFID Tags 46

3.16 SG90 Servo Motor (Ch'ng, 2019) 47

3.17 4-Channel 3.3 V to 5 V Logic Level Shifter 47

3.18 0.96-inch OLED Display 48

3.19 20 × 4 I2C LCD 49

3.20 AI-Thinker ESP32-CAM 49

3.21 AI-Thinker ESP32-CAM Pinout Diagram (Santos, 2019) 50

3.22 Hardware Connection to Program ESP32-CAM Using CH340 51

3.23 Top View and Bottom View of PCF8575 16-bit I/O Expander 51

3.24 WiFi Setup Code for Main ESP32 and Second ESP32 53

3.25 NTP Server Setup Code to Print the Date and Time 55

3.26 Starting the Server Using XAMPP Control Panel 56

xvi

3.27 The ‘parking_system’ Database with Three Tables, Which are

‘parking_status’, ‘rfid_scan_log’, and ‘rfid_user_info’

57

3.28 The ‘parking_status’ Table 58

3.29 The ‘rfid_user_info’ Table 58

3.30 The ‘rfid_scan_log’ Table 59

3.31 The ‘reservations’ Table 59

3.32 An Example of Creating a Database and a Table 60

3.33 The ‘db_connect.php’ File That Is Used to Connect to the

Database

61

3.34 The Location where all the PHP Scripts are Stored 62

4.1 Current Source and Current Sink Configuration of a LED 69

4.2 Zoomed in View of ESP32 and PCF8575 I/O Expander Pinout 70

4.3 Schematic Diagram of IoT RFID Smart Parking System (Main

ESP32)

71

4.4 Schematic Diagram of IoT RFID Smart Parking System

(Second ESP32)

72

4.5 Schematic Diagram of ESP32-CAM Image Capturing Camera

System at the Entrance

73

4.6 The Overview of Login Page (login.php) 74

4.7 Zoomed in View of Login Page with Login Credentials Filled

in

75

4.8 Account (Bob) and Password (Bob123) Stored in Database 75

xvii

4.9 Login Attempt Using the Correct Account with Incorrect

Letter Case (bob)

76

4.10 Login Failed 76

4.11 The Overview of Parking Lot Status Monitoring Page

(parking_status.php)

77

4.12 Zoomed in View of Parking Lot Status Monitoring Page where

All Slots are Available

78

4.13 Zoomed in View of Parking Lot Status Monitoring Page where

Slot 2, 4, 6, 8 are Occupied

78

4.14 Zoomed in View of Parking Lot Status Monitoring Page where

All Slots are Occupied

79

4.15 The Popped-Up Message Indicates Parking Full 79

4.16 The Overview of Top-Up Page (topup.php) 80

4.17 The Top-Up Amount Drop Down Selection List 81

4.18 The Security Measure (Password) of the Top-Up Function 81

4.19 Top Up Successful if Password Is Correct 82

4.20 Top Up Unsuccessful if Password Is Wrong 82

4.21 The Parking Lot Status Monitoring Page Account Balance

Updated Immediately After Top-Up Successful

82

4.22 The Overview of Sign-Up Page (signup.php) 83

4.23 Zoomed in View of Sign-Up Page with Information Filled in 84

4.24 Sign-Up Successful Message 84

xviii

4.25 Database “rfid_user_info” Table Updated with the Newly

Registered Account

85

4.26 The Overview of Reservation Page (reservation.php) 86

4.27 Zoomed in View of Reservation Page 87

4.28 Demonstration of Attempting to Reserve a Parking Slot with

an Unregistered Owner Name (Case-Sensitive Input Required)

87

4.29 Pop-Up Error Message Indicating User Not Found in the

System

88

4.30 Demonstration of Attempting to Reserve a Parking Slot with a

Registered User (Case-Sensitive) and Filling in Other

Information

88

4.31 Selecting Reservation Date and Time 89

4.32 Pop-up Message Indicating Reservation Successful 89

4.33 Database “reservations” Table Automatically Updated with

Reservation Details

90

4.34 Parking Lot Status Monitoring Page Automatically Updates

Slot 1 Status to “RESERVED” when Reaching the

Reservation Time

90

4.35 Parking Lot Status Monitoring Page Automatically Updates

Slot 1 Status to “OCCUPIED” when the User Parks in the

Reserved Slot

91

4.36 Parking Lot Status Monitoring Page Automatically Updates

Slot 1 Status to “AVAILABLE” After Reservation Time

Passes (No Vehicle in Slot 1)

91

4.37 Demonstration of an Attempt to Reserve a Parking Slot that Is

Currently Occupied (Not Available)

92

xix

4.38 Pop-Up Error Message Indicating the Selected Slot Is Not

Available for Reservation

93

4.39 Demonstration of Attempting to Reserve a Parking Slot

Already Reserved for the Specified Time

93

4.40 Pop-Up Error Message Indicating Time Conflict with an

Existing Reservation for the Selected Slot

94

4.41 Top View of the Hardware Prototype 95

4.42 Front View of the Hardware Prototype 96

4.43 Two ESP32 Microcontrollers Soldered onto a Stripboard and

Embedded Inside a Black PVC Box

96

4.44 Entrance Display Board Showing Parking Fees and LED Light

Meanings

97

4.45 LCD Display Showing the Current Time, Number of Available

Parking Slots, and the Status of Each Slot

97

4.46 ESP32-CAM and IR Sensor Image-Capturing System at the

Entrance

98

4.47 Captured Image Renamed Using the Timestamp and Stored in

Google Drive

98

4.48 Entrance Gate Servo Motor with Access LEDs 99

4.49 Exit Gate Servo Motor 99

4.50 OLED Display Showing Welcome Page 100

4.51 OLED Display Showing Access Authorized Messages 100

4.52 OLED Display Showing Access Denied Messages 100

4.53 OLED Display Showing Insufficient Balance Messages 100

xx

4.54 Parking Slots 1, 2, 3, and 4 101

4.55 Parking Slots 5, 6, 7, and 8 101

4.56 Parking Lot when All Slots are Available 102

4.57 Parking Lot when Slots 1, 3, 5, and 7 are Available, while Slots

2, 4, 6, and 8 are Occupied

103

4.58 Parking Lot when All Slots are Occupied (Parking Full) 104

4.59 LCD Messages when All Parking Slots are Occupied (Parking

Full)

105

4.60 Slot 1 Yellow LED Lights Up at the Reserved Time to Indicate

the Slot Is Reserved

106

4.61 Slot 1 Red LED Lights Up After the User Parks in the

Reserved Slot

107

4.62 Slot 1 Green LED Lights Up After Reservation Time Passes 108

xxi

LIST OF SYMBOLS / ABBREVIATIONS

° Degree

% Percent

AC Alternating Current

AI Artificial Intelligence

ANPR Automatic Number Plate Recognition

CO2 Carbon Dioxide

CPU Central Processing Unit

CSS Cascading Style Sheets

DC Direct Current

GMT Greenwich Mean Time

GPIO General Purpose Input/Output

GPS Global Positioning System

GSM Global System for Mobile Communications

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IR Infrared

IoT Internet of Things

I2C Inter-Integrated Circuit

JSON JavaScript Object Notation

LCD Liquid Crystal Display

LED Light Emitting Diode

LiDAR Light Detection and Ranging

Mbps Megabits per Second

MISO Master In Slave Out

xxii

MOSI Master Out Slave In

MP Megapixels

MySQL My Structured Query Language

NTP Network Time Protocol

OCR Optical Character Recognition

OLED Organic Light Emitting Diode

OpenCV Open Source Computer Vision Library

PHP Hypertext Preprocessor (originally Personal Home Page)

PIR Passive Infrared

PWM Pulse Width Modulation

QR Quick Response (Code)

RFID Radio Frequency Identification

RTC Real-Time Clock

SCL Serial Clock Line

SDA Serial Data Line

SMS Short Message Service

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver/Transmitter

UID Unique Identifier

USB Universal Serial Bus

UTC Coordinated Universal Time

WiFi Wireless Fidelity

YOLO You Only Look Once

xxiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Ngrok Tunneling Steps 116

B Google Apps Script Deployment and ESP32-CAM

Integration

120

C Demonstration Video and Award Won 128

D Code for ESP32, ESP32-CAM, and Google Apps Script 129

CHAPTER 1

INTRODUCTION

1.1 Introduction

In Chapter 1, the basics of the Internet of Things (IoT) and its importance will be

introduced, along with an overview of the key technologies that enable IoT. Following

this, the chapter will present the problem statement, focusing on the parking challenges

in Malaysia and the disadvantages of traditional parking systems. The research aim

and objectives will then be outlined. This chapter will also discuss the significance of

this study, highlighting how smart parking systems can enhance urban mobility and

reduce environmental impact. Lastly, the scope and limitations of the research will be

covered.

1.2 Background of the Study

The Internet of Things (IoT) consists of a dynamic network involving physical devices

and objects such as vehicles and appliances that use embedded sensors and software

for connectivity. Through this network devices are able to collect and share data which

leads to the development of diverse applications (Oracle, 2024). IoT devices play a

vital role in modern life by connecting everything from basic smart home appliances

to advanced industrial equipment and transport systems. These IoT devices assist in

2

environmental farm monitoring, smart vehicle traffic management, controlling factory

operations, and warehouse inventory tracking.

IoT demonstrates its importance by improving operational efficiency,

facilitating informed decision-making based on data, and helping organizations save

costs. Business processes become more productive and efficient when automation and

real-time data are utilised. Besides that, businesses can make informed decisions

because the data generated by IoT devices provide essential information about market

trends, customer behavior, and operational performance. Additionally, IoT reduces

costs by enabling automated processes and energy efficiency optimization which

support sustainable practices.

In addition to that, some important technologies that make the IoT work

include sensors, actuators, connectivity technologies, cloud, big data analytics, and

security and privacy measures (IBM, 2024). Sensors are devices that can detect

changes in the environment, such as temperature or light. Meanwhile, actuators are

devices that perform actions in response to those changes, like opening a valve or

switching on a motor. Connectivity technologies, which include Wi-Fi, Bluetooth, and

cellular technologies are critical for transmitting data from IoT devices to the cloud.

Cloud computing platforms provide the infrastructure required to store, process, and

analyse data. Advanced analytics technologies, such as machine learning algorithms,

assist in extracting valuable insights from enormous datasets. Furthermore, security

and privacy technologies like encryption and intrusion detection systems are critical

for defending IoT devices and the data they generate from cyber threats. Figure 1.1

shows the key components of IoT.

3

Figure 1.1: Major Components of Internet of Things (Rajiv, 2018)

Next, a notable application of IoT technology is in the realm of parking

management through the use of Radio Frequency Identification (RFID). RFID

technology employs electromagnetic fields to monitor and identify objects

automatically. When combined with IoT, RFID enhances the capabilities of parking

systems, leading to more secure, efficient, and automated processes.

The Smart Parking System proposed shows the integration of IoT and RFID

technologies in urban areas. This system addresses common parking challenges,

including congestion, inefficient space utilization, and environmental impact. By

incorporating RFID tags into vehicles and equipping parking spaces with RFID readers,

and IoT sensors, the Smart Parking System offers real-time monitoring of parking

space availability. Drivers receive real-time information about the location of the

nearest available parking spaces via smartphone apps, websites, or digital displays,

substantially reducing the amount of time spent looking for parking.

4

1.3 Problem Statement

Malaysia is facing a rising parking challenge as the number of vehicles on the road

grows rapidly. A survey conducted by Rakuten Insight in 2024 found that nearly 73 %

of Malaysians own a car, which is a higher rate of car ownership compared to

neighboring countries (Rakuten Insight, 2024). As of October, 2023, Malaysia had

more than 36.3 million registered vehicles, surpassing the population of 32.4 million

(Daim, 2023). This surge in vehicles has led to severe traffic congestion, particularly

in urban areas like Klang Valley, where people spend an average of 44 hours each

month stuck in traffic (BusinessToday, 2023). Shopping malls such as Sunway

Pyramid, which sees over 50 000 vehicles daily, are struggling to manage the growing

demand for parking (Lee, 2021).

Figure 1.2: A Pie Chart Illustrating the Percentage of Malaysians who Own a Car in

2024

Next, traditional parking systems are outdated and inefficient. They usually

involve manual processes, where drivers need to stop to collect a ticket and then pay

later at a machine, or they may have to interact with a parking attendant. This process

can create long queues and can cause bottlenecks at the entrances, especially in busy

shopping malls or public venues. The queues not only delay entry but also cause traffic

congestion on surrounding roads, contributing to overall traffic congestion in the area

(Goh, 2024).

5

Additionally, real-time information regarding available parking spaces is not

provided by traditional parking systems, this forces drivers to circle around parking

lots or streets in search of an open space. On average, it takes about 7.8 minutes to find

a parking spot (Hong et al., 2023). This process can take up to 20 minutes or more in

crowded areas, especially during peak hours. As a result, drivers waste fuel and emit

more greenhouse gases like CO2. The lack of smart parking systems also means that

parking spaces are often used inefficiently. During peak times or holidays, the demand

for parking exceeds what is available, leading to even more frustration for drivers.

Besides that, in large parking lots or multi-story garages, it can be difficult for

drivers to find their way, especially if the signage is unclear or if the parking facility

is crowded. Traditional systems do not provide guidance or real-time updates, leaving

drivers to navigate on their own (Elfaki et al., 2023). This can lead to drivers getting

lost, wasting time, and becoming frustrated. In some cases, drivers may even forget

where they parked, causing further delays and stress when trying to locate their vehicle.

Moreover, many traditional parking systems require cash payments, which can

be inconvenient for drivers who do not carry cash or prefer to pay electronically. The

need to find cash or wait in line to pay at a machine can be time-consuming and

frustrating. This inconvenience can lead to longer exit times, further contributing to

congestion at parking facilities. It also detracts from the overall customer experience,

making people less likely to return to that parking facility in the future.

In addition, the environmental consequences of inefficient parking are

significant. Cars that are idling while searching for parking spots consume more fuel

and emit more CO2. Research shows that just one hour of traffic congestion can

increase air pollutants and carbon dioxide emissions by up to 30 % (Elfaki et al., 2023).

This not only contributes to climate change but also worsens air quality, especially in

crowded cities.

Next, security is another concern with traditional parking systems. Traditional

parking systems often lack advanced security measures, making it easier for

unauthorized vehicles to enter or for theft and vandalism to occur. Without real-time

6

monitoring and tracking, it is difficult for parking operators to ensure the safety of

parked vehicles (Koya et al., 2024). Security concerns can deter people from using

certain parking facilities, especially in areas where crime rates are higher. This can

result in lost revenue for parking operators and increased anxiety for drivers (Goh,

2024).

Operationally, traditional parking systems make it difficult for shopping malls

and other facilities to manage their parking spaces efficiently. They do not provide the

data needed to optimize parking operations, leading to lost revenue and unhappy

customers. In contrast, smart parking systems can analyze parking usage data, helping

management make better decisions about how to run their parking facilities (Hong et

al., 2023).

Given these challenges, the implementation of Smart Parking Systems is not

just a convenience but a necessity. By leveraging the IoT and cloud technologies, these

systems provide real-time information on available parking slots, lead drivers directly

to open spots, and offer flexible payment options through mobile applications. This

approach reduces traffic congestion, minimizes environmental impact, and

significantly enhances the overall driving and parking experience. Moreover, Smart

Parking Systems enhance security by using technologies like RFID and automatic

license plate recognition to monitor and control access to parking facilities, reducing

the risk of theft and vandalism. These systems also enable advanced data analytics,

allowing parking operators to optimize the use of their facilities and improve customer

satisfaction.

Malaysia’s current parking systems are struggling to keep up with the growing

number of vehicles. The lack of smart parking solutions is causing traffic jams,

increasing pollution, and frustrating drivers. Smart parking systems offer a

comprehensive solution to the challenges faced by drivers and parking operators by

improving parking efficiency, reducing environmental impact, and enhancing driver

satisfaction across the nation.

7

1.4 Aim and Objectives

The aim of this project is to develop a Smart Parking System using IoT and RFID

technology that allows real-time parking lot status monitoring and access control.

The objective of this project is to design an IR sensor-based parking lot

monitoring system using two ESP32 microcontrollers with RFID readers for access

control. Besides that, the second objective is to develop custom-designed HTML-PHP

integrated web pages for real-time parking lot status monitoring with a login page,

sign-up page, top-up page, and reservation page. Moreover, the third objective is to

allow users to reserve a parking slot through the reservation page before they arrive.

Next, the fourth objective is to store user information, RFID scanning timestamps,

reservation user and time, and status of each parking slot in the MySQL database.

Furthermore, the fifth objective is to use the ESP32-CAM to capture images and save

them to Google Drive when the IR sensor detects movement at the entrance. Finally,

the sixth objective is to assess the performance of the system based on its accuracy.

1.5 Importance of the Study

The growing urbanization and rise in vehicle numbers on the road have worsened the

parking problem, which caused significant time wastage and increased environmental

pollution levels. Hence, the importance of an efficient parking management system

cannot be ignored. An IoT-based smart parking system can provide real-time data on

parking availability, this decreases search durations for parking spots and the

associated environmental impact.

Moreover, integrating RFID technology for access control can enhance

security, streamline the parking process, and eliminate the need for manual labour to

control the gate. This infrastructure's one-time installation cost can help parking lot

owners save on the recurring monthly salary costs of manual labor. The cross-checking

between scanned RFID UID and the UID stored in the database adds another security

8

layer, this ensures that only authorized users can enter the parking lot. By requiring

users to log in to view parking lot statuses, the system ensures that this information is

accessible only to legitimate users, thereby preventing misuse. Furthermore, the stored

user information from account registration and captured images at the entrance can be

retrieved to assist law enforcement agencies in tracking individuals involved in illegal

activities.

Besides that, the integration of IoT and RFID technology allows the parking

lot owner to gather information about occupancy rates, and length of stay through the

RFID scanning timestamp stored in the MySQL database. This information can be

used to make better judgements about whether the current parking lot is adequate,

especially during peak hours, whether a new car park should be built, and if yes, where

to build the new car park. For example, by tracking real-time occupancy rates and

adjusting entry prices accordingly, owners can maximize income from paid parking

and ensure that adequate spots are available.

 Furthermore, the reservation feature allows users to book a parking slot before

arriving. This reduces the time spent searching for available parking slots, minimizes

congestion, and makes the entire parking experience smoother. The ability to manage

parking spaces efficiently not only benefits individual drivers but also contributes to

the overall optimization of urban infrastructure. This study's significance lies in its

potential to address these issues through innovative technological solutions.

1.6 Scope and Limitation of the Study

1.6.1 Scope

This research focuses on developing a smart parking system with real-time parking lot

status monitoring and access control using IoT and RFID technology. The study

includes designing both the hardware and software components and evaluating the

system’s performance in a controlled environment.

9

1.6.2 Limitations

The research is limited to a prototype system and does not encompass large-scale

deployment. For large-scale deployment, more powerful microcontrollers, higher

quality RFID readers, faster internet speed, or other advanced hardware may be

required to maintain system reliability and efficiency. The accuracy of the system may

be influenced by external factors such as hardware and infrastructure limitations, and

environmental conditions such as lighting. Besides that, internet speed can impact the

responsiveness of the web pages, server, and database refresh speed, which may affect

the speed of gate opening and closing due to data verification with the database. This

project assumes access to high-speed internet.

Additionally, the integration of the ESP32-CAM with an IR sensor for motion

detection comes with some limitations. The IR sensor may trigger false detections due

to factors like the movement of small animals. Poor lighting can also reduce image

quality, making the captured photos less reliable. Furthermore, the ESP32-CAM is a

budget camera, so the image quality may not be as clear as higher-end alternatives,

which can affect the overall reliability of the system. Moreover, the Google Drive

cloud storage can fill up quickly if there are frequent detections.

Furthermore, the experiment trials assume an ideal condition in which all of

the vehicles occupying the parking slots are properly parked. As a result, the generated

results might not be a perfect representation of the system’s accuracy when it is

implemented in real life. For example, a poor vehicle parking position can have an

impact on the accuracy of the system. The IR sensor may not be able to detect a car if

it is not parked inside the box drawn in the parking space or if it is positioned too far

away from the sensor, which is outside of its detectable range.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In Chapter 2, a literature review will be conducted to explore the work of various

researchers on smart parking systems. The review will examine the different methods

and technologies proposed by different authors, highlighting both their strengths and

limitations. This analysis will provide a through overview of the current technologies

and identify gaps in existing research. Following this comparison, the chapter will

explain the rationale behind the choices made for this project, based on insights gained

from the literature review. The objective is to demonstrate how this project aligns with

or diverges from existing studies.

2.2 Smart Car Parking Mobile Application based on RFID and IoT

Presented by Saeliw et al. (2019)

This paper presents the development of a smart car parking system that integrates

RFID and IoT technologies with a mobile application. The system utilises the Arduino

ESP8266 microcontroller and the HY-SRF05 ultrasonic sensor module to monitor the

occupancy status of parking spaces. The data collected by the sensors is transmitted

via Wi-Fi to a server managed by the Apache web server, where it is stored in a

MySQL database and Firebase for real-time data management. The block diagram of

the system is illustrated in Figure 2.1.

11

The system includes an Android-based mobile application that provides users

with real-time updates on parking space availability. The application features a login

and registration interface, where users can create accounts to access the parking data,

as illustrated in Figure 2.2. In addition to the mobile app, the system is integrated with

the Line messaging application, which sends notifications to users about the

availability of parking spots, as illustrated in Figure 2.3. The application is developed

using Java for Android mobile application, PHP for server-side scripting, and

JavaScript, CSS, and Bootstrap for the web interface. Additionally, the system allows

parking managers to generate daily usage reports as illustrated in Figure 2.4.

Advantages:

The system offers real-time monitoring of parking spaces, ensuring that users

have access to the most current information about parking availability. By using the

Line messaging app to notify users when parking status changes, the system makes it

easier for users to find parking by keeping them informed in real-time about available

spaces. The use of RFID technology enhances safety by automating the entry and exit

process, reducing the risk of unauthorized access, and making the process more secure.

Additionally, the system eliminates the need for manual ticketing or cash payments,

which offers a more convenient and efficient user experience. Additionally, the system

includes administrative tools that allow parking managers to update availability and

generate daily usage reports in MS Excel format, which is useful for planning and

operational purposes. The use of open-source software, such as MySQL, Firebase,

Apache, and Android Studio, helps keep the development and deployment costs low.

Disadvantages:

The system is currently limited to Android devices, which restricts its usability

for people using other operating systems. Its effectiveness is also heavily dependent

on having a stable internet connection for real-time updates and notifications, which

could be a challenge in areas with poor connectivity. Additionally, the hardware used,

including the Arduino ESP8266 and ultrasonic sensors, may not be robust enough for

larger or more complex parking environments.

12

Figure 2.1: The Block Diagram of the System (Saeliw et al., 2019)

Figure 2.2: The Android Application Login and Registration Interface (Saeliw et al.,

2019)

13

Figure 2.3: Car Parking Status Interface and Line Mobile Application Notification

Update (Saeliw et al., 2019)

Figure 2.4: Car Parking Management and Daily Usage Report Interface (Saeliw et al.,

2019)

14

2.3 Smart Parking Guidance System Using 360° Camera and Haar-Cascade

Classifier on IoT System Presented by Salma, Olanrewaju, and Arman

(2019)

This paper presents a Smart Parking Guidance System that integrates IoT technology

with advanced image processing (edge detection) and Haar-Cascade classifiers to

enhance parking management efficiency. Image processing involves the use of

algorithms to analyze and manipulate visual data captured by cameras to allow the

systems to identify and interpret various elements within an image. Haar-Cascade

classifier is a popular technique in image processing, it is used to detect objects within

an image by identifying patterns of light and dark areas that form the boundaries of

objects. The overall process of the system is shown in Figure 2.5. In this system, a 360°

camera is placed in the center of the parking lot to capture images of all parking slots

using the image processing method, as illustrated in Figure 2.6. These images are then

processed by a Raspberry Pi 3 Model B using Python and OpenCV libraries to

determine the occupancy status of the parking slots. The processed data is uploaded in

real-time to a Firebase cloud platform and the mobile application. Then, the user can

access the parking lot information and make reservations on an Android mobile

application developed in Android Studio.

Advantages:

One of the major benefits of this system is its cost-effectiveness. By using a

single 360-degree camera instead of multiple sensors, the system significantly reduces

the cost, making it a more feasible option for large parking facilities. The system

combined with image processing has success rate of 99.74 % in ideal conditions, which

is a very high accuracy. This means the users can trust the information provided about

available parking spots. The real-time updates through the Firebase cloud and Android

app, offer convenience and immediate access to parking data, making it easier for

drivers to find a spot quickly. Moreover, the booking and reservation system adds an

extra layer of convenience, allowing drivers to secure a parking spot before they even

arrive.

15

Disadvantages:

However, there are some downsides. The accuracy of the system can drop

slightly in low-light conditions, which might cause some parking spots to be

incorrectly reported as occupied or vacant. The quality of the camera used (e.g., 5 MP

versus 20 MP) also plays a significant role. Higher resolution cameras can offer better

accuracy and detail in detecting vehicles, but they also increase the cost of the system.

Moreover, the 360° camera also requires a lot of bandwidth, which could slow down

data transmission if the internet connection is weak. Additionally, setting up the system

can be a bit complex and time-consuming, as the Haar-Cascade classifier needs to be

trained with a large number of images to work effectively. Furthermore, while the 360°

camera method is cost-effective for large parking lots, it becomes less practical for

smaller parking facilities. In such cases, the component and development costs are

significantly higher than traditional sensor methods like IR sensors and ultrasonic

sensors, which makes the system less economical for smaller-scale implementations.

Figure 2.5: The Whole Process of the Smart Parking Guidance System (Salma,

Olanrewaju, and Arman, 2019)

16

Figure 2.6: Vehicle Detection Image Processing for the Prototype (Salma, Olanrewaju,

and Arman, 2019)

2.4 Smart Parking System using IoT Presented by Elakya et al. (2019)

This paper introduces a Smart Parking System that combines IoT with GSM and RFID

technologies to create a user-friendly and secure parking experience. At the core of the

system is an Arduino Nano microcontroller, which is linked to both a GSM module

and a Wi-Fi module. The GSM module, which is illustrated in Figure 2.7 enables

communication between the parking system and the mobile phones of the users to send

updates about parking availability via SMS or voice messages. The Wi-Fi module is

used to upload data from IR sensors, which detect whether a parking space is occupied

or not to a cloud server. RFID technology is also used so that only registered users can

access the parking facility by scanning their RFID cards at the entrance. Once the card

is scanned, the system checks the parking status stored in the cloud and sends this

information directly to the user's phone. At the end of this paper, the authors also

suggest that for future improvements, GPS, license plate scanner, and reservation

function could be added to improve the user experience.

17

Advantages:

One of the key benefits of this system is the use of GSM technology to provide

real-time parking updates directly to users' phones via SMS. This makes it convenient

and accessible as there is no need for users to download mobile applications or visit

websites as the information is delivered straight to them via SMS. This approach is

particularly useful in areas with limited internet access. Additionally, the use of RFID

technology offers an added level of protection by ensuring that only authorized users

can enter the parking area, which helps protect vehicles from unauthorized access.

Besides that, the use of IR sensors has several advantages, like being cost-effective,

easy to implement, having a fast response time, low power consumption, and capable

of detecting a wide range of objects and distances, depending on the calibration as the

sensitivity can be adjusted.

Disadvantages:

However, the system's reliance on additional hardware like GSM and Wi-Fi

modules adds the complexity and cost of implementation of the system. The Arduino

Nano, by itself, cannot connect to the internet or mobile networks, so Wi-Fi modules

are essential for the system to function. This complicates the circuit design and can

make large-scale deployment more difficult due to higher hardware prices and

potential challenges in handling the extra components. Besides that, the performance

of IR sensors is highly dependent on the surrounding light intensity and can be

significantly affected by the color and surface characteristics of objects. For instance,

darker surfaces tend to absorb more IR rays, resulting in fewer rays being reflected

back to the sensor, which can lead to inaccurate readings. This could cause the system

to mistakenly indicate that a parking slot is available when it is actually occupied.

Therefore, an object with a high reflective index will provide more reliable detection,

and vice-versa.

18

Figure 2.7: GSM Module (Elakya et al., 2019)

2.5 Intelligent Parking Management Using ANPR Technology Presented by

Lincy et al. (2024)

The paper introduces a smart parking system with two main modules, which are the

ANPR (Automatic Number Plate Recognition) module and the Vacant Slot Detection

module. The ANPR module uses YOLO v4 for real-time detection of vehicle license

plates and Tesseract OCR (Optical Character Recognition) for character recognition,

automating the detection of vehicles and logging their entry and exit times. This

module was trained on 1,500 vehicle images under various lighting and weather

conditions to ensure accurate recognition. The Vacant Slot Detection module uses

OpenCV for image processing and applies techniques such as thresholding, contour

detection, and edge detection to determine whether a parking space is occupied or

vacant. This module was trained on 1,000 images of parking spaces (vacant and

occupied) to enhance its accuracy in different environments. The ANPR and Vacant

Slot Detection Process Flow are shown in Figure 2.8 and Figure 2.9, respectively.

Figure 2.10 shows the license plate detection GUI while Figure 2.11 shows the vacant

slot detection interface.

19

Advantages:

The combination of ANPR and Vacant Slot Detection brings modules several

advantages. The ANPR module enhances security by automating vehicle identification,

ensuring only authorized vehicles can enter the facility. It streamlines operations by

removing the need for manual checks and improves overall efficiency. The Vacant

Slot Detection module eliminates the need for multiple physical sensors. Instead, it

uses a single camera to monitor multiple spaces, which reduces the costs of installation

and maintenance. This setup is particularly useful for larger parking lots, where

managing each individual space with sensors would be expensive and complex.

Overall, the system is cost-effective, scalable, and more flexible in terms of

deployment.

Disadvantages:

Despite its benefits, the system does face some limitations. The accuracy of the

ANPR module becomes lower if the captured images are unclear, which can happen

in poor lighting, bad weather, or when plates are damaged. Similarly, the Vacant Slot

Detection module relies on clear, high-quality images for precise detection, meaning

a high-quality camera is essential, which will increase the costs. Both modules also

require significant computing power, which adds to the overall complexity and

expense of the system. Additionally, if the parking layout changes, the system might

need adjustments, which could be time-consuming. ANPR systems also sometimes

struggle with characters that look similar, like 'O' and '0' or 'B' and '8', which can lead

to occasional errors in vehicle identification. Although this system is efficient, it may

need optimal conditions and infrastructure to perform at its best.

20

Figure 2.8: ANPR Process Flow (Lincy et al., 2024)

21

Figure 2.9: Vacant Slot Detection Process Flow (Lincy et al., 2024)

Figure 2.10: License Plate Detection (ANPR) Graphical User Interface (Lincy et al.,

2024)

22

Figure 2.11: Vacant Slot Detection (Lincy et al., 2024)

2.6 A Smart Real-Time Parking Control and Monitoring System Presented

by Elfaki et al. (2023)

This paper discusses a smart real-time parking control and monitoring system that

integrates ANPR and reservation management to address parking challenges such as

congestion, inefficiency, and incorrect parking in urban areas. The system consists of

monitoring units at each parking slot, each parking slot is equipped with sensors

(motion sensor like PIR sensor or range-finder sensor like HY-SRF05 ultrasonic

sensor) to detect vehicles presence and a camera (ESP32-CAM) to capture license

plate images, as shown in Figure 2.12 and Figure 2.13.

Firstly, a mobile application that allows visitors to reserve parking slots was

developed, which is shown in Figure 2.14. The visitor can request a parking slot, the

system will then check slot availability in real-time and assigns a parking slot to the

visitor. The assigned slot information is then communicated back to the visitor through

the application. Upon the arrival of the visitor’s car at the parking slot, the monitoring

unit detects its presence and captures the license plate image, which is processed by

the ANPR system to identify the characters using optical character recognition (OCR).

23

The recognized license plate data is then verified against the reservation records stored

in a cloud server to ensure the vehicle is parked in the correct slot. If the visitors park

in the wrong space, alerts are immediately sent to both the visitors and the parking

administrator.

Next, for the employees, parking slots are assigned to them based on their

official work hours or shifts using a priority queue data structure. Once assigned, the

employees are expected to park in the designated slots. The main function of the

mobile application for employees is to receive notifications or alerts if they park in the

wrong slot, rather than to make reservations manually.

Advantages:

The reservation function offers several advantages, including dynamic slot

allocation based on real-time demand, which optimizes parking space usage and

reduces congestion and time wasted to search for available parking slot. The automatic

detection of vehicles and verification against reservation records enhances parking

security and convenience. The integration of a cloud-based system and mobile

application facilitates efficient communication, with real-time notifications sent to

users for confirmation or alerts if a vehicle is parked at the wrong slot. Additionally,

the use of range-finder sensors provides higher accuracy in vehicle detection, which

makes the system more reliable.

Disadvantages:

However, there are also some limitations. The accuracy of the ANPR module

is highly dependent on the quality of the images captured. Adverse weather conditions,

such as heavy rain, fog, or poor lighting, can reduce the effectiveness of the ANPR

system. Furthermore, out-of-control scenarios like vehicle plate tampering, damaged

plates, or vehicles entering without license plates could prevent the system from

correctly verifying reservations, potentially causing security concerns or unauthorized

access to the facility. Another issue is that the reservation system depends on stable

internet connectivity for real-time updates and synchronization. In areas with

unreliable or weak network infrastructure, this could lead to delays or failures in

verifying reservations, which might cause inconvenience for users. Next, the initial

24

cost of deploying IoT devices, sensors, and cameras for each parking slot may be high,

especially for large-scale implementations. Lastly, since parking slots are

automatically assigned based on work shifts, employees have no control over which

slots they get. This could be inconvenient if an assigned slot is far from their workplace

or if they prefer a specific parking area.

Figure 2.12: The Monitoring Unit Consists of Motion Sensor and Camera (Elfaki et

al., 2023)

Figure 2.13: The Monitoring Unit Consists of Range Finder Sensor and Camera (Elfaki

et al., 2023)

25

Figure 2.14: Mobile Application Reservation Function for User (Elfaki et al., 2023)

26

2.7 Summary

The studies included in the literature review were chosen for their range of

technologies and approaches in smart parking systems. These works cover a broad

range, from sensors, RFID, and GSM to camera and ANPR, providing insight into how

different methods are being used to tackle parking issues. The variety in user interfaces,

whether through mobile applications, web applications, or systems that do not require

an application, highlights how user interaction varies, which is a key factor in the

effectiveness of these systems. The works also include both well-established

technologies such as RFID and newer, more innovative solutions, such as ANPR,

which involves advanced image processing algorithm. Table 2.1 shows the summary

of the technologies and user interfaces used by different authors and my project choices.

Table 2.1: Literature Review Summary

Reference

Technology User Interface

Sensors Camera ANPR RFID GSM Database Reservation
Web

Application

Mobile

Application

Without

Application

Saeliw et al.

(2019)

/ / / /

Salma,

Olanrewaju,

and Arman

(2019)

 / / /

Elakya et al.

(2019)

/ / / / /

Lincy et al.

(2024)

 / / / /

Elfaki et al.

(2023)

/ / / / / /

My Project / / / / / /

27

Firstly, IR sensors were chosen for their cost-effectiveness, ease of installation,

and consistent performance in detecting vehicles. Compared to ultrasonic sensors,

which are more expensive and require precise calibration to work accurately, IR

sensors are simpler to deploy and maintain. While magnetic sensors are effective in

detecting vehicles, they require more complex installation, such as embedding in the

ground. Camera-based detection with image processing, though highly accurate,

involves significant computational resources and is sensitive to lighting conditions,

making it a more complex and costly option. Hence, IR sensors provide a reliable, low-

maintenance solution that meets the project's needs without unnecessary complexity.

Next, RFID was chosen over ANPR due to its speed, accuracy, and security.

RFID systems do not rely on the quality of visual data like ANPR, which can suffer

from errors due to poor lighting or damaged license plates. RFID ensures reliable

vehicle identification and access control without the complexities associated with

image processing.

Moreover, MySQL database was chosen for several reasons. First, it is an

open-source platform, meaning there are no licensing costs, which is a big plus for

cost-effective development. Additionally, MySQL is very popular in the industry,

known for its reliability and scalability, which makes it a perfect choice for storing the

data needed for this system. In addition, because of its widespread use, MySQL has a

lot of community support and resources, which makes it simpler to debug and expand

as needed.

Furthermore, the decision to use a web application was made to enhance user

accessibility and convenience. The web application was prioritized because it allows

users to easily access parking information, manage their accounts, top up balances, and

make reservations from any device with an internet connection. This approach ensures

that users can interact with the system seamlessly, without needing to install additional

software, which helps to save the phone storage. The web application allows users to

register, log in, view real-time parking availability, make reservations, and top up their

account balance if needed. This makes the parking experience more convenient and

user-friendly.

28

Lastly, the decision to include the ESP32-CAM in the system was made to

enhance security and provide additional visual evidence. The ESP32-CAM will

automatically capture images when the IR sensor detects movement at the entrance.

By saving the images to Google Drive, it ensures that these records are securely stored

and can be easily accessed when necessary, such as for law enforcement use in

investigations in cases of illegal activities, such as theft or unauthorized access. The

ESP32-CAM is an ideal choice for this purpose due to its compact size, low cost, and

built-in Wi-Fi capabilities, which enable seamless image capture and cloud storage

integration.

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Design Architecture

In this project, a Smart Parking System utilizing IoT sensors and RFID technology is

developed. The IoT sensors selected for this system are IR sensors, with a total of eight

sensors corresponding to the eight parking slots in the system. Each parking slot is

equipped with one IR sensor to detect the presence of a vehicle. The system uses two

NodeMCU ESP32 microcontrollers, as illustrated in the overall system block diagram

in Figure 3.1. The ESP32 microcontrollers are equipped with built-in WiFi modules,

which enable communication with the database over the internet. The WiFi credentials

of the hotspot or broadband network are embedded in the code, which will be shown

in the “Software” section. For the server and ESP32 to communicate effectively, the

laptop running the server must be connected to the same WiFi network as the ESP32.

To set up the server, the XAMPP package was downloaded and installed, the

package includes both the MySQL database server and Apache web server. The ESP32

microcontrollers communicate with the database by sending HTTP requests. The

Apache web server listens for these requests from the ESP32 and serves the necessary

PHP scripts stored within the laptop's Apache server directory. These PHP scripts are

executed by the Apache server to process the requests from the ESP32, interact with

the MySQL database, and return responses in JSON format. The MySQL database

stores information such as user information, RFID scanning timestamps, reservation

user and time, and status of each parking slot. There is also a custom-designed web

application using HTML, CSS, JavaScript, and PHP scripts. This includes a

30

registration, login, top-up, reservation, and parking status monitoring page, where the

user can view the parking information after successfully logging in.

Figure 3.1: The Block Diagram of the Overall IoT RFID Smart Parking System

Next, a power bank with a USB cable is used to power up the main ESP32,

while the second ESP32 is powered up using the USB cable that is connected to the

PC. The 5 V 4 A DC adapter provides high voltage (HV-5 V) to the logic level shifter.

Both ESP32 and the DC adapter would need to connect to common ground. The ESP32

microcontrollers provide 3.3 V to power all connected IR sensors. Besides the eight

IR sensors to detect the presence of vehicles in the parking lot, there will be two IR

sensors placed at both the entrance and exit gates to detect the presence of vehicles.

The working principle of the two entrance IR sensors is illustrated in Figure 3.2. A

similar principle applies to the two exit IR sensors. Two servo motors would be used

31

to simulate the entrance and exit gates. The main ESP32 is responsible for handling

the input devices like the four IR sensors for entrance and exit gates, the entrance RFID

reader, and the output devices like LEDs, buzzer, LCD, OLED, and the entrance and

exit servo motors. In contrast, the second ESP32 will handle the eight parking slot IR

sensors, the exit RFID reader, and the two PCF8575 I/O expanders.

Figure 3.2: The Working Principle of the Two Entrance IR Sensors

32

3.2 The Operation of the System

The operation of the system is illustrated in the flowchart as shown in Figure 3.3,

Figure 3.4, Figure 3.5 and Figure 3.6, respectively. The operation of the Smart Parking

System begins when a vehicle approaches the entrance gate, activating the entrance IR

sensors (entrance_IR1 ON, entrance_IR2 OFF). The user scans their registered RFID

tag at the entrance RFID reader, then, the Main ESP32 will check if the scanned UID

matches the database. If the UID does not match, a buzzer sounds with a long beep

and the red LED turns on, indicating access is denied. If the UID matches, the system

activates a short beep on the buzzer twice and turns on the green LED, displaying the

user's information, such as name, license plate, and latest account balance after parking

fee is deducted on the OLED. Then, the system checks if there are available parking

lots. If none are available, the LCD displays "Sorry, Parking Full". If parking is

available, the system checks whether the scanned UID has enough account balance, if

enough, it proceeds to open the entrance gate. Then, the ESP32-CAM will take a

picture of the vehicle and save it to Google Drive. As the vehicle passes through, the

IR sensors detect the movement of the vehicle, the gate will not close if the vehicle

does not pass through the entrance_IR2 sensor. When the vehicle fully passes through,

the entrance gate is closed.

Next, the user parks the car, and the Second ESP32 checks for changes in the

parking lot status. If a change is detected, the Second ESP32 sends an HTTP POST

request to update the database, and the Main ESP32 continuously polls the database

by sending HTTP GET requests to the server to keep the LCD updated. The LCD

displays "FREE" for available parking slots, "FILL" for occupied parking slots, and

"RESV" for reserved parking slots. Additionally, it shows the total number of available

parking slots and the current time to ensure that users have real-time information at a

glance. Moreover, the users can visit the web application by scanning the provided QR

code or directly visiting the URL link. If the user does not have an account, they can

register one. The user will need to log in to the registered account in order to see the

real-time parking lot status or make reservations.

33

When the vehicle approaches the exit gate, the exit IR sensors (exit_IR1 ON,

exit_IR2 OFF) are activated. The user scans the RFID tag at the exit RFID reader, and

the Second ESP32 verifies the UID. The system generates a JSON file containing the

user's RFID information, such as UID, car owner name, license plate, and authorization

status. The Main ESP32 will then retrieve the information from this JSON file and

decide the response of the servo motors (gates), LEDs, and buzzer. If the UID does not

match (authorization status is FALSE), the buzzer sounds with a long beep and the red

LED turns on, indicating access is denied. If the UID matches (authorization status is

TRUE), a buzzer sounds with a short beep, the green LED turns on, and the exit gate

opens, indicating access is authorized. As the vehicle exits, the IR sensors detect the

movement, and the exit gate is closed, and the process keeps repeating.

34

Figure 3.3: The Flowchart Showing the Operation of the Smart Parking System in

General (First Part)

35

Figure 3.4: The Flowchart Showing the Operation of the Smart Parking System in

General (Second Part)

36

Figure 3.5: The Flowchart Showing the Operation of the Smart Parking System in

General (Third Part)

37

Figure 3.6: The Flowchart Showing the Operation of the Smart Parking System in

General (Fourth Part)

38

Figure 3.7 and Figure 3.8 show the simplified step-by-step process for regular

users and reserved users accessing and exiting the parking lot. Although regular users

and reserved users may differ in terms of when they visit the parking lot, they follow

the same basic process, as shown in the flowchart in Figure 3.3, Figure 3.4, Figure 3.5

and Figure 3.6, respectively.

Figure 3.7: Step-by-Step Process for Regular Users Accessing and Exiting the Parking

Lot

39

Figure 3.8: Step-by-Step Process for Reserved Users Accessing and Exiting the

Parking Lot

40

 In this Smart Parking System, an ESP32-CAM is set up at the entrance to

capture images of vehicles whenever movement is detected by an IR sensor. These

captured images can be retrieved to assist law enforcement agencies in tracking

individuals involved in illegal activities. Initially, the plan was to store the images on

an SD card. However, due to the hardware limitations of the ESP32-CAM, the images

saved on the SD card often appear with a purplish tint and poor color balance. On the

other hand, when using the same camera settings for streaming or saving the images

to Google Drive, the quality is much better.

Therefore, the decision was made to store the images directly on Google Drive.

This not only ensures better image quality but also eliminates the hassle of having to

unplug the SD card to view the images. With Google Drive, the images can be accessed

directly without needing an SD card reader.

The way it operates is when the IR sensor detects vehicles, it triggers the

ESP32-CAM to take an image. The image is then encoded in Base64 format and sent

through an HTTP POST request to a Google Apps Script. The script decodes the image

and saves it to Google Drive. The Base64 encoding library (Base64.h and Base64.cpp)

used in this project is credited to Adam Rudd (Farad, 2020). The flowchart in Figure

3.9 shows the operation of the ESP32-CAM at the entrance gate.

41

Figure 3.9: The Flowchart Showing the Operation of the ESP32-CAM at the Entrance

Gate

42

3.3 Hardware Components

3.3.1 NodeMCU ESP32

The ESP32-DevKitC is a 30-pin development board based on the ESP32

microcontroller, designed by Espressif Systems for embedded and IoT projects. The

ESP32 uses an Xtensa® dual-core 32-bit LX6 microprocessor with 448 KB of Flash

and 520 KB of SRAM, supporting wireless standards 802.11 b/g/n at up to 150 Mbps

(Wilson, 2020). The board is compact, lightweight, operates at 3.3 V, and can be

powered via USB. It includes 30 GPIO pins, a PWM controller with 16 channels, and

supports SPI, I2C, and UART protocols.

Compared to the Arduino Uno, which lacks built-in wireless connectivity, the

ESP32 stands out with its dual-core processing power, higher number of GPIO pins,

and has a built-in WiFi chip. Both ESP8266 and ESP32 have a built-in WiFi chip.

However, the ESP32 is a dual-core 160 MHz to 240 MHz CPU, while the ESP8266 is

a single-core processor that runs at 80 MHz (Wilson, 2020). Unlike the ESP8266, the

ESP32 is a more powerful successor, offering additional features such as Bluetooth

support, more GPIOs, and better overall performance, but at a slightly higher cost. The

ESP32 has advantages like low cost, small size, and open-source nature, combined

with its compatibility with the Arduino IDE, making it a highly accessible and scalable

solution for developers, providing a seamless transition from Arduino boards while

offering much greater functionality. The open-source design ensures easy access to

community support and resources. The board can be powered via USB, making it easy

to set up and use with the Arduino IDE, especially for developers familiar with

Arduino boards.

Figure 3.10 shows the pinout diagram of the ESP32-DevKitC development

board. GPIO 21 and 22 are used for I2C communication, connecting the OLED, LCD,

and RTC modules. This setup reduces the number of GPIOs needed since these devices

can share the same lines as long as they have unique I2C addresses. Most GPIOs on

the board can be used for PWM, except for GPIOs 34, 35, 36, and 39. PWM is

important because servo motors require PWM-capable GPIOs to function properly.

43

Lastly, GPIOs 5, 18, 19, and 23 are used for SPI communication, which is used by the

RFID readers.

Figure 3.10: Pinout Diagram of the ESP32-DevKitC Development Board (30 GPIOs)

(Wilson, 2020)

3.3.2 Infrared (IR) Sensors

An IR sensor is a simple electronic device that uses infrared light to detect objects

nearby. It works by emitting infrared light through an IR LED (Transmitter), and when

this light hits an object such as a car, it reflects back to an IR photodiode (Receiver).

The amount of light received by the photodiode changes its resistance and voltage,

which is how the sensor knows something is there. The sensor also includes an onboard

power LED that lights up when the sensor is powered on. Additionally, there is an

obstacle LED that illuminates when the sensor detects an object, such as a car, within

its detection range. The sensitivity of the IR sensor can be adjusted using the onboard

potentiometer (Ch'ng, 2019). By turning the potentiometer knob clockwise, the

detection range can be increased, and vice versa for counterclockwise.

44

The IR sensors used in this project operate at 3.3 V, and they have three pins,

which are VCC, GND, and OUT pins. When the IR sensor detects a car, it provides a

‘0’ as an input to the ESP32, indicating that a car is present. A ‘1’ as an input would

indicate that no car is detected. Figure 3.11 shows the diagram of the IR sensor, while

Figure 3.12 shows its working principle.

Figure 3.11: The Diagram of an Infrared (IR) Sensor (Ch'ng, 2019)

Figure 3.12: The Working Principle of an IR Sensor (Ch'ng, 2019)

45

3.3.3 MFRC522 RFID Reader

Radio Frequency Identification (RFID) is a wireless system that identifies objects by

transmitting data through radio wave signals. It consists of two main components,

which are an RFID reader and an RFID tag. An electromagnetic field is generated by

the RFID reader to power the tag, which typically has no battery (Last Minute

Engineers, 2018). The tag contains a microchip that stores data, such as a unique

identifier (UID). When the tag is within the range of the reader, it sends its UID back

to the reader. The reader then interprets this data and transfers it to a connected system

for further processing. This technology allows for the efficient and automated

identification of objects without the need for manual intervention. Figure 3.13 shows

the working principle of RFID.

Figure 3.13: The Working Principle of RFID (Last Minute Engineers, 2018)

In this project, MFRC522 is the specific RFID reader module used to interact

with MIFARE 1K RFID tags. The MFRC522 operates at 13.56 MHz and is based on

the NXP MFRC522 IC. It has eight pins in total, which are VCC, GND, MISO (Master

In Slave Out), SS/SDA (Slave Select), SCK (Serial Clock), MOSI (Master Out Slave

In), RST (Reset), and IRQ (Interrupt). The IRQ pin is usually left disconnected. It can

support communication using I2C, UART or SPI protocol. SPI protocol is used in this

project due to its faster speed. In the code, the SS and RST pins need to be specified.

The SS pin allows the microcontroller to identify which RFID reader it is

communicating with. The reader module is responsible for generating the

electromagnetic field that powers passive RFID tags, reading their unique identifier

(UID), and sending this data to the microcontroller for processing. The read range is

46

about 5 cm. Figure 3.14 shows the pinout diagram of the MFRC522 RFID Reader

module, while Figure 3.15 shows the MIFARE 1K 13.56 MHz RFID Tags.

Figure 3.14: Pinout Diagram of MFRC522 RFID Reader Module

Figure 3.15: MIFARE 1K 13.56 MHz RFID Tags

3.3.4 SG90 Servo Motor

The SG90 micro servo motor is an affordable, compact, and lightweight servo motor

widely used in robotics and embedded systems. In this project, two SG90 servo motors

are used for controlling the entrance and exit gates in the smart parking system. It

offers a high level of precision with a maximum 180° angle rotation (Ch'ng, 2019).

Therefore, it has the sufficient angle for this project as the opening and closing of the

gate only require 90°. It operates on PWM signals, which means it needs to be

connected to a PWM-capable GPIO pin as specified earlier. The SG90 runs on an

47

operating voltage of 4.8 to 5 V DC. Since the GPIO pins of ESP32 output only 3.3 V,

a four-channel 3.3 V to 5 V logic level shifter is used in this project to ensure the servo

motor receives the correct operating voltage, allowing it to function properly within

the system. Figure 3.16 shows the SG90 servo motor, while Figure 3.17 shows the 4-

channel 3.3 V to 5 V logic level shifter. The ‘LV’ pin of the level shifter is connected

to 3.3 V, ‘HV’ pin is connected to 5 V, while the PWM-capable GPIO pin of the ESP32

is connected to either of the low voltage channel and the PWM pin of SG90 servo

motor is connected to the corresponding high voltage channel.

Figure 3.16: SG90 Servo Motor (Ch'ng, 2019)

Figure 3.17: 4-Channel 3.3 V to 5 V Logic Level Shifter

48

3.3.5 Organic Light-Emitting Diode (OLED) Display

The 0.96-inch OLED display as shown in Figure 3.18 is a small, low-power

consumption screen with a resolution of 128 × 64 pixels, which is perfect for projects

with limited space. In this project, the OLED has a white display (font) and is

connected to the ESP32 microcontroller using the I2C protocol. It is used to display

RFID scanning messages like the scanning status and the owner's name, license plate,

and account balance. The default address found after running the I2C scanner code is

0 × 3C. It is important to ensure no conflict of address between different I2C devices,

otherwise it will not work. This OLED does not require a backlight, allowing for deep

blacks and high contrast, making it ideal for clear text and simple graphics.

Figure 3.18: 0.96-inch OLED Display

3.3.6 Liquid Crystal Display (LCD)

In this project, the LCD is used to display the real-time clock and the parking lot status

to the users. Figure 3.19 shows the 20 × 4 I2C LCD. It has 20 characters per line across

4 lines, therefore, more information could be displayed. The I2C module significantly

simplifies the wiring and minimizes the number of GPIO pins required to control the

display, requiring only two pins (SDA and SCL) for communication with the ESP32.

The default I2C address is 0 × 27. The I2C address can be changed by connecting or

disconnecting the A0, A1, and A2 solder jumpers on the I2C module. Without this I2C

module, at least 7 GPIO pins would be needed for communication with the ESP32.

The contrast of the backlight could be adjusted by turning the potentiometer knob on

the I2C module.

49

Figure 3.19: 20 × 4 I2C LCD

3.3.7 AI-Thinker ESP32-CAM

The ESP32-CAM is a small and affordable camera module that includes the ESP32-S

chip. It comes with the OV2640 camera, a few GPIOs for attaching peripherals, and a

microSD card slot for storing images (Santos, 2019). Figure 3.20 shows the ESP32-

CAM, whereas Figure 3.21 shows the pinout diagram. In this project, the ESP32-CAM

is used to take images of vehicles entering the parking lot whenever the IR sensor

detects motion. These images are saved to Google Drive, creating a record that can be

used by law enforcement if there is any criminal activity. Furthermore, the ESP32-

CAM supports live video streaming.

Figure 3.20: AI-Thinker ESP32-CAM

50

Figure 3.21: AI-Thinker ESP32-CAM Pinout Diagram (Santos, 2019)

However, the ESP32-CAM comes with some challenges, such as its limited

number of GPIO pins compared to a standard ESP32, which can restrict the number of

peripherals that can be connected. Besides that, programming the ESP32-CAM

requires an USB to TTL adapter (CH340 is used in this project), as shown in Figure

3.22. To enter flashing mode, GPIO 0 needs to be connected to GND (Santos, 2019).

GPIO 1 and 3 are used to program the ESP32-CAM. The microSD card reader is

connected internally to GPIO 14 (CLK) and GPIO 15 (CMD). The CMD pin sends

commands to the SD card, while the CLK pin provides the timing signal to synchronize

data transfer between the microcontroller and the SD card. By default, the ESP32-

CAM connects to the SD card in 4-bit mode, which uses GPIOs 2, 4, 12, and 13 for

data transfer. However, switching to 1-bit mode allows the use of only GPIO 2 for data

transfer, which frees up GPIO 12 and 13 for input or output (Mountain, 2022). While

GPIO 4 is also freed, it is connected to the onboard LED, so it is best left unconnected.

This adjustment is essential when additional GPIOs are needed for other components

or sensors in the project. Despite these challenges, the ESP32-CAM remains an

excellent choice, offering image capture capability at a very affordable price.

51

Figure 3.22: Hardware Connection to Program ESP32-CAM Using CH340

3.3.8 PCF8575 16-bit I/O Expander

The PCF8575 is a 16-bit I/O expander designed for 2.5 V to 5.5 V VCC operation

(Mischianti, 2019). It uses the I2C protocol for communication with microcontrollers

and provides remote I/O expansion with 16 quasi-bidirectional input/output pins (P07–

P00, P17–P10) that can be used for tasks like controlling LEDs (Mischianti, 2019).

These pins feature latched outputs with high-current drive capability and operate in an

active-low configuration, meaning the LED will light up when the pin is set to LOW

(Mischianti, 2019). Figure 3.23 shows the top view and bottom view of the PCF8575.

The default I2C address of the PCF8575 is 0 × 20. The I2C address can be changed by

connecting the address pins (A0, A1, A2) to either VDD or GND.

Figure 3.23: Top View and Bottom View of PCF8575 16-bit I/O Expander

52

Next, two PCF8575 I/O expanders are used on the second ESP32 in this project,

as there are twenty-four LEDs representing the status of parking slots (three LEDs per

slot), and the GPIOs provided by the ESP32 are insufficient. The LEDs are connected

in a current-sink configuration due to the open-drain behavior of the PCF8575.

Additionally, the I2C address of the first PCF8575 is set to 0 × 20, and it controls the

first twelve LEDs for slots 1 to 4. The I2C address of the second PCF8575 is set to 0

× 24, and it controls the remaining twelve LEDs for slots 5 to 8.

3.4 Software Components

3.4.1 Arduino IDE

The Arduino IDE is a user-friendly, open-source platform designed for programming

microcontrollers like the ESP32. It allows for writing, compiling, and uploading code

to the microcontroller. In programming with the Arduino IDE, the typical code

structure begins with including the necessary libraries, such as WiFi, RFID, display,

and servo motor. Following this, functions are declared, GPIO pins are defined, and

instances of objects like servo motors or displays are created. Then, global variables

are set up to manage important data.

In the setup() function, hardware components are initialized, and a WiFi

connection is established, it will only run once. The loop() function includes the main

part of the program and executes continuously, managing tasks like reading sensors,

controlling outputs, and communicating with other devices or servers.

53

3.4.1.1 WiFi Setup Function

The code snippet in Figure 3.24 is written to connect the ESP32 to a WiFi network,

which is essential for enabling communication with the Apache web server and the

MySQL database in the project. It starts by including the “WiFi.h” library. Next, the

WiFi credentials are defined. In the setup() function, serial communication is

initialized at a baud rate of 115200, which is helpful for debugging through the serial

monitor. The WiFi.begin() function is then called to start the connection process using

the provided SSID and password. Then, the code enters a loop where it continuously

checks if the ESP32 has connected to the WiFi network, and prints "Connecting to

WiFi..." every second until the connection is successful. Once connected, a

confirmation message "Connected to WiFi" is displayed, and the ESP32’s IP address

is printed. The IP address of the laptop can be obtained by running the “ipconfig”

command in the Windows Command Prompt, which can be accessed by pressing the

Windows key and typing “cmd”. This laptop’s IP address is important for

communicating with the server, accessing the database, and it is a part of the URL link

when accessing the web application. After this setup, the ESP32 is ready to interact

with the server, sending and receiving data as needed for the smart parking system.

This code needs to be included in both the code of the main ESP32 and the second

ESP32. For the server and ESP32 to communicate effectively, the laptop running the

server must be connected to the same WiFi network as the ESP32.

Figure 3.24: WiFi Setup Code for Main ESP32 and Second ESP32

54

3.4.1.2 Defining Main ESP32 and Second ESP32 Pins

In this study, the main and second ESP32 are used. The summary of pins defined for

ESP32 connected components are shown in Table 3.1.

Table 3.1: Summary of Pins Defined for Main ESP32 and Second ESP32 Connected

Components

Electronic Devices Pin Attached

Main ESP32 Second ESP32

Entrance MFRC522 RFID Reader 5 (SS), 27 (RST)

Buzzer 4

Green LED 13

Red LED 12

entrance_IR1 15

entrance_IR2 36

exit_IR1 34

exit_IR2 39

entrance_gate_SERVO 14

exit_gate_SERVO 32

OLED, LCD 21 (SDA), 22 (SCL)

Exit MFRC522 RFID Reader 5 (SS), 27 (RST)

parking_IR1 35

parking_IR2 32

parking_IR3 33

parking_IR4 25

parking_IR5 26

parking_IR6 14

parking_IR7 12

parking_IR8 13

PCF8575 I/O Expanders 21 (SDA), 22 (SCL)

55

3.4.2 Network Time Protocol (NTP) Server

In this project, an NTP server is used to provide accurate and synchronized time for

the system. NTP is an internet protocol used to synchronize the system clock by

obtaining accurate time from an NTP server. The server provides time in UTC, which

is a global standard (Last Minute Engineers, 2019). The system then adjusts this UTC

time based on its local timezone setting (GMT+8 for Malaysia), converting it to the

correct local time for the region. The code snippet in Figure 3.25 syncs the ESP32's

time with an NTP server and displays the current date and time.

The system originally used an RTC module (DS1304), which caused small

delays. While a few seconds would not be a problem, over time these delays added up,

causing the time to drift by several minutes, which became an issue. By switching to

an NTP server, the system can receive real-time, internet-based time, which ensures

accurate time on the LCD and precise timestamps for RFID scans on OLED. This

change also eliminates the need for battery-powered hardware and guarantees the

system always has the correct time, as long as an internet connection is available.

Figure 3.25: NTP Server Setup Code to Print the Date and Time

56

3.4.3 XAMPP Package

In this project, XAMPP is used as the local server environment. The XAMPP package

contains Apache (web server), MySQL (database server), and phpMyAdmin (a tool

for managing the database). To get the system running, both Apache and MySQL must

be manually started from the XAMPP control panel, which is shown in Figure 3.26. If

these services are not running, the web pages and database will not be accessible.

The ESP32 microcontrollers collect data from sensors, such as parking slot

availability, and send HTTP requests to the Apache web server. The Apache web

server listens for these requests, processes them, and serves the appropriate PHP scripts.

These PHP scripts communicate with the MySQL database to retrieve and update data,

such as parking statuses, and user information. The results are then returned in JSON

format to be used by the ESP32 or displayed on the web interface. The MySQL

database, accessed through phpMyAdmin, stores all system data, including parking lot

status, RFID user details, RFID scan logs, and reservation details.

Figure 3.26: Starting the Server Using XAMPP Control Panel

57

3.4.4 MySQL Database

MySQL (phpMyAdmin) is the open-source database used in this project and it is

included in the XAMPP package together with the Apache Web Server. In this project,

the name of the database is ‘parking_system’, which contains four tables, which are

‘parking_status’, ‘reservations’, ‘rfid_scan_log’, and ‘rfid_user_info’, as shown in

Figure 3.27.

Figure 3.27: The ‘parking_system’ Database with Four Tables, Which are

‘parking_status’, ‘rfid_scan_log’, ‘rfid_user_info’, and ‘reservations’

Next, the ‘parking_status’ table stores the latest parking lot status, which is

illustrated in Figure 3.28. The second ESP32 writes latest updates of the parking lot

status to this table, while the main ESP32, the web application, and the two PCF8575

I/O expanders continuously poll it to refresh the LCD display, the web application, and

the parking slot LEDs with the current status. Besides that, the ‘rfid_user_info’ table

stores information about each RFID tag, including the tag UID, car color, license plate,

owner name, account balance, account ID, password, and telephone number, which is

illustrated in Figure 3.29. When a user scans their RFID tag, the ESP32 sends an HTTP

GET request to the server to verify the tag UID. If the UID exists, the server responds

with the relevant information in JSON format, which is then processed by the ESP32.

This table is also where the account balance is updated whenever a tag is scanned or

58

when a new account is registered. Moreover, the ‘rfid_scan_log’ table records each

RFID scan, such as whether the scan was successful or failed, along with the timestamp

of the scan, which is illustrated in Figure 3.30. This allows for tracking the history of

scans and ensuring the integrity of the parking system. Lastly, the ‘reservations’ table

stores the reservation details such as the user name, reserved slot, and reservation time

(arrival time), which is illustrated in Figure 3.31. This table will be updated whenever

a user reserves a slot through the reservation page.

Figure 3.28: The ‘parking_status’ Table

Figure 3.29: The ‘rfid_user_info’ Table

59

Figure 3.30: The ‘rfid_scan_log’ Table

Figure 3.31: The ‘reservations’ Table

60

3.4.2.1 How to Create a Database and a Table

The code snippet in Figure 3.32 shows an example of creating a database named

‘parking_system’, and creates a table named ‘rfid_user_info’, with nine columns

where each column corresponds to a variable. The ‘INSERT’ command is used to

insert information into the table. To make the variables case-sensitive, a binary

collation such as ‘utf8mb4_bin’ is applied to the relevant columns. This ensures that

variables like owner’s name, usernames, passwords, and UID are stored and compared

exactly as entered, which can enhance security and data accuracy at the login page and

reservation page. After inserting the code in the ‘SQL’ tab, the ‘Go’ button at the

bottom right of the page is clicked and the database and table will be generated.

Figure 3.32: An Example of Creating a Database and a Table

61

3.4.2.2 How to Connect to the Database

The PHP code in Figure 3.33 called ‘db_connect.php’ is written to enable connection

to the database called ‘parking_system’. In the code, the server name, username,

password, and database name need to be specified. This ‘db_connect.php’ needs to be

included at the beginning of every PHP script that requires database interaction, such

as retrieving, updating, inserting, or deleting data.

Figure 3.33: The ‘db_connect.php’ File That Is Used to Connect to the Database

3.4.3 PHP Scripts

In this project, PHP scripts play a crucial role as intermediaries between the ESP32

microcontroller and the MySQL database. Directly connecting the ESP32 to MySQL

might sound simple, but it introduces issues like security risks, heavy resource

demands on the ESP32, and unencrypted data transmission. By using PHP scripts over

HTTP, these problems are avoided. If no PHP scripts were used, all the codes,

including the HTML, CSS, and JavaScript would be written and stored on the ESP32

alone, this would make the code very lengthy and overload the ESP32. By using the

PHP scripts, the codes are stored on the server (laptop) and can be accessed when

needed.

62

Firstly, a folder called ‘parking_system’, which is the same name as the

database name was created manually in the XAMPP Apache Web Server file path

folder called ‘htdocs’. Then, all the PHP scripts were written using Microsoft Visual

Studio Code and were stored in the ‘parking_system’ folder, which is illustrated in

Figure 3.34.

Figure 3.34: The Location where all the PHP Scripts are Stored

63

3.4.4 The Roles of Each PHP, CSS, JSON Files Used in This Project

All the files in Figure 3.34 have their own purposes. When a vehicle approaches the

entrance and scans the RFID tag, the main ESP32 first uses the ‘check_rfid.php’ script

to verify if the scanned RFID tag exists in the ‘rfid_user_info’ table of the database. If

the RFID tag is valid, this script retrieves details like the owner’s name, license plate,

and account balance and returns this information in a JSON format. The main ESP32

then executes the ‘check_balance.php’ script to query the same table for the user’s

account balance. If the balance is sufficient, the parking fee is deducted and the balance

field in the ‘rfid_user_info’ table is updated using the ‘update_balance.php’ script.

After successfully entering, the RFID scan is logged using ‘log_rfid_scan.php’, which

records the scan event in the ‘rfid_scan_log’ table.

Next, for exit operations, the second ESP32 RFID reader scans the RFID tag

and updates the ‘exit_status.json’ file using ‘update_exit_status.php’ with details such

as UID, owner’s name, car color, license plate, and the database check status. This

JSON file is then read by the main ESP32 through ‘get_exit_status.php’. If the JSON

file shows database check status success, main ESP32 retrieves the UID, owner’s name,

car colour, license plate from the JSON file and print it on the OLED and serial monitor,

and updates the ‘exitRFIDAuthorized’ flag to open the exit gate accordingly. The

second ESP32 also uses the ‘update_parking_status.php’ script to update the

‘parking_status’ table in the database based on the eight IR sensors monitoring the

parking slots whenever there is a change in the IR sensor’s status.

Besides that, the web application includes several pages and functionalities.

For example, ‘login.php’, ‘signup.php’, ‘topup.php’, ‘parking_status.php’, and

‘reservation.php’ manage user login, registration, balance top-ups, parking lot status

monitoring, and parking slots reservation respectively. Each of these scripts integrates

PHP, HTML, CSS, and JavaScript in one place. The ‘login.php’ page allows users to

log in by verifying their account and password against the ‘rfid_user_info’ table. After

successful login, users will be redirected to the ‘parking_status.php’ page, which

displays the parking lot status and their account balance. The parking lot status on the

64

webpage, LCD, and parking slot LEDs are continuously updated by polling the

‘parking_status’ table in the database.

Next, the top-up functionality is handled by ‘topup.php’. The users can select

a top-up amount from a dropdown list and confirm the transaction by entering their

password. After successful top-up, the balance in the ‘rfid_user_info’ table will be

updated, and the user will be redirected to the login page. In addition, the ‘signup.php’

page allows new users to register by entering their RFID tag details and personal

information, which is then stored in the ‘rfid_user_info’ table.

Furthermore, the reservation functionality is handled by ‘reservation.php’. This

page allows users to reserve parking slots by entering their name, license plate, slot

number, arrival time, and duration. The script validates the inputs by checking if the

user exists in the ‘rfid_user_info’ table and if the selected parking slot is available

during the specified time by querying the ‘reservations’ table. If no conflicts are found,

the reservation details are stored in the ‘reservations’ table. The

‘monitor_reservation_time.php’ script's main function is to continuously monitor the

‘reservations’ table in the database and update parking slot statuses accordingly. When

a reservation's start time is reached, it automatically sets the corresponding parking

slot's status to “RESERVED” in the ‘parking_status’ table. For reservations where the

end time has passed or expired, it updates the status to “AVAILABLE”. Additionally,

it cleans up the database by deleting expired reservations.

Lastly, the CSS files like ‘login_style.css’, ‘parking_status_style.css’,

‘signup_style.css’, ‘topup_style.css’, and ‘reservation_style.css’ are used to style the

web pages to ensure that they are visually appealing and user-friendly.

65

3.4.5 Ngrok Tunneling

One limitation of the current setup is that the web application is hosted locally using

the XAMPP package, which means it can only be accessed by users connected to the

same network as the server and the ESP32. There is no point in developing a web

application that only local machines can access but other people in the world using

different networks cannot access. The solution is to use Ngrok, a tool that creates a

secure tunnel by generating a public URL to route traffic from the internet to the local

server. This enables global access to the web application, regardless of the user's

network connection. Ngrok also uses HTTPS encryption, which ensures that data

transmission is secure. The details of how to set up Ngrok to generate a public URL

are illustrated in Appendix A.

 Although using Ngrok is sufficient for the webpages to work, it is only a

temporary solution since the server needs to be manually started each time before the

web pages can be accessed. To make the system a permanent solution, public web

hosting services could be used in the future. This would involve purchasing a domain

name. This way, the webpages are always online and do not require starting the server

every time. Alternatively, the XAMPP package could be installed on a Raspberry Pi

and configured to run continuously. Although these alternatives offer long-term

solutions, for now, using XAMPP together with Ngrok is sufficient and will be the

chosen approach for this project.

66

3.5 Project Management / Gantt Chart

The Gantt charts for FYP 1 and FYP 2 are presented in Table 3.2, and Table 3.3,

respectively.

Table 3.2: Gantt Chart for FYP 1

Task
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dicsussion With Supervisor

FYP Title Selection

Research

Purchase Components Online

Testing Components
Build Hardware Prototype on
Breadboard

Develop Web Application

FYP 1 Report Writing

Literature Review

Introduction

Methodology

Presentation

FYP 1 Presentation

Table 3.3: Gantt Chart for FYP 2

Task
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Build Hardware Prototype on
Stripboard

Final Prototype Testing

FYP 2 Report Writing

Results

Conclusion

FYP Report Formatting Checking

Presentation

Poster Presentation

FYP 2 Presentation

67

3.6 Cost of Components

In this study, managing the cost used in FYP is a crucial part. It is important to select

components and materials, which able to meet the project requirements. The cost of

components used in this project is shown in Table 3.4.

Table 3.4: Components List with Price

No. Components
Unit Price

(RM)
Quantity

Total Price

(RM)
Remarks

1. NodeMCU ESP32 25.00 2 50.00
Shopee,

Robotronik

2. IR Sensor 2.90 13 37.70
Shopee,

Robotedu

3. MFRC522 RFID Reader 5.49 2 10.98
Shopee,

Robotronik

4. SG90 Servo Motor 5.84 2 11.68
Shopee,

Robotedu

5. I2C 2004 LCD Display 19.90 1 19.90
Shopee,

Robotedu

6. OLED Display 14.90 1 14.90
Shopee,

Robotedu

7. AI-Thinker ESP32-CAM 29.90 1 29.90
Shopee,

Robotedu

8. PCF8575 I/O Expander 14.00 2 28.00
Shopee,

WeiWang

9. LED 0.10 26 2.60
Shopee,

Robotedu

10. 24 AWG Wires (1 m) 1.00 42 42.00
Shopee,

SYNACORP

11. Jumper Wires 3.20 4 12.80
Shopee,

littlecraft

12.
Stripboard

(10 × 24.5 cm)
5.00 1 5.00

Shopee,

Robotronik

13
5V 4A AC-DC Power

Adapter
15.99 1 15.99

Shopee,

Robotronik

14
12V 2A AC-DC Power

Adapter
10.09 1 10.09

Shopee,

Robotronik

 TOTAL 291.54
Not including

equipment

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Schematic Diagram

The schematic diagrams of the main ESP32, the second ESP32, and the ESP32-CAM

are shown in Figures 4.3, Figure 4.4, and Figure 4.5, respectively. The main ESP32

handles the input devices, such as four IR sensors for the entrance and exit gates and

the entrance RFID reader. It also controls the output devices, including LEDs, a buzzer,

an LCD, an OLED display, and the entrance and exit servo motors. In contrast, the

second ESP32 manages the eight parking slot IR sensors, the exit RFID reader, and

two PCF8575 I/O expanders. Both ESP32 share a common ground. The two PCF8575

I/O expanders manage the twenty-four parking slot status LEDs.

Firstly, the main ESP32 is powered by a power bank. Since the GPIO pins of

the ESP32 only output 3.3 V, a four-channel 3.3 V to 5 V logic level shifter is used to

convert the 3.3 V PWM signal from the ESP32 to 5 V before sending it to the signal

pin of the servo motor. This ensures the servo motor receives the correct operating

voltage (5 V) for proper functioning.

Besides that, the second ESP32 is powered via a USB connection to a PC. Both

the entrance RFID reader on the main ESP32 and the exit RFID reader on the second

ESP32 are powered by an independent breadboard power supply, which itself is

powered by a 12 V / 4 A DC adapter, instead of using the 3.3 V pin on the ESP32.

This ensures that the RFID readers receive a stable 3.3 V operating voltage. When too

69

many components share the same 3.3 V pin on the ESP32, the voltage may not be

sufficient, which could prevent the RFID readers from receiving the correct 3.3 V.

This can lead to the RFID readers failing to read RFID tags or not functioning properly.

Next, the twenty-four LEDs connected to the PCF8575 I/O expanders are

configured in a current sink configuration, as illustrated in Figure 4.1. In this current

sink configuration, the anode of the LED is connected to VCC through a current-

limiting resistor, and its cathode is connected to the I/O pin of the PCF8575, which

acts as a current sink. When the GPIO pin of the PCF8575 is set to LOW, it creates a

path to the ground, allowing current to flow through the LED. This turns the LED ON.

In contrast, when the GPIO pin is set to HIGH, the voltage at both ends of the LED is

the same, preventing current from flowing, and the LED remains OFF.

Figure 4.1: Current Source and Current Sink Configuration of a LED

One of the main advantages of sinking current in this configuration is that it

simplifies the design by allowing the I/O pin to only handle lower voltage levels and

small amounts of current. This reduces the risk of excessive power dissipation on the

microcontroller, as it does not need to supply the current directly (Bishop, 2023).

Additionally, sinking current helps reduce noise and voltage fluctuations, leading to

more stable operation of the circuit, especially when controlling multiple LEDs or

other output devices (Bishop, 2023).

70

Figure 4.2: Zoomed in View of ESP32 and PCF8575 I/O Expander Pinout

71

Figure 4.3: Schematic Diagram of IoT RFID Smart Parking System (Main ESP32) Drawn Using EasyEDA Software

72

Figure 4.4: Schematic Diagram of IoT RFID Smart Parking System (Second ESP32) Drawn Using EasyEDA Software

73

Figure 4.5: Schematic Diagram of ESP32-CAM Image Capturing Camera System at the Entrance Drawn Using EasyEDA Software

74

4.2 Webpages/User Interface

4.2.1 Login Page

Figure 4.6 shows the overview, while Figure 4.7 shows a zoomed-in view of the

“Login Page”. If the user does not have an account, they can press the “Sign Up” button

to go to the “Sign Up Page”. If the user already has an account, they need to enter the

correct username and password. Note that both fields are case-sensitive. In Figure 4.8,

the account stored in the “rfid_user_info” table of the database is “Bob”, with the

password “Bob123”. In Figure 4.9, the user enters “bob” in the account field. Although

the password is correct, the system does not recognise the account due to the case

difference in the account field. As a result, the login attempt fails, as shown in Figure

4.10.

Figure 4.6: The Overview of Login Page (login.php)

75

Figure 4.7: Zoomed in View of Login Page with Login Credentials Filled in (Case-

Sensitive)

Figure 4.8: Account (Bob) and Password (Bob123) Stored in Database

76

Figure 4.9: Login Attempt Using the Correct Account with Incorrect Letter Case (bob)

Figure 4.10: Login Failed

77

4.2.2 Parking Lot Status Monitoring Page (Accessible After Successful Login)

Figure 4.11 shows the overview, while Figure 4.12 shows a zoomed-in view of the

“Parking Lot Status Monitoring Page”. This webpage is only accessible after a

successful login. On this page, the user can view the status of each parking slot and the

account balance.

For example, Figure 4.12 shows that all slots are available, as indicated by the

green-coloured parking slot boxes. In Figure 4.13, slots 2, 4, 6, and 8 are occupied, as

indicated by the red-coloured parking slot boxes. Figure 4.14 shows that all slots are

occupied, and an alert message is sent to the user to indicate that the parking lot is full,

as shown in Figure 4.15.

Next, at the bottom of the webpage, there are three buttons which are “Top Up”,

“Reservation”, and “Log Out”. Pressing the “Top Up” button will navigate the user to

the “Top Up Page”, pressing the “Reservation” button will navigate the user to the

“Reservation Page”, and pressing the “Log Out” button will return the user to the

“Login Page”.

Figure 4.11: The Overview of Parking Lot Status Monitoring Page (parking_status.php)

78

Figure 4.12: Zoomed in View of Parking Lot Status Monitoring Page where All Slots

are Available.

Figure 4.13: Zoomed in View of Parking Lot Status Monitoring Page where Slot 2, 4,

6, 8 are Occupied

79

Figure 4.14: Zoomed in View of Parking Lot Status Monitoring Page where All Slots

are Occupied

Figure 4.15: The Popped-Up Message Indicates Parking Full

80

4.2.3 Top-Up Page

Figure 4.16 shows the overview of the “Top Up Page”. The user is required to select a

top-up amount from the drop-down list, which ranges from RM 10 to RM 100. For

example, in Figure 4.17, the user selects RM 30 as the top-up amount. After that, the

user must enter their account password as a security measure, as shown in Figure 4.18.

Next, Figure 4.19 and Figure 4.20 show the top-up success and failure

messages, respectively. When the top-up is successful, the account balance increases

from RM 160 in Figure 4.12 to RM 190 in Figure 4.21. The updated balance will also

be reflected in the “rfid_user_info” table in the database.

Figure 4.16: The Overview of Top-Up Page (topup.php)

81

Figure 4.17: The Top-Up Amount Drop Down Selection List

Figure 4.18: The Security Measure (Password) of the Top-Up Function

82

Figure 4.19: Top Up Successful if Password Is Correct

Figure 4.20: Top Up Unsuccessful if Password Is Wrong

Figure 4.21: The Parking Lot Status Monitoring Page Account Balance Updated

Immediately After Top-Up Successful

83

4.2.4 Account Registration / Sign-Up Page

Figure 4.22 shows the overview, while Figure 4.23 shows a zoomed-in view of the

“Sign Up Page”. The user is required to enter information such as tag UID, car colour,

license plate number, owner name, account, password, and telephone number. The tag

UID is provided by the parking lot owner and is obtained using an RFID reader.

After a successful sign-up, as shown in Figure 4.24, the user will be redirected

to the “Login Page”. The newly registered account, with a default balance of RM 0,

will be updated in the “rfid_user_info” table in the database, as shown in Figure 4.25.

Figure 4.22: The Overview of Sign-Up Page (signup.php)

84

Figure 4.23: Zoomed in View of Sign-Up Page with Information Filled in

Figure 4.24: Sign-Up Successful Message

85

Figure 4.25: Database “rfid_user_info” Table Updated with the Newly Registered

Account

86

4.2.5 Reservation Page

Figure 4.26 shows the overview, while Figure 4.27 shows a zoomed-in view of the

“Reservation Page”. This page allows the user to reserve an available parking slot

before arriving at the parking lot. The user is required to enter information such as the

owner name (case-sensitive), license plate number, the slot number they want to

reserve, the reservation start time, and duration in minutes.

In Figure 4.8, the owner name stored in the “rfid_user_info” table of the

database is “Bob”. However, in Figure 4.28, the user enters “bob” in the owner name

field. Although the name is correct, the system does not recognise it due to the case

difference. As a result, the reservation attempt fails, as shown in Figure 4.29.

If the owner name is entered correctly, the user can proceed to fill in the

remaining information, as shown in Figure 4.30, and select the reservation time, as

shown in Figure 4.31. If the selected slot is available and there is no conflict with

existing reservations, the reservation will be successful, as shown in Figure 4.32.

Figure 4.26: The Overview of Reservation Page (reservation.php)

87

Figure 4.27: Zoomed in View of Reservation Page

Figure 4.28: Demonstration of Attempting to Reserve a Parking Slot with an

Unregistered Owner Name (Case-Sensitive Input Required)

88

Figure 4.29: Pop-Up Error Message Indicating User Not Found in the System

Figure 4.30: Demonstration of Attempting to Reserve a Parking Slot with a Registered

User (Case-Sensitive) and Filling in Other Information

89

Figure 4.31: Selecting Reservation Date and Time

Figure 4.32: Pop-up Message Indicating Reservation Successful

Figure 4.33 shows that the 'reservations' table in the database is automatically

updated with reservation details when the correct owner name is provided. The tag

UID is filled in automatically once the system detects the correct owner name, while

the user must manually enter the license plate since one user may have multiple

vehicles. If the user provides the correct owner name, it is assumed that they own the

RFID tag, as each name is unique and set by the user during the sign-up process.

90

Figure 4.33: Database “reservations” Table Automatically Updated with Reservation

Details

Figure 4.34 shows that when the reservation time is reached, the reserved slot

(Slot 1) changes its status to RESERVED, indicated by a yellow parking slot box.

When the user parks in the reserved slot, its status changes to OCCUPIED, as shown

in Figure 4.35. After the user leaves the slot and the reservation expires, the slot status

returns to AVAILABLE, as shown in Figure 4.36.

Figure 4.34: Parking Lot Status Monitoring Page Automatically Updates Slot 1 Status

to “RESERVED” when Reaching the Reservation Time

91

Figure 4.35: Parking Lot Status Monitoring Page Automatically Updates Slot 1 Status

to “OCCUPIED” when the User Parks in the Reserved Slot

Figure 4.36: Parking Lot Status Monitoring Page Automatically Updates Slot 1 Status

to “AVAILABLE” After Reservation Time Passes (No Vehicle in Slot 1)

92

Figure 4.37 shows a user attempting to reserve a parking slot (Slot 2) that is

currently OCCUPIED. Since it is unknown when the user will leave the slot, the

reservation cannot be made. Figure 4.38 displays an error message prompting the user

to select another slot that is marked as AVAILABLE. Next, Figure 4.39 shows Alice

attempting to reserve Slot 1 on March 6, 2025, from 6:30 PM to 7:30 PM. However,

as shown in Figure 4.40, the reservation fails because Bob has already reserved that

slot from 6:00 PM to 7:00 PM (refer to Figure 4.33). This causes a reservation conflict.

Alice can either choose a different time or select another available slot.

Figure 4.37: Demonstration of an Attempt to Reserve a Parking Slot that Is Currently

Occupied (Not Available)

93

Figure 4.38: Pop-Up Error Message Indicating the Selected Slot Is Not Available for

Reservation

Figure 4.39: Demonstration of Attempting to Reserve a Parking Slot Already Reserved

for the Specified Time (Refer Figure 4.33)

94

Figure 4.40: Pop-Up Error Message Indicating Time Conflict with an Existing

Reservation for the Selected Slot (Refer Figure 4.33)

95

4.3 Hardware Prototype

4.3.1 Overview

Figure 4.41 shows the top view while Figure 4.42 shows the front view of the hardware

prototype, built using a two-layer plywood platform with the wiring hidden in the

space between Layer 1 and Layer 2. The roofs of the eight parking slots are custom-

designed and 3D-printed. The two ESP32 microcontrollers are soldered onto a

stripboard and embedded inside a black PVC box to protect them from the external

environment, as shown in Figure 4.43. Additionally, the entrance and exit RFID

readers are positioned at an appropriate distance from each other to avoid

electromagnetic wave interference. RFID readers are prone to signal interference when

using long wires, so the wires need to be as short as possible, ideally less than 15 cm.

Figure 4.41: Top View of the Hardware Prototype

IR Sensors

Parking

Slot LEDs

Exit

RFID

Reader

Entrance

RFID

Reader

Exit Gate

ESP32-CAM

LCD

OLED

Entrance

Gate

Slot 1

Slot 4

Slot 5

Slot 8

96

Figure 4.42: Front View of the Hardware Prototype

Figure 4.43: Two ESP32 Microcontrollers Soldered onto a Stripboard and Embedded

Inside a Black PVC Box

97

Figure 4.44: Entrance Display Board Showing Parking Fees and LED Light Meanings

4.3.2 LCD Display Results

The time displayed on the LCD in Figure 4.45 is obtained using the NTP server. The

two bottom rows of the LCD show the status of each slot, where RESV means reserved,

FILL means occupied, and FREE means available. It continuously polls the

‘parking_status’ table in the database to retrieve the latest status.

Figure 4.45: LCD Display Showing the Current Time, Number of Available Parking

Slots, and the Status of Each Slot

98

4.3.3 ESP32-CAM Results

The ESP32-CAM, as shown in Figure 4.46, captures a vehicle image when the IR

sensor detects movement, encodes the image in Base64 format, and sends it through

an HTTP POST request to a Google Apps Script. The script decodes the image and

saves it to a Google Drive folder named ESP32_CAM_FYP, as shown in Figure 4.47.

The captured image is automatically renamed based on the timestamp when it is taken.

Figure 4.46: ESP32-CAM and IR Sensor Image-Capturing System at the Entrance

Figure 4.47: Captured Image Renamed Using the Timestamp and Stored in Google

Drive

Car

ESP32-CAM

IR Sensor

ESP32-CAM

99

4.3.4 Entrance and Exit Gate Results

A servo motor is used to simulate the entrance and exit gate, as shown in Figure 4.48

and Figure 4.49, respectively. The gate opens when access is authorized, the account

balance is sufficient, and the parking lot is not full. When the user is authorized, the

green LED lights up, and the buzzer makes a short beep twice. Conversely, if access

is unauthorized or the account balance is insufficient, the red LED lights up, and the

buzzer makes a long beep. After the gate opens, it will only close once the car has

passed through the second IR sensor to prevent it from closing too early and hitting

the car. At the exit gate, the account balance is not checked. The gate opens as long as

the RFID tag is valid.

Figure 4.48: Entrance Gate Servo Motor with Access LEDs

Figure 4.49: Exit Gate Servo Motor

Second IR Sensor

First IR Sensor

ESP32-CAM

IR Sensor

First IR Sensor

Second IR Sensor

Entrance Gate

Servo Motor with

Access LEDs

Exit Gate

Servo Motor

100

4.3.5 OLED Display Results

The OLED display shows the “Welcome Page” by default, as shown in Figure 4.50.

When the user scans the RFID tags, the RFID scanning messages will be shown. For

example, if access is authorized, it displays the timestamp, owner name, license plate,

and account balance, as shown in Figure 4.51. If access is denied, it shows whether the

RFID tag is unregistered or if the account balance is insufficient, as shown in Figure

4.52 and Figure 4.53.

Figure 4.50: OLED Display Showing

Welcome Page

Figure 4.51: OLED Display Showing

Access Authorized Messages

Figure 4.52: OLED Display Showing

Access Denied Messages

Figure 4.53: OLED Display Showing

Insufficient Balance Messages

101

4.3.6 Parking Lot Results

This project includes a total of eight parking slots, each equipped with an IR sensor

and three LEDs to indicate the slot's status. The red LED indicates OCCUPIED, the

green LED indicates AVAILABLE, and the yellow LED indicates RESERVED.

Figure 4.54 shows the parking slots 1, 2, 3, and 4, while Figure 4.55 shows the parking

slots 5, 6, 7, and 8. All the parking slots were custom-designed and produced using 3D

printing. When a vehicle is parked in a slot, the obstacle LED on the IR sensor lights

up, and the second ESP32 sends an HTTP POST request to update the ‘parking_status’

table in the database. The LCD and webpage continuously poll this table to display the

latest parking slot status. Additionally, the second ESP32 polls the table and sends

signals to the PCF8575 I/O expanders to light up the correct parking slot LED.

Figure 4.54: Parking Slots 1, 2, 3, and 4

Figure 4.55: Parking Slots 5, 6, 7, and 8

102

Figure 4.56 shows that all the parking slots are available, as all green parking

slot LEDs light up. The user may park in any available slot.

Figure 4.56: Parking Lot when All Slots are Available

103

Figure 4.57 shows that parking slots 2, 4, 6, and 8 are occupied, as the red

parking slot LEDs light up. The user can only park in parking slots 1, 3, 5, and 7, where

the slots are available, as the green parking slot LEDs light up.

Figure 4.57: Parking Lot when Slots 1, 3, 5, and 7 are Available, while Slots 2, 4, 6,

and 8 are Occupied

104

Figure 4.58 shows that all the parking slots are occupied, as all red parking slot

LEDs light up. This means the parking lot is full, and the user must wait for a vehicle

to exit before he can enter the parking lot. The LCD displays that the number of

available parking slots is zero, along with a "SORRY, PARKING FULL…" message,

as shown in Figure 4.59.

Figure 4.58: Parking Lot when All Slots are Occupied (Parking Full)

105

Figure 4.59: LCD Messages when All Parking Slots are Occupied (Parking Full)

Referring to Figure 4.33, Bob has reserved Slot 1 from 6:00 PM to 7:00 PM.

Figure 4.60 shows that Slot 1 yellow LED lights up when reaching the reservation time,

which is 6:00 PM. This indicates that Slot 1 is reserved. The user can enter the parking

lot as usual at the reservation time by scanning their RFID tags at the entrance. Once

the user parks in Slot 1, the red LED lights up to show that the slot is occupied, as

shown in Figure 4.61. After the user leaves Slot 1 when the reservation period expires,

the green LED lights up, as shown in Figure 4.62.

Besides that, if the user leaves the slot during the reservation period, the yellow

LED will light up again. This accounts for situations where the user may need to

readjust their vehicle or leave temporarily, without losing the reserved slot.

Additionally, if another user mistakenly parks in the reserved slot and realizes the

mistake, they can leave the slot, at which point the yellow LED will light up again to

indicate that the slot is still reserved.

106

Next, if a user parks in a reserved slot without having made a reservation, their

vehicle will be clamped by security. Security personnel can verify unauthorized

parking by cross-checking the vehicle's license plate, which is provided during the

reservation process.

Figure 4.60: Slot 1 Yellow LED Lights Up at the Reserved Time to Indicate the Slot

Is Reserved

107

Figure 4.61: Slot 1 Red LED Lights Up After the User Parks in the Reserved Slot

108

Figure 4.62: Slot 1 Green LED Lights Up After Reservation Time Passes

109

4.4 Detection Accuracy

After completing the hardware prototype, a series of tests were conducted to evaluate

the detection accuracy of the IR sensor under different scenarios. Table 4.1 shows the

detection accuracy results. Case 1 tests whether the IR sensor can detect a vehicle as it

enters the parking lot. Case 2 tests whether the IR sensor can detect a vehicle as it exits

the parking lot. Case 3 tests whether the ESP32-CAM successfully captures an image

of the vehicle when entering the parking lot. This depends on whether the IR sensor

detects the vehicle and triggers the ESP32-CAM to take a photo. Case 4 tests whether

the IR sensor can detect a vehicle parked in the designated parking slot.

The results in Table 4.1 indicate that vehicle detection at the entrance, exit, and

parking slot achieved 100 % accuracy. This high accuracy is attributed to the fact that

vehicles must stop at the entrance gate, exit gate, and parking slots, allowing sufficient

time for the IR sensor to detect them. However, the ESP32-CAM achieved 93.33 %

accuracy due to challenges in detecting vehicles moving at high speeds. The IR sensor

requires the vehicle to slow down slightly to ensure proper detection and image capture.

Overall, the core function of the system demonstrated a high level of accuracy, which

proved its effectiveness in vehicle detection.

Table 4.1: Detection Accuracy of the IR Sensor

Case Scenario
Number of

Cars Tested

Number of

Cars Detected

Detection

Accuracy

(%)
1

Vehicle Entering the

Parking Lot
30 30 100 %

2
Vehicle Exiting the

Parking Lot
30 30 100 %

3
ESP32-CAM Capturing

the Vehicle Image
30 28 93.33 %

4 Vehicle Parking in the Slot 30 30 100 %

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the proposed Smart Parking System was successfully developed and

achieved all its aims and objectives. A real-time parking lot monitoring system was

implemented using IR sensors, ESP32 microcontrollers, and RFID for access control.

In addition, five webpages were developed using HTML and PHP, including a login

page, sign-up page, top-up page, reservation page, and parking lot status monitoring

page. All the webpages function well. Users can make reservations through the

reservation page before they arrive. All user information, RFID scan logs, reservation

details, and parking lot status are successfully stored in a MySQL database.

Furthermore, the entrance image-capturing system using the ESP32-CAM was

successfully developed. The ESP32-CAM managed to capture vehicle images when

the IR sensor detected movement and saved them to Google Drive. The system

achieved an accuracy rate of 100 % in vehicle detection in parking slots. Besides that,

the smart parking system developed is highly affordable, which is less than RM 300.

However, the system has some disadvantages. Since this is an IoT project, a

stable and high-speed internet connection is very important. The webpages, parking

slot LEDs, and LCD display need to continuously poll the database to update the latest

parking slot status. Similarly, the RFID scanning process also requires internet access

to cross-check UID with the database. If the internet is slow, users may have to wait

longer before the entrance and exit gates respond. Additionally, the ESP32-CAM has

111

limited image quality since it is a budget camera, and the surrounding environment

like lighting can also affect the clarity of the captured images.

5.2 Recommendations

For future improvements, several modifications can be made to further improve the

Smart Parking System. Firstly, instead of using multiple IR sensors for each parking

slot, a camera-based system with image processing and machine learning could

provide more accurate detection while reducing the need for individual sensors. If IR

sensors continue to be used, upgrading to higher-quality IR sensors or integrating

multiple sensors such as ultrasonic sensors and LiDAR sensors could enhance

reliability. Besides that, magnetic sensors could be used since they offer more reliable

vehicle detection by responding only to the magnetic field of a car, reducing false

triggers from people or animals. Magnetic sensors are usually embedded underground,

so they are less affected by environmental conditions such as rain or fog.

Additionally, replacing the ESP32-CAM with a higher-quality camera would

result in clearer images, especially under varying lighting conditions. Furthermore,

integrating Automatic Number Plate Recognition (ANPR) with RFID and facial

recognition could further enhance security and streamline vehicle identification.

Moreover, adding a panic button would improve safety by allowing users to request

assistance when needed.

Furthermore, using a more stable network connection, such as wired Ethernet

could help minimize delays and improve system reliability. Lastly, implementing a

dynamic pricing model, where parking fees adjust based on demand, such as lower

rates during off-peak hours depending on the number of vehicles in the parking lot,

could make the system more efficient and cost-effective for users.

112

REFERENCES

Bishop, J., 2023. Difference between sourcing and sinking in a circuit. [online]

CircuitBread. Available at: <https://www.circuitbread.com/tutorials/difference-

between-sourcing-sinking> [Accessed 28 November 2024].

BusinessToday., 2023. The Average Malaysian Spends 44 Hours In Traffic In A

Month. BusinessToday. [online] 27 January. Available at:

<https://www.businesstoday.com.my/2023/01/27/the-average-malaysian-spends-

44-hours-in-traffic-in-a-month/.> [Accessed 13 August 2024].

Ch'ng, S.F., 2019. Web-Based Car Parking Slot Monitoring System. Bachelor’s

Degree. Universiti Tunku Abdul Rahman. Available at:

<http://eprints.utar.edu.my/id/eprint/3915> [Accessed 21 August 2024].

Daim, N., 2023. 36.3 million vehicles in Malaysia. New Straits Times. [online] 6

December. Available at:

<https://www.nst.com.my/news/nation/2023/12/987062/363-million-vehicles-

malaysia.> [Accessed 13 August 2024].

Elakya, R., Seth, J., Ashritha, P., and Namith, R., 2019. Smart Parking System using

IoT. International Journal of Engineering and Advanced Technology (IJEAT), 9(1),

pp.6091-6096. https://doi.org/10.35940/ijeat.A1963.109119

Elfaki, A.O., Messoudi, W., Bushnag, A., Abuzneid, S. and Alhmiedat, T., 2023. A

Smart Real-Time Parking Control and Monitoring System. Sensors, 23(24), p.9741.

https://doi.org/10.3390/s23249741

https://www.circuitbread.com/tutorials/difference-between-sourcing-sinking
https://www.circuitbread.com/tutorials/difference-between-sourcing-sinking
https://doi.org/10.3390/s23249741

113

Fahad, E., 2020. ESP32-CAM send images to Google Drive – IoT Security Camera.

[online] Available at: <https://www.electroniclinic.com/esp32-cam-send-images-

to-google-drive-iot-security-camera/> [Accessed 29 November 2024].

Goh, Y., 2023. A Study on Smart Parking System Using IoT Technology in Shopping

Mall. Bachelor’s Degree. Universiti Tunku Abdul Rahman. Available at:

<http://eprints.utar.edu.my/id/eprint/6242> [Accessed 13 August 2024].

Hong, S.Y.C., Kang, C.C., Tan, J.D. and Ariannejad, M., 2023. Smart Parking System

Using IoT Sensors. Journal of Engineering Technology and Applied Physics, 5(1),

pp.1-10. https://doi.org/10.33093/jetap.2023.5.1.7

IBM., 2024. What is the internet of things? [online] IBM. Available at:

<https://www.ibm.com/topics/internet-of-things.> [Accessed 9 August 2024].

Koya, H., Likhitha, K., Srilatha, K., Saida Babu, G. and Vaishnavi, G., 2024. IoT

Based Smart Vehicle Parking System Using RFID. International Journal for

Modern Trends in Science and Technology, 10(02), pp.53-60.

https://doi.org/10.46501/IJMTST1002008

Last Minute Engineers, 2018. What is RFID? How It Works? Interface RC522 RFID

Module with Arduino. [online] Last Minute Engineers. Available at:

<https://lastminuteengineers.com/how-rfid-works-rc522-arduino-tutorial/.>

[Accessed 21 August 2024]

Last Minute Engineers, 2019. ESP32 NTP Server - Get Date and Time with NTP

Protocol. [online] Last Minute Engineers. Available at:

<https://lastminuteengineers.com/esp32-ntp-server-date-time-tutorial/> [Accessed

23 December 2024].

Lee, O., 2021. Malaysia's Largest LPR Parking System for Sunway Pyramid. Parking

Network, [online] Available at: <https://www.parking.net/parking-

news/jieshun/malaysias-largest-lpr-parking-system-for-sunway-pyramid>

[Accessed 13 August 2024].

https://www.electroniclinic.com/esp32-cam-send-images-to-google-drive-iot-security-camera/
https://www.electroniclinic.com/esp32-cam-send-images-to-google-drive-iot-security-camera/
https://doi.org/10.46501/IJMTST1002008
https://lastminuteengineers.com/how-rfid-works-rc522-arduino-tutorial/
https://lastminuteengineers.com/esp32-ntp-server-date-time-tutorial/

114

Lincy, A., Natarajan, V., Murugan, S., Daniel, S., & Madhan, T. 2024. Intelligent

parking management using ANPR technology. International Journal of

Progressive Research in Engineering Management and Science, 4(6), pp. 1362-

1373. https://doi.org/10.58257/IJPREMS34940

Mischianti, R., 2019. PCF8575 I2C 16-bit Digital Input/Output Expander. [online]

Available at: <https://www.hackster.io/xreef/pcf8575-i2c-16-bit-digital-input-

output-expander-48a7c6> [Accessed 28 November 2024].

Mountain, D., 2022. Using the SD Card in 1-Bit Mode on the ESP32-CAM from AI-

Thinker. [online]. Available at: <https://dr-mntn.net/2021/02/using-the-sd-card-in-

1-bit-mode-on-the-esp32-cam-from-ai-thinker> [Accessed 9 October 2024].

Oracle., 2024. Accelerate Your Operations with IOT. [online] Available at:

<https://www.oracle.com/my/internet-of-things/.> [Accessed 9 August 2024].

Rajiv., 2018. What are the major components of Internet of Things - RF Page. [online]

Available at: <https://www.rfpage.com/what-are-the-major-components-of-

internet-of-things/.> [Accessed 9 August 2024].

Santos, S., 2019. ESP32-CAM Video Streaming and Face Recognition with Arduino

IDE. Random Nerd Tutorials [online]. Available at:

<https://randomnerdtutorials.com/esp32-cam-video-streaming-face-recognition-

arduino-ide/> [Accessed 21 August 2024].

Saeliw, A., Hualkasin, W., Puttinaovarat, S. and Khaimook, K., 2019. Smart car

parking mobile application based on RFID and IoT. International Journal of

Interactive Mobile Technologies (iJIM), 13(5).

https://doi.org/10.3991/ijim.v13i05.10096

Salma, O., Olanrewaju, R.F. and Arman, M.M., 2019. Smart parking guidance system

using 360° camera and Haar-Cascade classifier on IoT system. International

Journal of Recent Technology and Engineering, 8(2S11), pp.864-872.

https://doi.org/10.35940/ijrte.B1142.0982S1119

https://doi.org/10.58257/IJPREMS34940
https://www.hackster.io/xreef/pcf8575-i2c-16-bit-digital-input-output-expander-48a7c6
https://www.hackster.io/xreef/pcf8575-i2c-16-bit-digital-input-output-expander-48a7c6

115

Statista., n.d. Malaysia: car ownership among consumers 2019. [online] Available at:

<https://www.statista.com/statistics/1029277/malaysia-car-ownership-among-

consumers/.> [Accessed 13 August 2024].

Wilson, J., 2020. ESP32 Pinout, Datasheet, Features & Applications - The

Engineering Projects. [online] Available at:

<https://www.theengineeringprojects.com/2020/12/esp32-pinout-datasheet-

features-applications.html.> [Accessed 21 August 2024].

116

APPENDICES

Appendix A: Ngrok Tunneling Steps

Firstly, ngrok is downloaded from this link (click). Then, the location of where

the ‘ngrok.exe’ file is installed is located, as illustrated in Figure A-1. Then, the

directory where the file is installed is added to the system’s path environment variable.

The highlighted directory in Figure A-2 is copied. In Windows 11 PC, “Settings >

System > Advanced system settings” is clicked. In the popped-up window, under the

“Advanced” tab, “Environment Variables” is clicked. In the Environment Variables

window, the "Path" variable under "System variables" is selected, and the “Edit”

button is clicked. Next, the “New” button is clicked, the directory copied earlier in

Figure A-2 is pasted in the blank space, and the “OK” button is pressed on all windows

to apply the changes. The detailed steps are shown in Figure A-3. In addition, a new

ngrok account is registered, the user would be provided with an authentication token

as shown in Figure A-4. The authentication token is copied. Next, in the command

prompt, ‘ngrok config add-authtoken’ followed by the authentication token copied

earlier is typed, as illustrated in Figure A-5. Now, the ngrok is ready to run. The

command ‘ngrok http 80’ is typed and run as shown in Figure A-6, this creates a secure

tunnel, making the local web server running on port 80 accessible from the internet via

a public URL. The public URL is generated as shown in Figure A-7. In order to access

the login page, the public URL, followed by ‘\’, the database name, followed by ‘\’,

and the PHP file name serving the HTML page is typed, which is illustrated in Figure

A-8. Now, the web application is no longer limited to the local machine, it can be

accessed from anywhere in the world using any network connection, whether WiFi or

mobile data. The URL link can be converted later to a QR code for easier access.

https://ngrok.com/download

117

Figure A-1: The Location of ‘ngrok.exe’ File.

Figure A-2: The File Path where ‘ngrok.exe’ Is Installed was Copied.

Figure A-3: The Directory Is Added to the System’s Path Environment Variable.

118

Figure A-4: Ngrok Authentication Token Is Copied.

Figure A-5: The Command to Add the Ngrok Authentication Token.

Figure A-6: The Command to Create a Secure Tunnel to Expose Port 80 to the Internet.

119

Figure A-7: The Public URL Generated by Ngrok.

Figure A-8: The Login Page Accessed Using the Public URL.

120

Appendix B: Google Apps Script Deployment and ESP32-CAM Integration

A Google Apps Script is created to handle the reception and decoding of

images from the ESP32-CAM and store them in Google Drive. Firstly, the Google

Drive is opened, and ‘New > More > Google Apps Script’ is selected, as illustrated in

Figure B-1. Then, a new project is created, as illustrated in Figure B-2. In the script

editor, the default content is replaced with the script provided to process the received

image data, as illustrated in Figure B-3. The script extracts three parameters from the

ESP32-CAM, which are the Base64-encoded image data, the MIME type (jpeg), and

the filename. The script is then renamed and saved, as illustrated in Figure B-4. After

that, the script is deployed as a web app by selecting ‘Deploy > New deployment’, as

illustrated in Figure B-5. The deployment is configured as a web app, a description is

added, and access is set to ‘Anyone’, as illustrated in Figure B-6 and Figure B-7. Once

the script is authorized in Figure B-8, Figure B-9, and Figure B-10, a unique web app

URL is generated and copied for later use, as illustrated in Figure B-11. Then, a new

folder is created in Google Drive with the same name as the script, as illustrated in

Figure B-12.

121

Figure B-1: Accessing Google Apps Script from Google Drive.

Figure B-2: Creating a New Google Apps Script Project.

122

Figure B-3: Pasting the Script Into the Google Apps Script Editor.

Figure B-4: Renaming the Script.

Figure B-5: Deploying the Script.

123

Figure B-6: Selecting "Web App" as the Deployment Type.

Figure B-7: Configuring Deployment Settings and Setting Access Permissions.

124

Figure B-8: Authorizing Access for Web App Deployment.

Figure B-9: Logging Into Google Account.

125

Figure B-10: Granting Permissions to the Web Application.

Figure B-11: Copying the Web App Deployment URL.

126

Figure B-12: Manually Creating a New Folder in Google Drive with the Same Name

as the Script.

Next, the Base64 encoding library, credited to Adam Rudd, is obtained. The

Base64.h header file is obtained from this link (click), while the Base64.cpp

implementation file is obtained from this link (click). Both files need to be placed in

the same location as the ESP32_CAM_FYP.ino file, as illustrated in Figure B-13.

Furthermore, some information needs to be changed in the ESP32_CAM_FYP.ino file.

The WiFi credentials must be replaced, and the Web App URL copied in Figure B-11

must be pasted into the highlighted section of the ESP32_CAM_FYP.ino file, as

illustrated in Figure B-14.

https://github.com/gsampallo/esp32cam-gdrive/blob/master/Base64.h
https://github.com/gsampallo/esp32cam-gdrive/blob/master/Base64.cpp

127

Figure B-13: The ESP32_CAM_FYP.ino File and Base64 Library Are Stored in the

Same Directory.

Figure B-14: Some Information That Need to Be Changed in the

ESP32_CAM_FYP.ino File.

128

Appendix C: Demonstration Video and Award Won

The demonstration video, linked to a YouTube video can be accessed by clicking this

link (click) or by scanning the QR code in Figure C-1 for a clearer understanding of

this project. Besides that, this project won a Silver Medal at the International Materials

Technology Challenge (iMTC 9.0), organized by the Malaysia Solid State Science and

Technology Society (MASS) Chapter UPM and co-organized by the Department of

Physics, Selangor Education Department, on December 10, 2024.

Figure C-1: QR Code Linked to a YouTube Video Demonstrating This Project.

Figure C-2: Silver Medal Certificate for Participation in iMTC 9.0.

https://www.youtube.com/watch?v=Ki90JYYTtkM

129

Appendix D: Code for ESP32, ESP32-CAM, and Google Apps Script

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

// Define WiFi credentials

char ssid[] = "WIFI_SSID";

char pass[] = "WIFI_PASSWORD";

const String server_ip = "http://10.0.30.20/parking_system";

//---

// Include necessary libraries

#include <SPI.h> // For SPI communication (used by RFID)

#include <MFRC522.h> // For RFID module functionality

#include <Wire.h> // For I2C communication

#include <Adafruit_GFX.h> // For OLED display graphics

#include <Adafruit_SSD1306.h> // For OLED display

#include <LiquidCrystal_I2C.h> // For LCD display

#include <WiFi.h> // For WiFi connectivity

#include <WiFiClient.h> // For WiFi client functionality

#include <ESP32Servo.h> // For servo motor control

#include <HTTPClient.h> // For making HTTP requests

#include <ArduinoJson.h> // For JSON parsing and serialization

#include "time.h" // For time functions

//---

// Function declarations

void checkRFIDEntrance();

void getExitStatusFromSecondESP32();

void checkRFIDExit();

void checkVehicleAndControlGate();

String checkRFIDInDatabase(String uid, String &ownerName, String &carColor, String

&licensePlate);

bool checkBalance(String uid, float &balance);

void updateBalance(String uid, float newBalance);

void logRFIDScan(String uid, String status, String ownerName = "UNKNOWN", String carColor =

"UNKNOWN", String licensePlate = "UNKNOWN");

void fetchParkingStatusFromDatabase();

String getTimestamp();

void updateClock();

void grantAccessEntrance(String ownerName, String carColor, String licensePlate, float

balance);

void grantAccessExit(String ownerName, String carColor, String licensePlate);

void denyAccess();

void openEntranceGate();

void closeEntranceGate();

void openExitGate();

void closeExitGate();

//---

// Pin definitions

#define SS_PIN_ENTRANCE 5 // GPIO 5 for entrance RFID Slave Select Pin

#define RST_PIN_ENTRANCE 27 // GPIO 27 for entrance RFID Reset Pin

#define buzzer_PIN 4 // GPIO 4 connects to buzzer

#define green_LED 13 // GPIO 13 connects to green LED

#define red_LED 12 // GPIO 12 connects to red LED

#define entrance_IR1 15 // Entrance IR sensor 1

#define entrance_IR2 36 // Entrance IR sensor 2

#define exit_IR1 34 // Exit IR sensor 1

#define exit_IR2 39 // Exit IR sensor 2

int entrance_gate_SERVO = 14; // GPIO 14 connects to entrance servo motor

int exit_gate_SERVO = 32; // GPIO 32 connects to exit servo motor

// OLED Display configuration

#define SCREEN_WIDTH 128 // OLED display width in pixels

#define SCREEN_HEIGHT 64 // OLED display height in pixels

// Initialize hardware components

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, 0x3C); // 0x3C is the I2C

address of OLED

LiquidCrystal_I2C lcd(0x27, 20, 4); // 0x27 is the I2C address of 20x4 LCD

MFRC522 rfidEntrance(SS_PIN_ENTRANCE, RST_PIN_ENTRANCE); // RFID reader for entrance

Servo entranceGateServo; // Create a servo object for the entrance gate

Servo exitGateServo; // Create a servo object for the exit gate

// Authorization Status & Message flags

bool entranceRFIDAuthorized = false; // Flag to store RFID authorization status for entrance

bool exitRFIDAuthorized = false; // Flag to store RFID authorization status for exit

bool Authorized = false; // Flag to store authorization status from secondary ESP32

bool introDisplayed = false; // Flag to track if the intro message has been displayed

bool messageDisplayed = false; // Global flag to track if a message has been displayed

// Parking slot variables

int parking_IR1; // Parking slot 1 status

int parking_IR2; // Parking slot 2 status

int parking_IR3; // Parking slot 3 status

130

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

int parking_IR4; // Parking slot 4 status

int parking_IR5; // Parking slot 5 status

int parking_IR6; // Parking slot 6 status

int parking_IR7; // Parking slot 7 status

int parking_IR8; // Parking slot 8 status

// Vehicle detection flags

int entrance_flag1 = 0; // Flag for IR1 (entrance) sensor

int entrance_flag2 = 0; // Flag for IR2 (entrance) sensor

int exit_flag1 = 0; // Flag for IR1 (exit) sensor

int exit_flag2 = 0; // Flag for IR2 (exit) sensor

int Slot = 8; // Total parking slots (8)

// User and vehicle information

String entrancelastUID = ""; // Last scanned UID at entrance

String exitLastUID = ""; // Last scanned UID at exit

String ownerName = ""; // Vehicle owner name

String carColor = ""; // Vehicle color

String licensePlate = ""; // Vehicle license plate

float balance = 0.0; // User Account Balance

unsigned long messageDisplayStart = 0;

const long messageDisplayDuration = 3000; // 3 seconds display time on OLED

bool showingMessage = false;

// NTP Server settings (Internet Time)

const char* ntpServer = "pool.ntp.org"; // NTP server to get time (without relying on RTC

module)

const long gmtOffset_sec = 8 * 3600; // GMT+8: 8 hours (8 * 3600 seconds) is the time

offset for Malaysia

const int daylightOffset_sec = 0; // No daylight savings in Malaysia

//---

// Function to initialize NTP server and sync time

void setupNTP() {

 // Configure time with the specified NTP server, GMT offset, and daylight offset

 configTime(gmtOffset_sec, daylightOffset_sec, ntpServer);

 // Attempt to get the time from the NTP server once

 struct tm timeinfo;

 if (!getLocalTime(&timeinfo)) {

 // If time retrieval fails, print an error message and continue

 Serial.println("Failed to obtain time from NTP server.");

 } else {

 // If time retrieval is successful, print the fetched time

 Serial.println("Time successfully synchronized with NTP server");

 Serial.printf("Time: %02d/%02d/%04d %02d:%02d:%02d\n",

 timeinfo.tm_mday, timeinfo.tm_mon + 1, timeinfo.tm_year + 1900,

 timeinfo.tm_hour, timeinfo.tm_min, timeinfo.tm_sec);

 }

}

//---

// Function to get the current timestamp as a formatted string (RFID scanning timestamp on

OLED)

String getTimestamp() {

 struct tm timeinfo;

 getLocalTime(&timeinfo); // Fetch the current local time

 char buffer[20]; // Create a buffer to store the formatted timestamp

 // Format the time as "DD/MM/YYYY HH:MM:SS" and store it in the buffer

 // timeinfo.tm_mon is 0-based (January = 0), so we add 1 to get the correct month number.

 // timeinfo.tm_year stores the number of years since 1900, so we add 1900 to get the actual

year.

 sprintf(buffer, "%02d/%02d/%04d %02d:%02d:%02d",

 timeinfo.tm_mday, timeinfo.tm_mon + 1, timeinfo.tm_year + 1900,

 timeinfo.tm_hour, timeinfo.tm_min, timeinfo.tm_sec);

 // Return the formatted timestamp as a String

 return String(buffer);

}

//---

// Grant access for entrance (display balance)

void grantAccessEntrance(String ownerName, String carColor, String licensePlate, float

balance)

{

 String timestamp = getTimestamp(); // Get current timestamp

 Serial.println(timestamp);

 Serial.println("User: " + ownerName);

 Serial.println("Access authorized");

 Serial.println();

 // Display access granted messages on OLED

 display.clearDisplay();

 display.setTextSize(1); // Set font size

 display.setTextColor(SSD1306_WHITE); // Set font colour

 display.setCursor(0, 0); // Set the cursor to the top-left corner (row 0, column 0)

 display.println(timestamp); // Print current timestamp

 display.setCursor(0, 12); // Adjust vertical position

131

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

 display.println("ACCESS GRANTED");

 display.setCursor(0, 24); // Adjust vertical position

 display.println("User: " + ownerName); // Print owner name

 display.setCursor(0, 36); // Adjust vertical position

 display.println("Vehicle No: " + licensePlate); // Print license plate

 display.setCursor(0, 48); // Adjust vertical position

 display.println("Balance: RM " + String(balance)); // Print account balance

 display.display();

 // Set message display timing

 messageDisplayStart = millis();

 showingMessage = true;

 digitalWrite(green_LED, HIGH); // Turns on Green LED

 // Buzzer sounds twice quickly

 for (int i = 0; i < 2; i++) {

 digitalWrite(buzzer_PIN, HIGH);

 delay(100); // Short beep

 digitalWrite(buzzer_PIN, LOW);

 delay(100); // Short beep

 }

 digitalWrite(green_LED, LOW); // Turns off Green LED

}

//---

// Grant access for exit (without account balance)

void grantAccessExit(String ownerName, String carColor, String licensePlate)

{

 String timestamp = getTimestamp();

 Serial.println(timestamp);

 Serial.println("User: " + ownerName);

 Serial.println("Access authorized");

 Serial.println();

 // Display access granted messages on OLED (without account balance)

 display.clearDisplay();

 display.setTextSize(1); // Set font size

 display.setTextColor(SSD1306_WHITE);

 display.setCursor(0, 0);

 display.println(timestamp);

 display.setCursor(0, 12); // Adjust vertical position

 display.println("ACCESS GRANTED");

 display.setCursor(0, 24); // Adjust vertical position

 display.println("User: " + ownerName);

 display.setCursor(0, 36); // Adjust vertical position

 display.println("Vehicle No: " + licensePlate);

 display.setCursor(0, 48); // Adjust vertical position

 display.println("TQ & See you again!");

 display.display();

 // Set message display timing

 messageDisplayStart = millis();

 showingMessage = true;

 digitalWrite(green_LED, HIGH); // Turns on Green LED

 // Buzzer sounds twice quickly

 for (int i = 0; i < 2; i++) {

 digitalWrite(buzzer_PIN, HIGH);

 delay(100);

 digitalWrite(buzzer_PIN, LOW);

 delay(100);

 }

 digitalWrite(green_LED, LOW); // Turns off Green LED

}

//---

// Deny access to unauthorized users

void denyAccess()

{

 String timestamp = getTimestamp();

 Serial.println(timestamp);

 Serial.println("User: Unregistered User!");

 Serial.println("Access denied");

 Serial.println();

 display.clearDisplay();

 display.setTextSize(1); // Set font size

 display.setTextColor(SSD1306_WHITE);

 display.setCursor(0, 0);

 display.println(timestamp);

 display.setCursor(0, 15); // Adjust vertical position

 display.println("ACCESS DENIED");

 display.setCursor(0, 30); // Adjust vertical position

 display.println("User:");

 display.setCursor(0, 50); // Adjust vertical position

 display.println("Unregistered user!");

 display.display();

 // Set message display timing

132

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

 messageDisplayStart = millis();

 showingMessage = true;

 digitalWrite(red_LED, HIGH); // Turns on Red LED

 // Buzzer sounds for a longer period

 digitalWrite(buzzer_PIN, HIGH);

 delay(1000); // Long beep

 digitalWrite(buzzer_PIN, LOW);

 digitalWrite(red_LED, LOW); // Turns off Red LED

}

//---

 // Display insufficient balance messages on OLED (if account balance < RM 10)

void insufficientBalance(float balance) {

 String timestamp = getTimestamp();

 Serial.println(timestamp);

 Serial.println("Access Denied: Insufficient Balance");

 Serial.println();

 display.clearDisplay();

 display.setTextSize(1); // Set font size

 display.setTextColor(SSD1306_WHITE);

 display.setCursor(0, 0);

 display.println(timestamp);

 display.setCursor(0, 12); // Adjust vertical position

 display.println("ACCESS DENIED");

 display.setCursor(0, 24); // Adjust vertical position

 display.println("Insufficient Balance");

 display.setCursor(0, 36); // Adjust vertical position

 display.println("Balance: RM " + String(balance));

 display.display();

 // Set message display timing

 messageDisplayStart = millis();

 showingMessage = true;

 digitalWrite(red_LED, HIGH); // Turns on Red LED

 // Buzzer sounds for a longer period

 digitalWrite(buzzer_PIN, HIGH);

 delay(1000); // Long beep

 digitalWrite(buzzer_PIN, LOW);

 digitalWrite(red_LED, LOW); // Turns off Red LED

}

//---

void openEntranceGate() {

 entranceGateServo.write(0); // Rotate to 0 degrees (open)

 Serial.println("Entrance gate opened");

}

void closeEntranceGate() {

 entranceGateServo.write(90); // Rotate to 90 degrees (closed)

 Serial.println("Entrance gate closed");

}

void openExitGate() {

 exitGateServo.write(0); // Rotate to 0 degrees (open)

 Serial.println("Exit gate opened");

}

void closeExitGate() {

 exitGateServo.write(90); // Rotate to 90 degrees (closed)

 Serial.println("Exit gate closed");

}

//---

// Check RFID at entrance

void checkRFIDEntrance() {

 // Check every 400ms (offset from exit reader)

 // Avoid entrance and exit reader on at the same time to avoid interference

 static unsigned long lastCheck = 100; // Starts at 100ms offset

 if (millis() - lastCheck < 400) return;

 lastCheck = millis();

 // Check if new RFID card is present and readable

 if (rfidEntrance.PICC_IsNewCardPresent() && rfidEntrance.PICC_ReadCardSerial()) {

 messageDisplayed = false;// New scan detected, reset the message flag

 // Show UID on serial monitor

 Serial.print("Entrance UID tag: ");

 String content = "";

 // Read and format UID bytes

 for (byte i = 0; i < rfidEntrance.uid.size; i++) {

 Serial.print(rfidEntrance.uid.uidByte[i] < 0x10 ? " 0" : " ");

 Serial.print(rfidEntrance.uid.uidByte[i], HEX);

 content += String(rfidEntrance.uid.uidByte[i] < 0x10 ? "0" : "");

 content += String(rfidEntrance.uid.uidByte[i], HEX);

 }

 Serial.println();

 content.toUpperCase(); // Converts all letters to uppercase

133

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

 entrancelastUID = content; // Store UID

 // Variables to store user and vehicle details

 String ownerName = "";

 String carColor = "";

 String licensePlate = "";

 // Check if RFID UID read exists in the database or not, if yes, set status as

"success"

 String status = checkRFIDInDatabase(entrancelastUID, ownerName, carColor,

licensePlate);

 Serial.println("Entrance RFID Database check status: " + status);

 Serial.println("Owner name: " + ownerName);

 Serial.println("Car Color: " + carColor);

 Serial.println("License Plate: " + licensePlate);

 // Registered RFID Tag (Matches with database UID)

 if (status == "success") {

 entranceRFIDAuthorized = true; // set entrance RFID authorization flag to true

 // Check balance and handle insufficient balance first

 if (checkBalance(entrancelastUID, balance)) {

 // Insufficient balance: deny access

 if (balance < 10) { // RM 10 is the required balance threshold (parking fee)

 if (!messageDisplayed) {

 insufficientBalance(balance); //Display insufficient balance message

on OLED

 Serial.println("Insufficient balance. Please top up your card and try

again.");

 messageDisplayed = true; // Set flag to avoid repeated messages

 }

 // Do not display access granted

 entranceRFIDAuthorized = false; // Reset authorization

 rfidEntrance.PICC_HaltA(); // Halt PICC

 rfidEntrance.PCD_StopCrypto1(); // Stop encryption on PCD

 return; // Exit the function early to prevent further processing

 } else {

 // Sufficient balance: grant access

 if (!messageDisplayed) {

 grantAccessEntrance(ownerName, carColor, licensePlate, balance);

 logRFIDScan(entrancelastUID, "SUCCESS", ownerName, carColor,

licensePlate);

 messageDisplayed = true; // Set flag to avoid repeated messages

 }

 }

 } else {

 // Balance check failed (e.g., server error)

 Serial.println("Failed to retrieve balance.");

 }

 }

 // Unregistered RFID Tag (Not matches with database UID)

 else {

 entranceRFIDAuthorized = false; // set entrance RFID authorization flag to false

 denyAccess(); // Display access denied on OLED

 logRFIDScan(entrancelastUID, "FAIL"); //logs RFID Scan as "FAIL" in database and

records the UID

 }

 // Halt RFID scanning to avoid multiple reads

 rfidEntrance.PICC_HaltA();

 rfidEntrance.PCD_StopCrypto1();

 }

}

//---

// Get exit RFID scan status from secondary ESP32 by querying the 'exit_status.json' file

void getExitStatusFromSecondESP32() {

 HTTPClient http; // Create HTTP client object

 // Execute 'get_exit_status.php' to get exit status from 'exit_status.json'

 String url = server_ip + "/get_exit_status.php";

 http.begin(url); // Initialize HTTP connection

 int httpCode = http.GET(); // Send HTTP GET request

 if (httpCode == HTTP_CODE_OK) { // If request is successful

 String payload = http.getString(); // Get response payload

 Serial.println("Exit Status Response: " + payload); // Print response for debugging

 DynamicJsonDocument doc(1024); // Create JSON document

 deserializeJson(doc, payload); // Parse JSON response

 const char* status = doc["status"]; // Get status from JSON

 if (status && String(status) == "success") { // If status is success

 Authorized = doc["Authorized"].as<bool>(); // Get authorization status

 exitLastUID = doc["uid"].as<String>(); // Get RFID UID

 ownerName = doc["owner_name"].as<String>(); // Get owner name

 carColor = doc["car_color"].as<String>(); // Get car color

 licensePlate = doc["license_plate"].as<String>(); // Get license plate

 Serial.println("Status: " + String(status)); // Print status

 } else { // If status is not success

134

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

 Serial.println("Status not success, setting exitLastUID to empty");

 exitLastUID = ""; // Clear UID

 }

 } else { // If HTTP request failed

 Serial.println("HTTP GET request failed"); // Error message

 }

 http.end(); // Close HTTP connection

}

//---

 // Variable to store the last processed UID to prevent same card read twice in a row

String lastProcessedUID = ""; // act as a temporary memory

// Check RFID at exit gate (depending on results from second ESP32)

void checkRFIDExit() {

 getExitStatusFromSecondESP32(); // Always get the exit rfid authorization status from

second ESP32

 if (exitLastUID != "" && exitLastUID != lastProcessedUID) {

 // Only process if exitLastUID is not empty and different from the last processed UID

 Serial.println("Exit UID tag: " + exitLastUID);

 Serial.println("Exit RFID Database check status: " + String(Authorized));

 Serial.println("Owner name: " + ownerName);

 Serial.println("Car Color: " + carColor);

 Serial.println("License Plate: " + licensePlate);

 if (Authorized) {

 // Grant access since the user is authorized

 exitRFIDAuthorized = true; // Set exit RFID authorization flag to true

 grantAccessExit(ownerName, carColor, licensePlate); // Print access authorized

message on OLED

 logRFIDScan(exitLastUID, "SUCCESS", ownerName, carColor, licensePlate); // Logs

RFID scan

 } else {

 // Deny access if the RFID is not authorized

 exitRFIDAuthorized = false;

 denyAccess();

 logRFIDScan(exitLastUID, "FAIL");

 }

 // Update the last processed UID to the current one

 lastProcessedUID = exitLastUID;

 // Reset exitLastUID after processing

 exitLastUID = "";

 } else if (exitLastUID == lastProcessedUID) {

 // If the UID hasn't changed, do not process it again

 Serial.println("No new RFID tag read or already processed");

 }

}

//---

// Call this function after user exits and gate closes to

// reset the exit_status.json JSON content after each scan

void resetExitStatus()

{

 HTTPClient http;

 String url = server_ip + String("/update_exit_status.php"); // Build reset URL

 http.begin(url); // Initialize HTTP connection

 http.addHeader("Content-Type", "application/json"); // Set content type

 // Reset the exit_status.json JSON content after each scan

 DynamicJsonDocument doc(1024);

 doc["uid"] = ""; // Clear the UID

 doc["owner_name"] = ""; // Clear owner name

 doc["car_color"] = ""; // Clear car color

 doc["license_plate"] = ""; // Clear license plate

 doc["Authorized"] = false; // Reset authorization status

 String requestBody; // Create request body

 serializeJson(doc, requestBody); // Serialize JSON to string

 int httpCode = http.POST(requestBody); // Send HTTP POST request

 if (httpCode == HTTP_CODE_OK) {

 Serial.println("Exit status reset.");

 } else {

 Serial.println("Failed to reset exit status.");

 }

 http.end();

}

//---

// Control gates based on vehicle detection and authorization status

void checkVehicleAndControlGate() {

 // Read current states of IR sensors (LOW means vehicle detected)

 bool entrance_ir1State = digitalRead(entrance_IR1) == LOW; // Entrance IR sensor 1

state

 bool entrance_ir2State = digitalRead(entrance_IR2) == LOW; // Entrance IR sensor 2

state

135

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

 bool exit_ir1State = digitalRead(exit_IR1) == LOW; // Exit IR sensor 1 state

 bool exit_ir2State = digitalRead(exit_IR2) == LOW; // Exit IR sensor 2 state

 int required_amount = 10; // Parking fee

 // Check if parking lot is full when vehicle presents at the entrance and scan RFID tags

 if (Slot <= 0 && entrance_ir1State && entranceRFIDAuthorized) {

 // Display "Sorry, parking full" message on LCD

 lcd.clear();

 lcd.setCursor(8, 1);

 lcd.print("SORRY,");

 lcd.setCursor(3, 2);

 lcd.print("PARKING FULL...");

 delay(500);

 }

 // Vehicle detected at entrance and entrance gate closed

 //entrance_flag1 = system memory, entrance_ir1State = current state

 if (entrance_ir1State && entrance_flag1 == 0 && Slot > 0 && entrance_flag2 == 0 &&

entranceRFIDAuthorized) {

 Serial.println("Checking balance..."); // Balance checking already done at

checkRFIDEntrance()

 if (balance >= required_amount) {

 // Sufficient balance: grant access

 entrance_flag1 = 1; // Set IR1 memory to 1 as vehicle has passed through it

 openEntranceGate(); // Open the gate when vehicle detected at entrance, RFID

check passed, and sufficient balance

 updateBalance(entrancelastUID, balance - required_amount); // Deduct balance and

update in database

 float latestBalance = balance - required_amount; // Calculate new balance

 Serial.print("Latest balance: ");

 Serial.println(latestBalance);

 // Display access authorized and account balance on OLED

 if (!messageDisplayed) {

 grantAccessEntrance(ownerName, carColor, licensePlate, latestBalance);

 messageDisplayed = true; // Set flag to avoid repeated messages

 }

 } else {

 // If insufficient balance, no gate opening, show insufficientBalance() message

on OLED

 if (!messageDisplayed) {

 insufficientBalance(balance);

 Serial.println("Insufficient balance. Please top up your card and try

again.");

 messageDisplayed = true; // Set flag to avoid repeated messages

 }

 entranceRFIDAuthorized = false; // Reset authorization

 return; // Exit the function to prevent further processing

 }

 }

 // Vehicle fully passed through entrance

 // Vehicle has passed through IR1, no longer at IR1, at IR2 and has not passed through

IR2

 if (entrance_flag1 == 1 && !entrance_ir1State && entrance_ir2State && entrance_flag2 ==

0) {

 entrance_flag2 = 1; // Set IR2 memory to 1 as vehicle has passed through it

 delay(1000);

 closeEntranceGate(); // Close the gate after vehicle passes through IR2

 Slot--; // Decrease available slot count by one

 entrance_flag1 = 0; // Reset entrance IR1 memory

 entrance_flag2 = 0; // Reset entrance IR2 memory

 entranceRFIDAuthorized = false; // Reset RFID authorization after vehicle passes

 messageDisplayed = false; // Reset flag for the next scan

 }

 // Vehicle detected at exit and exit gate closed

 if (exit_ir1State && exit_flag1 == 0 && exit_flag2 == 0 && exitRFIDAuthorized) {

 exit_flag1 = 1;

 openExitGate(); // Open the gate when vehicle detected at exit

 Serial.println("Thank you for visiting. See you again :)");

 }

 // Vehicle fully passed through exit

 if (exit_flag1 == 1 && !exit_ir1State && exit_ir2State && exit_flag2 == 0) {

 exit_flag2 = 1;

 delay(1000);

 closeExitGate(); // Close the gate after vehicle passes through IR2

 Slot++; // Increase available slot count by one

 exit_flag1 = 0; // Reset exit IR1 memory

 exit_flag2 = 0; // Reset exit IR2 memory

 exitRFIDAuthorized = false; // Reset RFID authorization after vehicle passes

 resetExitStatus(); // Call the function to clear exit_status.json JSON data

 }

}

136

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

//---

// Check if scanned UID exists in 'rfid_user_info' table in database and get associated

information

String checkRFIDInDatabase(String uid, String &ownerName, String &carColor, String

&licensePlate) {

 HTTPClient http;

 String url = server_ip + String("/check_rfid.php?rfid=") + uid; // Build URL with UID to

execute check_rfid.php

 Serial.println("Requesting URL: " + url);

 http.begin(url); // Initialize connection

 int httpCode = http.GET(); // Send HTTP GET request

 if (httpCode == HTTP_CODE_OK) { // If request successful

 String payload = http.getString(); // Get response

 Serial.println("Server response: " + payload); // Debug response

 DynamicJsonDocument doc(1024); // Create JSON document

 deserializeJson(doc, payload); // Parse JSON

 if (doc["status"] == "success") { // If status is success

 ownerName = doc["owner_name"].as<String>(); // Get owner name

 carColor = doc["car_color"].as<String>(); // Get car color

 licensePlate = doc["license_plate"].as<String>(); // Get license plate

 http.end(); // Close connection

 return "success";

 } else { // If status not success

 http.end(); // Close connection

 return "fail";

 }

 } else { // If request failed

 http.end(); // Close connection

 return "error";

 }

}

//---

// Check user's account balance from 'rfid_user_info' table in database

bool checkBalance(String uid, float &balance) {

 HTTPClient http;

 String url = server_ip + String("/check_balance.php?rfid=") + uid; // Build URL

 Serial.println("Requesting URL: " + url);

 http.begin(url); // Initialize connection

 int httpCode = http.GET(); // Send HTTP GET request

 Serial.print("HTTP Code: ");

 Serial.println(httpCode); // Print the HTTP code for debugging

 if (httpCode == HTTP_CODE_OK) { // If request successful

 String payload = http.getString(); // Get response

 Serial.print("Server response: ");

 Serial.println(payload);

 DynamicJsonDocument doc(1024); // Create JSON document

 deserializeJson(doc, payload); // Parse JSON

 if (doc["status"] == "success") { // If status is success

 balance = doc["balance"]; // Get balance value

 http.end(); // Close connection

 return true; //this means balance check is success, not neccessary indicates

enough balance

 } else { // If status not success

 Serial.println("Failed to retrieve balance, status not success.");

 Serial.println(doc["message"].as<String>()); // Print the failure message

 }

 } else { // If request failed

 Serial.print("Failed to connect, HTTP code: ");

 Serial.println(httpCode);

 }

 http.end(); // Close connection

 return false;

}

//---

// Update user's account balance in 'rfid_user_info' table after vehicle passed through

entrance gate

void updateBalance(String uid, float newBalance) {

 HTTPClient http;

 String url = server_ip + String("/update_balance.php");

 Serial.println("Requesting URL: " + url);

 http.begin(url);

 http.addHeader("Content-Type", "application/x-www-form-urlencoded");

 // Build POST data consists of UID and latest account balance

 String postData = "rfid=" + uid + "&new_balance=" + String(newBalance);

 int httpCode = http.POST(postData); // Send HTTP POST request

 if (httpCode == HTTP_CODE_OK) {

 String payload = http.getString();

 Serial.print("Server response: ");

 Serial.println(payload); // Print the payload for debugging

 }

137

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

 http.end();

}

//---

// Log RFID scan to 'rfid_scan_log' table in database

void logRFIDScan(String uid, String status, String ownerName, String carColor, String

licensePlate) {

 HTTPClient http;

 String url = server_ip + String("/log_rfid_scan.php");

 Serial.println("Requesting URL: " + url);

 http.begin(url);

 http.addHeader("Content-Type", "application/x-www-form-urlencoded");

 // Build POST data with scan status and all details

 String postData = "rfid=" + uid + "&scan_status=" + status + "&owner_name=" + ownerName +

"&car_color=" + carColor + "&license_plate=" + licensePlate;

 Serial.println("Post Data: " + postData);

 int httpCode = http.POST(postData); // Send HTTP POST request

 if (httpCode == HTTP_CODE_OK) {

 String payload = http.getString();

 Serial.print("Server response: ");

 Serial.println(payload);

 }

 http.end();

}

//---

// Fetch latest parking status from 'parking_status' table in database

void fetchParkingStatusFromDatabase() {

 HTTPClient http; // Create HTTP client

 String url = server_ip + "/get_parking_status.php"; // Build URL

 http.begin(url); // Initialize connection

 int httpCode = http.GET(); // Send HTTP GET request

 if (httpCode == HTTP_CODE_OK) { // If request successful

 String payload = http.getString(); // Get response

 Serial.println("Server response: " + payload); // Debug response

 DynamicJsonDocument doc(1024); // Create JSON document

 deserializeJson(doc, payload); // Parse JSON

 // Update the parking_IR variables based on the fetched status

 // (1=AVAILABLE, 2=RESERVED, 0=OCCUPIED)

 parking_IR1 = (doc["1"] == "AVAILABLE") ? 1 : (doc["1"] == "RESERVED") ? 2 : 0;

 parking_IR2 = (doc["2"] == "AVAILABLE") ? 1 : (doc["2"] == "RESERVED") ? 2 : 0;

 parking_IR3 = (doc["3"] == "AVAILABLE") ? 1 : (doc["3"] == "RESERVED") ? 2 : 0;

 parking_IR4 = (doc["4"] == "AVAILABLE") ? 1 : (doc["4"] == "RESERVED") ? 2 : 0;

 parking_IR5 = (doc["5"] == "AVAILABLE") ? 1 : (doc["5"] == "RESERVED") ? 2 : 0;

 parking_IR6 = (doc["6"] == "AVAILABLE") ? 1 : (doc["6"] == "RESERVED") ? 2 : 0;

 parking_IR7 = (doc["7"] == "AVAILABLE") ? 1 : (doc["7"] == "RESERVED") ? 2 : 0;

 parking_IR8 = (doc["8"] == "AVAILABLE") ? 1 : (doc["8"] == "RESERVED") ? 2 : 0;

 } else { // If request failed

 Serial.print("Failed to fetch parking lot status, HTTP code: ");

 Serial.println(httpCode);

 }

 http.end(); // Close connection

}

//---

void updateDisplay() {

 static unsigned long lastDisplayUpdate = 0; // Tracks last update time

 static String lastTimeStr = ""; // Stores last displayed time string

 static int lastSlot = -1; // Stores last displayed slot count

 static int lastParkingIR[4] = {-1, -1, -1, -1}; // Stores last parking slot states

 unsigned long currentMillis = millis(); // Get current time in milliseconds

 // Update display every second (1000ms)

 if(currentMillis - lastDisplayUpdate >= 1000) {

 lastDisplayUpdate = currentMillis; // Update the last update time

 // 1. TIME DISPLAY (Row 0)

 struct tm timeinfo; // Get current time structure

 // If time is successfully retrieved

 if(getLocalTime(&timeinfo)) {

 lcd.setCursor(0, 0); // Set cursor to beginning of first row (0,0)

 //Display the current date and time in the format "DD/MM/YYYY HH:MM:SS" on the LCD

 // %02d = 2-digit with leading zeros

 // %04d - Four digits for year (YYYY) (e.g., 2025).

 lcd.printf("%02d/%02d/%04d %02d:%02d:%02d",

 timeinfo.tm_mday, // Day of month (1-31)

 timeinfo.tm_mon + 1, // Month (0-11, so +1)

 timeinfo.tm_year + 1900, // Years since 1900

 timeinfo.tm_hour, // Hours (0-23)

 timeinfo.tm_min, // Minutes (0-59)

 timeinfo.tm_sec); // Seconds (0-59)

 }

138

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

 // 2. SLOT AVAILABILITY (Row 1)

 lcd.setCursor(1, 1); // Set cursor to column 1, row 1 (second row)

 lcd.print("[SLOT AVAILABLE:");

 lcd.print(Slot); // Print current available slot count

 lcd.print("]");

 // 3. PARKING SLOT STATUS (Rows 2-3)

 // -----------------------------------

 // Only update if slot 1 or 2 status changed

 if(parking_IR1 != lastParkingIR[0] || parking_IR2 != lastParkingIR[1]) {

 lcd.setCursor(0, 2); // Set cursor to start of third row (0,2)

 lcd.print("S1:");

 lcd.print(parking_IR1 == 1 ? "FREE " : // Available

 (parking_IR1 == 2 ? "RESV " : // Reserved

 "FILL ")); // Occupied

 lcd.print("S2:");

 lcd.print(parking_IR2 == 1 ? "FREE " :

 (parking_IR2 == 2 ? "RESV " :

 "FILL "));

 // Update last known states

 lastParkingIR[0] = parking_IR1;

 lastParkingIR[1] = parking_IR2;

 }

 // Only update if slot 3 or 4 status changed

 if(parking_IR3 != lastParkingIR[2] || parking_IR4 != lastParkingIR[3]) {

 lcd.setCursor(0, 3); // Set cursor to start of fourth row (0,3)

 lcd.print("S3:");

 lcd.print(parking_IR3 == 1 ? "FREE " :

 (parking_IR3 == 2 ? "RESV " :

 "FILL "));

 lcd.print("S4:");

 lcd.print(parking_IR4 == 1 ? "FREE " :

 (parking_IR4 == 2 ? "RESV " :

 "FILL "));

 // Update last known states

 lastParkingIR[2] = parking_IR3;

 lastParkingIR[3] = parking_IR4;

 }

 }

}

//---

// Setup function - runs once at startup

void setup() {

 Serial.begin(115200); // Initialize serial communication at 115200 baud

 // Connect to WiFi network

 WiFi.begin(ssid, pass); // Start connection

 while (WiFi.status() != WL_CONNECTED) { // Wait for connection

 delay(1000); // Wait 1 second

 Serial.println("Connecting to WiFi...");

 }

 Serial.println("Connected to WiFi"); // WiFi Connection Success message

 Serial.print("IP Address: ");

 Serial.println(WiFi.localIP()); // Print local IP address

 delay(100);

// Initialize RFID reader with proper timing

 SPI.begin();

 pinMode(SS_PIN_ENTRANCE, OUTPUT);

 digitalWrite(SS_PIN_ENTRANCE, HIGH); // keep SS high when not active

 rfidEntrance.PCD_Init();

 rfidEntrance.PCD_SetAntennaGain(rfidEntrance.RxGain_23dB); //Reduce receiver gain by half

 rfidEntrance.PCD_AntennaOn();

 Serial.print("Approximate your card to the reader...");

 Serial.println();

 Serial.print("Setup completed");

 setupNTP(); // Initialize network time synchronization

 // Configure all pins as INPUT or OUTPUT

 pinMode(buzzer_PIN, OUTPUT);

 pinMode(green_LED, OUTPUT);

 pinMode(red_LED, OUTPUT);

 pinMode(entrance_IR1, INPUT);

 pinMode(entrance_IR2, INPUT);

 pinMode(exit_IR1, INPUT);

 pinMode(exit_IR2, INPUT);

 pinMode(entrance_gate_SERVO, OUTPUT);

 pinMode(exit_gate_SERVO, OUTPUT);

// Configure and test entrance servo

139

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

 entranceGateServo.setPeriodHertz(50); // PWM frequency for SG90

 entranceGateServo.attach(entrance_gate_SERVO, 500, 2400); // Minimum and maximum pulse width

(in µs) to go from 0° to 180

 entranceGateServo.write(0);

 delay(100);

 entranceGateServo.write(90);

 delay(100);

 // Configure and test exit servo

 exitGateServo.setPeriodHertz(50); // PWM frequency for SG90

 exitGateServo.attach(exit_gate_SERVO, 500, 2400); // Minimum and maximum pulse width (in µs)

to go from 0° to 180

 exitGateServo.write(0);

 delay(100);

 exitGateServo.write(90);

 delay(100);

 // Initialize OLED display

 if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Try to initialize

 Serial.println(F("SSD1306 allocation failed")); // Error message

 for(;;); // Infinite loop if failed

 }

 // Display welcome message on OLED

 display.display(); // Display initialization

 display.clearDisplay(); // Clear display

 display.setTextSize(2); // Set font size to 2

 display.setTextColor(SSD1306_WHITE); // White text

 display.setCursor(40, 0); // Position cursor

 display.println("RFID");

 display.setCursor(25, 30); // Position cursor

 display.println("Scanner");

 display.display(); // Update display

 // Initialize LCD display

 lcd.init(); // Initialize LCD

 lcd.backlight(); // Turn on backlight

 lcd.setCursor(3, 0); // Position cursor

 lcd.print("IoT RFID Smart");

 lcd.setCursor(0, 1);

 lcd.print("Parking System with");

 lcd.setCursor(0, 2);

 lcd.print("Real-time Lot Status");

 lcd.setCursor(5, 3);

 lcd.print("Monitoring");

 delay(1000);

 lcd.clear();

 lcd.setCursor(9, 1);

 lcd.print("By:");

 lcd.setCursor(3, 2);

 lcd.print("TAN HONG ZHENG");

 delay(1000);

 introDisplayed = true; // Set intro flag

 lcd.clear(); // Clear display

}

//---

// Main loop - runs continuously

void loop() {

 updateDisplay(); // Handles all display updates

 fetchParkingStatusFromDatabase(); // Get latest parking lot status

 // Only show default Welcome Page if not currently showing the RFID Scanning Messages on

OLED

 if (!showingMessage || (millis() - messageDisplayStart > messageDisplayDuration)) {

 if (showingMessage) {

 showingMessage = false; // Message duration elapsed (3 seconds)

 }

 display.clearDisplay();

 display.setTextSize(1);

 display.setTextColor(SSD1306_WHITE);

 display.setCursor(0, 0);

 display.println("Hello! :)");

 display.setCursor(0, 25);

 display.println("Please place your");

 display.setCursor(0, 50);

 display.println("card at the scanner.");

 display.display();

 }

 checkRFIDEntrance(); // Check entrance RFID

 checkRFIDExit(); // Check exit RFID (get scan results from second ESP32)

 checkVehicleAndControlGate(); // Control gates

}

Figure D-1: Code for Main ESP32

140

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

// Include necessary libraries

#include <WiFi.h>

#include <HTTPClient.h>

#include <SPI.h>

#include <MFRC522.h>

#include <ArduinoJson.h>

#include <PCF8575.h>

#include <Arduino.h>

//---

// Define WiFi credentials and server IP address

const char* ssid = "WIFI_SSID";

const char* password = "WIFI_PASSWORD";

const String server_ip = "http://10.0.30.20/parking_system";

//---

// Define pins for RFID and parking slot IR sensors

#define SS_PIN_EXIT 5 // RFID Slave Select pin for exit reader

#define RST_PIN_EXIT 27 // RFID Reset pin for exit reader

#define parking_IR1 35 // IR sensor for parking slot 1

#define parking_IR2 32 // IR sensor for parking slot 2

#define parking_IR3 33 // IR sensor for parking slot 3

#define parking_IR4 25 // IR sensor for parking slot 4

#define parking_IR5 26 // IR sensor for parking slot 5

#define parking_IR6 14 // IR sensor for parking slot 6

#define parking_IR7 12 // IR sensor for parking slot 7

#define parking_IR8 13 // IR sensor for parking slot 8

// Initialize RFID module for exit gate

MFRC522 rfidExit(SS_PIN_EXIT, RST_PIN_EXIT); // RFID reader instance

String lastUID = ""; // Store the last scanned UID

// Initialize parking slots default status as "AVAILABLE"

String parkingStatus[8] = {"AVAILABLE", "AVAILABLE", "AVAILABLE", "AVAILABLE",

 "AVAILABLE", "AVAILABLE", "AVAILABLE", "AVAILABLE"};

// PCF8575 GPIO Expander setup for additional GPIOs

PCF8575 pcf8575_1(0x20); // I2C address of first PCF8575 (handles slots 1-4)

PCF8575 pcf8575_2(0x24); // I2C address of second PCF8575 (handles slots 5-8)

//---

void setup() {

 Serial.begin(115200); // Start serial communication with baud rate 115200

 WiFi.begin(ssid, password); // Connect to WiFi

 // Wait for WiFi connection

 while (WiFi.status() != WL_CONNECTED) {

 delay(1000);

 Serial.println("Connecting to WiFi...");

 }

 Serial.println("Connected to WiFi");

 delay(300);

 // Initialize RFID reader with proper timing

 SPI.begin();

 pinMode(SS_PIN_EXIT, OUTPUT);

 digitalWrite(SS_PIN_EXIT, HIGH); // keep SS high when not active

 rfidExit.PCD_Init();

 rfidExit.PCD_SetAntennaGain(rfidExit.RxGain_23dB); // reduce receiver gain by half

 rfidExit.PCD_AntennaOn();

 delay(1000); // Add small delay to ensure main ESP32's RFID initializes first

 // Set parking slot IR sensors pins as INPUT

 pinMode(parking_IR1, INPUT);

 pinMode(parking_IR2, INPUT);

 pinMode(parking_IR3, INPUT);

 pinMode(parking_IR4, INPUT);

 pinMode(parking_IR5, INPUT);

 pinMode(parking_IR6, INPUT);

 pinMode(parking_IR7, INPUT);

 pinMode(parking_IR8, INPUT);

 // Initialize PCF8575 GPIO expanders

 // Set all pins on both PCF8575 expanders (from 0 to 15) as OUTPUT

 for (int i = 0; i < 16; i++) {

 pcf8575_1.pinMode(i, OUTPUT); // Set all pins on pcf8575_1 to output

 pcf8575_2.pinMode(i, OUTPUT); // Set all pins on pcf8575_2 to output

 }

 pcf8575_1.begin();

 pcf8575_2.begin();

}

//---

void loop() {

 checkRFIDExit(); // Check for RFID tags at exit

 fetchParkingStatusFromDatabase(); // Get latest parking status from server

 // Check each parking sensor

 checkParkingSensor(parking_IR1, 1);

 checkParkingSensor(parking_IR2, 2);

141

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

 checkParkingSensor(parking_IR3, 3);

 checkParkingSensor(parking_IR4, 4);

 checkParkingSensor(parking_IR5, 5);

 checkParkingSensor(parking_IR6, 6);

 checkParkingSensor(parking_IR7, 7);

 checkParkingSensor(parking_IR8, 8);

 delay(1000); // Delay to reduce CPU usage

}

//---

// Function to check RFID card at exit gate

void checkRFIDExit() {

 // Check every 400ms but offset by 200ms from entrance

 static unsigned long lastCheck = 300; // Starts at 300ms offset

 if (millis() - lastCheck < 400) return;

 lastCheck = millis();

 // Check if new RFID card is present and readable

 if (rfidExit.PICC_IsNewCardPresent() && rfidExit.PICC_ReadCardSerial()) {

 Serial.print("Exit UID tag: ");

 String content = "";

 // Read and format UID bytes

 for (byte i = 0; i < rfidExit.uid.size; i++) {

 Serial.print(rfidExit.uid.uidByte[i] < 0x10 ? " 0" : " ");

 Serial.print(rfidExit.uid.uidByte[i], HEX);

 content += String(rfidExit.uid.uidByte[i] < 0x10 ? "0" : "");

 content += String(rfidExit.uid.uidByte[i], HEX);

 }

 Serial.println();

 content.toUpperCase(); // Converts all letters to uppercase

 lastUID = content; // Store UID

 // Variables to store user and vehicle details

 String ownerName = "";

 String carColor = "";

 String licensePlate = "";

 // Check if RFID UID read exists in the database or not, if yes, set status as "success"

 String status = checkRFIDInDatabase(lastUID, ownerName, carColor, licensePlate);

 Serial.println("Exit RFID Database check status: " + status);

 Serial.println("Owner name: " + ownerName);

 Serial.println("Car Color: " + carColor);

 Serial.println("License Plate: " + licensePlate);

 bool authorized = (status == "success"); // Determine if the RFID tag is authorized or

not

 // Send RFID data to main ESP32

 sendRFIDDataToMainESP32(lastUID, ownerName, carColor, licensePlate, authorized);

 rfidExit.PICC_HaltA(); // Halt PICC

 rfidExit.PCD_StopCrypto1(); // Stop encryption on PCD

 }

}

//---

// Function to check RFID in database

String checkRFIDInDatabase(String uid, String &ownerName, String &carColor, String

&licensePlate) {

 HTTPClient http;

 // Build URL consists of the UID that need to be checked

 String url = server_ip + String("/check_rfid.php?rfid=") + uid;

 http.begin(url); // Start HTTP connection

 int httpCode = http.GET(); // Send HTTP GET request

 if (httpCode == HTTP_CODE_OK) {

 String payload = http.getString(); // Get response

 Serial.println("Server response: " + payload);

 // Parse JSON response

 DynamicJsonDocument doc(1024);

 deserializeJson(doc, payload);

 if (doc["status"] == "success") {

 // Extract user and vehicle details from JSON response

 ownerName = doc["owner_name"].as<String>();

 carColor = doc["car_color"].as<String>();

 licensePlate = doc["license_plate"].as<String>();

 http.end();

 return "success";

 }

 }

 http.end(); // Close connection

 return "fail"; // Return fail if error

}

//---

// Function to send RFID data to ‘exit_status.json' where main ESP32 retrieves from it

void sendRFIDDataToMainESP32(String uid, String ownerName, String carColor, String

licensePlate, bool authorized) {

 HTTPClient http;

142

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

 String url = server_ip + String("/update_exit_status.php");

 http.begin(url);

 http.addHeader("Content-Type", "application/json"); // Set content type as JSON

 // Create JSON payload

 DynamicJsonDocument doc(1024);

 doc["uid"] = uid;

 doc["owner_name"] = ownerName;

 doc["car_color"] = carColor;

 doc["license_plate"] = licensePlate;

 doc["Authorized"] = authorized;

 String requestBody;

 serializeJson(doc, requestBody); // Serialize JSON to string

 int httpCode = http.POST(requestBody); // Send HTTP POST request

 String payload = http.getString(); // Get response

 Serial.println("HTTP Response code: " + String(httpCode));

 Serial.println("Response: " + payload);

 http.end(); // Close connection

}

//---

// Function to check parking IR sensor status

void checkParkingSensor(int sensorPin, int slotNumber) {

 String currentStatus = parkingStatus[slotNumber - 1]; // Get current status

 if (digitalRead(sensorPin) == LOW) { // Vehicle detected (LOW = detected)

 if (currentStatus == "RESERVED") {

 updateParkingStatus("OCCUPIED", slotNumber); // Change to OCCUPIED if currently is

RESERVED and now vehicle detected

 } else if (currentStatus == "AVAILABLE") {

 updateParkingStatus("OCCUPIED", slotNumber); // Change to OCCUPIED if currently is

AVAILABLE and now vehicle detected

 }

 } else { // No vehicle detected (HIGH = no detected)

 if (currentStatus == "OCCUPIED") {

 updateParkingStatus("AVAILABLE", slotNumber); // Change to AVAILABLE if no vehicle

detected

 }

 }

}

//---

// Function to fetch latest status from ‘parking_status’ table in the database (for Parking

Slot LEDs)

void fetchParkingStatusFromDatabase() {

 HTTPClient http;

 String url = server_ip + "/get_parking_status.php";

 http.begin(url);

 int httpCode = http.GET(); // Send HTTP GET request

 if (httpCode == HTTP_CODE_OK) {

 String payload = http.getString();

 DynamicJsonDocument doc(1024);

 deserializeJson(doc, payload); // Parse JSON response

 // Update each parking slot status

 for (int i = 1; i <= 8; i++) {

 String status = doc[String(i)].as<String>();

 parkingStatus[i - 1] = status; // Update old status with latest fetched status

 controlLEDs(i, status); // Update the LEDs based on the fetched status

 }

 } else {

 Serial.print("Failed to fetch parking lot status, HTTP code: ");

 Serial.println(httpCode);

 }

 http.end(); // Close connection

}

//---

//Function to update the ‘parking_status’ table in the database based on local IR sensors

status

void updateParkingStatus(String newStatus, int slotNumber) {

 parkingStatus[slotNumber - 1] = newStatus; // Update local status according to IR sensors

status

 HTTPClient http;

 String url = server_ip + String("/update_parking_status.php");

 http.begin(url);

 http.addHeader("Content-Type", "application/x-www-form-urlencoded");

 // Build POST data string with all slot statuses

 String postData = "status1=" + String(parkingStatus[0]) +

 "&status2=" + String(parkingStatus[1]) +

 "&status3=" + String(parkingStatus[2]) +

 "&status4=" + String(parkingStatus[3]) +

 "&status5=" + String(parkingStatus[4]) +

 "&status6=" + String(parkingStatus[5]) +

 "&status7=" + String(parkingStatus[6]) +

143

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

 "&status8=" + String(parkingStatus[7]);

 Serial.print("Sending data to server: ");

 Serial.println(postData);

 int httpCode = http.POST(postData); // Send HTTP POST request

 if (httpCode == HTTP_CODE_OK) {

 String payload = http.getString();

 Serial.print("Response: ");

 Serial.println(payload);

 } else {

 Serial.print("Failed to update parking status. HTTP code: ");

 Serial.println(httpCode);

 Serial.print("HTTP error: ");

 Serial.println(http.errorToString(httpCode).c_str());

 }

 http.end();

}

//---

// Function to control parking slot LEDs

void controlLEDs(int slotNumber, String status)

{

 int redPin, yellowPin, greenPin; // GPIO Pins on PCF8575 I/O Expanders

 // Adjust pin calculation for slots 1-4 (First PCF8575)

 if (slotNumber <= 4) {

 redPin = slotNumber * 3 - 3; // e.g. Slot 2 RED LED = (2*3)-3 = Pin P03

 yellowPin = slotNumber * 3 - 2; // e.g. Slot 2 Yellow LED = (2*3)-2 = Pin P04

 greenPin = slotNumber * 3 - 1; // e.g. Slot 2 Green LED = (2*3)-1 = Pin P05

 // Set Parking Slot LEDs state based on the status (Active LOW)

 if (status == "OCCUPIED") {

 pcf8575_1.digitalWrite(redPin, LOW); // Turn on red LED

 pcf8575_1.digitalWrite(yellowPin, HIGH); // Turn off yellow LED

 pcf8575_1.digitalWrite(greenPin, HIGH); // Turn off green LED

 } else if (status == "AVAILABLE") {

 pcf8575_1.digitalWrite(redPin, HIGH); // Turn off red LED

 pcf8575_1.digitalWrite(yellowPin, HIGH); // Turn off yellow LED

 pcf8575_1.digitalWrite(greenPin, LOW); // Turn on green LED

 } else if (status == "RESERVED") {

 pcf8575_1.digitalWrite(redPin, HIGH); // Turn off red LED

 pcf8575_1.digitalWrite(yellowPin, LOW); // Turn on yellow LED

 pcf8575_1.digitalWrite(greenPin, HIGH); // Turn off green LED

 }

 }

 // Adjust pin calculation for slots 5-8 (Second PCF8575)

 else {

 redPin = (slotNumber - 4) * 3 - 3; // e.g. Slot 6 RED LED = [(6-4)*3]-3 = Pin P03

 yellowPin = (slotNumber - 4) * 3 - 2; // e.g. Slot 6 Yellow LED = [(6-4)*3]-2 = Pin P04

 greenPin = (slotNumber - 4) * 3 - 1; // e.g. Slot 6 Green LED = [(6-4)*3]-1 = Pin P05

 // Set Parking Slot LEDs state based on the status (Active LOW)

 if (status == "OCCUPIED") {

 pcf8575_2.digitalWrite(redPin, LOW); // Turn on red LED

 pcf8575_2.digitalWrite(yellowPin, HIGH); // Turn off yellow LED

 pcf8575_2.digitalWrite(greenPin, HIGH); // Turn off green LED

 } else if (status == "AVAILABLE") {

 pcf8575_2.digitalWrite(redPin, HIGH); // Turn off red LED

 pcf8575_2.digitalWrite(yellowPin, HIGH); // Turn off yellow LED

 pcf8575_2.digitalWrite(greenPin, LOW); // Turn on green LED

 } else if (status == "RESERVED") {

 pcf8575_2.digitalWrite(redPin, HIGH); // Turn off red LED

 pcf8575_2.digitalWrite(yellowPin, LOW); // Turn on yellow LED

 pcf8575_2.digitalWrite(greenPin, HIGH); // Turn off green LED

 }

 }

}

Figure D-2: Code for Secondary ESP32

144

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

// Include necessary libraries

#include <WiFi.h>

#include <WiFiClientSecure.h>

#include "soc/soc.h"

#include "soc/rtc_cntl_reg.h"

#include "Base64.h"

#include "esp_camera.h"

//--

// WiFi credentials

const char* ssid = "WIFI_SSID";

const char* password = "WIFI_PASSWORD";

//--

// Google Apps Script details for uploading images

const char* myDomain = "script.google.com";

String myScript =

"/macros/s/AKfycbxB3CdeLGaYvvqEBy5UXlmA_au8_Zsu2qFnECzGbkR1MOkRb5B85hGGgCgGGKYEEP6XBw/exec";

String myFilename = "filename=ESP32-CAM.jpg"; // Filename for the uploaded image

String mimeType = "&mimetype=image/jpeg"; // Image MIME type

String myImage = "&data="; // Prefix for image data in POST request

int waitingTime = 30000; // Maximum wait time for server response (30 seconds)

//--

// ESP32-CAM Pin Definitions

#define PWDN_GPIO_NUM 32

#define RESET_GPIO_NUM -1

#define XCLK_GPIO_NUM 0

#define SIOD_GPIO_NUM 26

#define SIOC_GPIO_NUM 27

#define Y9_GPIO_NUM 35

#define Y8_GPIO_NUM 34

#define Y7_GPIO_NUM 39

#define Y6_GPIO_NUM 36

#define Y5_GPIO_NUM 21

#define Y4_GPIO_NUM 19

#define Y3_GPIO_NUM 18

#define Y2_GPIO_NUM 5

#define VSYNC_GPIO_NUM 25

#define HREF_GPIO_NUM 23

#define PCLK_GPIO_NUM 22

//--

// IR sensor and onboard LED flash pin definitions

#define IR_PIN 13 // IR sensor input pin

#define LED_PIN 4 // Onboard LED flash pin

//--

// Function prototypes

void connectWiFi();

void configureCamera();

void captureAndSendImage();

String urlencode(String str);

//--

void setup() {

 WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); // Disable brownout detector to prevent resets

 Serial.begin(115200); // Initialize serial communication

 delay(10);

 pinMode(IR_PIN, INPUT); // Set IR sensor pin as input

 pinMode(LED_PIN, OUTPUT); // Set LED flash pin as output

 digitalWrite(LED_PIN, LOW); // Ensure LED is off initially

 connectWiFi(); // Connect to WiFi network

 configureCamera(); // Initialize and configure the camera

}

//--

void loop() {

 // Check if movement is detected by the IR sensor (LOW = movement detected)

 if (digitalRead(IR_PIN) == LOW) {

 Serial.println("Movement detected! Capturing image...");

 captureAndSendImage(); // Capture image and upload to Google Drive

 delay(3000); // Wait 3 seconds to avoid multiple triggers from the same movement

 } else {

 Serial.println("No movement detected.");

 delay(1000); // Check again in 1 second if no movement is detected

 }

}

//--

// Function to connect to WiFi

void connectWiFi() {

 WiFi.mode(WIFI_STA); // Set WiFi to station mode

 Serial.print("Connecting to WiFi: ");

 Serial.println(ssid);

 WiFi.begin(ssid, password); // Begin WiFi connection

 // Wait until connected to WiFi

 while (WiFi.status() != WL_CONNECTED) {

 Serial.print(".");

 delay(500);

145

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

 }

 Serial.println("\nWiFi connected!");

 Serial.print("IP Address: ");

 Serial.println(WiFi.localIP()); // Print the assigned IP address

}

//--

// Function to configure the ESP32-CAM camera settings

void configureCamera() {

 camera_config_t config;

 config.ledc_channel = LEDC_CHANNEL_0; // LEDC channel for camera

 config.ledc_timer = LEDC_TIMER_0; // LEDC timer for camera

 config.pin_d0 = Y2_GPIO_NUM; // Camera data pins

 config.pin_d1 = Y3_GPIO_NUM;

 config.pin_d2 = Y4_GPIO_NUM;

 config.pin_d3 = Y5_GPIO_NUM;

 config.pin_d4 = Y6_GPIO_NUM;

 config.pin_d5 = Y7_GPIO_NUM;

 config.pin_d6 = Y8_GPIO_NUM;

 config.pin_d7 = Y9_GPIO_NUM;

 config.pin_xclk = XCLK_GPIO_NUM; // XCLK pin

 config.pin_pclk = PCLK_GPIO_NUM; // PCLK pin

 config.pin_vsync = VSYNC_GPIO_NUM; // VSYNC pin

 config.pin_href = HREF_GPIO_NUM; // HREF pin

 config.pin_sscb_sda = SIOD_GPIO_NUM; // SDA pin

 config.pin_sscb_scl = SIOC_GPIO_NUM; // SCL pin

 config.pin_pwdn = PWDN_GPIO_NUM; // Power-down pin

 config.pin_reset = RESET_GPIO_NUM; // Reset pin

 config.xclk_freq_hz = 20000000; // XCLK frequency (20 MHz)

 config.pixel_format = PIXFORMAT_JPEG; // Set pixel format to JPEG

 config.frame_size = FRAMESIZE_VGA; // Set frame size to VGA (640 x 480)

 config.jpeg_quality = 10; // JPEG quality (lower value = higher quality)

 config.fb_count = 1; // Number of frame buffers

 // Initialize the camera and check for errors

 esp_err_t err = esp_camera_init(&config);

 if (err != ESP_OK) {

 Serial.printf("Camera init failed with error 0x%x\n", err);

 delay(1000);

 ESP.restart(); // Restart the ESP32 if camera initialization fails

 }

 Serial.println("Camera initialized successfully.");

}

//--

// Function to capture an image and send it to Google Drive

void captureAndSendImage() {

 Serial.println("Turning on LED and capturing image...");

 digitalWrite(LED_PIN, HIGH); // Turn on LED flash for illumination

 delay(100); // Allow LED to reach full brightness

 // Capture image from camera

 camera_fb_t * fb = esp_camera_fb_get();

 if (!fb) {

 Serial.println("Camera capture failed.");

 digitalWrite(LED_PIN, LOW); // Turn off LED if capture fails

 delay(1000);

 ESP.restart(); // Restart ESP32 if capture fails

 return;

 }

 Serial.println("Image captured. Turning off LED.");

 digitalWrite(LED_PIN, LOW); // Turn off the LED flash

 WiFiClientSecure client;

 client.setInsecure(); // Disable SSL certificate verification

 // Connect to the Google Apps Script server

 if (client.connect(myDomain, 443)) {

 Serial.println("Connection successful. Sending image...");

 // Encode image data to Base64

 char *input = (char *)fb->buf;

 char output[base64_enc_len(3)];

 String imageFile = "";

 for (int i = 0; i < fb->len; i++) {

 base64_encode(output, (input++), 3);

 if (i % 3 == 0) imageFile += urlencode(String(output));

 }

 String Data = myFilename + mimeType + myImage;

 esp_camera_fb_return(fb); // Release the frame buffer to free up memory

 // Send POST request with image data

 client.println("POST " + myScript + " HTTP/1.1");

 client.println("Host: " + String(myDomain));

146

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

 client.println("Content-Length: " + String(Data.length() + imageFile.length()));

 client.println("Content-Type: application/x-www-form-urlencoded");

 client.println();

 client.print(Data);

 for (int Index = 0; Index < imageFile.length(); Index += 1000) {

 client.print(imageFile.substring(Index, Index + 1000));

 }

 Serial.println("Waiting for server response...");

 long int StartTime = millis();

 while (!client.available()) {

 Serial.print(".");

 delay(100);

 if ((StartTime + waitingTime) < millis()) {

 Serial.println("\nNo response.");

 break;

 }

 }

 // Print server response

 Serial.println();

 while (client.available()) {

 Serial.print(char(client.read()));

 }

 } else {

 Serial.println("Failed to connect to Google Apps Script.");

 }

 client.stop(); // Close the connection

}

//--

// Function to URL encode the Base64 image data

String urlencode(String str) {

 String encodedString = "";

 char c;

 char code0;

 char code1;

 for (int i = 0; i < str.length(); i++) {

 c = str.charAt(i);

 if (c == ' ') {

 encodedString += '+';

 } else if (isalnum(c)) {

 encodedString += c;

 } else {

 code1 = (c & 0xf) + '0';

 if ((c & 0xf) > 9) {

 code1 = (c & 0xf) - 10 + 'A';

 }

 c = (c >> 4) & 0xf;

 code0 = c + '0';

 if (c > 9) {

 code0 = c - 10 + 'A';

 }

 encodedString += '%';

 encodedString += code0;

 encodedString += code1;

 }

 yield(); // Allow the system to handle other tasks

 }

 return encodedString;

}

Figure D-3: Code for ESP32-CAM (ESP32_CAM_FYP.ino)

147

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

function doPost(e) {

 // Decode the received Base64-encoded image data

 var data = Utilities.base64Decode(e.parameters.data);

 // Generate a timestamped filename for the image (e.g., "20250214_123456.jpg")

 var nombreArchivo = Utilities.formatDate(new Date(), "GMT+8", "yyyyMMdd_HHmmss") + ".jpg";

 // Create a Blob object from the decoded data with the given MIME type and filename

 var blob = Utilities.newBlob(data, e.parameters.mimetype, nombreArchivo);

 // Define the folder name where the image will be saved in Google Drive

 var folderName = "ESP32_CAM_FYP";

 // Search for an existing folder with the specified name in Google Drive

 var folder, folders = DriveApp.getFoldersByName(folderName);

 if (folders.hasNext()) {

 // If the folder exists, use it

 folder = folders.next();

 } else {

 // If the folder doesn't exist, create it

 folder = DriveApp.createFolder(folderName);

 }

 // Save the image file to the designated folder in Google Drive

 var file = folder.createFile(blob);

 // Return a response indicating completion

 return ContentService.createTextOutput('Completed');

}

Figure D-4: Code for Google Apps Script

