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ABSTRACT

CRYPTANALYSIS AND DESIGN OF CHAOS-BASED IMAGE
ENCRYPTION SCHEMES

WONG KUAN WAI

Chaos theory has been widely applied in designing image encryption
schemes due to its deep connection with cryptographic properties, such as
sensitivity to initial conditions and unpredictability. However, many existing
image encryption schemes have been shown to be insecure against
cryptanalysis. Cryptanalysis is essential for uncovering potential vulnerabilities,
as it evaluates the security of encryption schemes, identifies weaknesses, and
guides the development of more secure frameworks. Our research reveals that
the scheme proposed by Biswas et al. is vulnerable to known plaintext attacks,

226428 encryptions. This is 2!8372 times faster

requiring a time complexity of
than brute-force attacks. Similarly, a chosen plaintext attack on Ping et al.’s
scheme reveals a reduced key space of 221651 qown from the claimed 23%°, and
identifies inefficiencies in its Henon map-based sequential encryption method.
These findings emphasize the need for a more comprehensive analysis of

encryption schemes that utilize genetic algorithm and sequential encryption

techniques.

To address these challenges, we propose secure image encryption schemes
that are based on enhanced chaotic maps. Specifically, we enhance the chaotic
behavior of one-dimensional and two-dimensional chaotic maps using
cascading techniques. This results in the development of the Logistic-Beta map,
the 2D-Henonlog map, and the 2D-Sine-Henon Chaotic Map (2D-SHCM).
Furthermore, we present a grayscale image encryption scheme utilizing a
permutation-diffusion architecture, as well as a color image encryption scheme

based on a genetic algorithm and the 2D-SHCM. Both schemes are designed to



ensure high levels of confusion and diffusion in the encrypted images.

Experimental results demonstrate that the proposed schemes effectively
resist both statistical and differential attacks. These results highlight the
importance of cryptanalysis of existing schemes to identify weaknesses and
develop secure encryption methods. The proposed work underscores the need
for robust chaotic maps, strong confusion and diffusion mechanisms, and
thorough security evaluations as fundamental principles for designing reliable

image encryption schemes.

il
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

With the advancement of technology, sharing image data on social media
platforms such as Instagram, Facebook and WhatsApp has become an essential
daily activity in today’s society. Image encryption is an important primitive for
protecting image data against various types of attacks, preventing unauthorized
users from recovering the original image even if the encrypted image is
captured. However, the traditional encryption methods such as Data Encryption
Standard (DES) (National Bureau of Standards, 1977), Advanced Encryption
Standard (AES) (Daemen and Rijmen, 2013) and International Data Encryption
Algorithm (IDEA) (Lai and Massey, 1990) are not well-suited for encrypting
image data due to the bulky capacity of the images and also the high correlation
between the image pixels. These convensional methods are more suitable for
textual data rather than image data.

In recent years, chaotic based image encryption becomes a main focal of
research in the information and communication security field. Chaotic system
has many inherent characteristics such as ergodicity, aperiodicity and highly
sensitive to initial conditions and control parameters making it to be popular in
designing an image encryption scheme. Therefore, it is widely used in building
the permutation matrices, generating a pseudorandom bit sequence which is
useful in performing some basic encryption operations, and producing the
ciphertext directly when the elements of plaintext are used as the control

parameters or initial conditions of the chaotic systems. Many encryption



schemes applied the logistic map (May, 1974) due to its simple structure and
low computational power requirements. However, its small chaotic range leads
to a limited key space, which contributes to weak security. To overcome this
drawback, Zahmoul et al. (2017) proposed a one-dimensional chaotic map that
based on Beta function which consists of more control parameters.
Two-dimensional chaotic maps such as Henon map and modified Henon map
proposed by Hua et al. (2020), as well as 2D-CLSS proposed by Teng et al.
(2022) based on logistic and sine maps, can widen the chaotic range. However,
these chaotic maps still contain periodic windows that could affect their chaotic
behavior. Even though the 3D-chaotic map (Bouteghrine et al., 2021) has many
control parameters that contribute to a complex chaotic structure, it results in
difficult hardware implementation.

The first chaotic based encryption algorithm was proposed by Matthews
(1989) and he showed that chaotic system can be applied to cryptography. A
secure encryption algorithm must possess the confusion and diffusion functions
in its algorithm (Shannon, 1949). Confusion can be attained by obscuring the
relationship between cipher-image and the secret key. In other words, every
pixel of cipher-image should be affected by secret key as many as possible.
Besides, diffusion can reduce the redundancy of the plain-image by spreading it
over the cipher-image. It also means that changing a pixel of plain-image will
change a large number of pixels of cipher-image. Most of the chaotic based
image encryption algorithms are based on permutation-diffusion architecture. It
is also known as Fridrich’s algorithm because it was firstly proposed by Fridrich
(1998). This is the most typical structure that fulfils confusion and diffusion and
it had been widely used by other researchers in their ciphers. Pak et al. (2019)
proposed a bit-level color image encryption scheme using improved chaotic
map on the existing one-dimensional chaotic maps (i.e., logistic map and sine
map). The encryption scheme consists of permutation, diffusion, and linear

transformation processes. Wu et al. (2018b) applied two-dimensional



henon-sine map and DNA coding in designing an image encryption scheme.
DNA addition, subtraction and XOR operations are combined to modify the
pixel value. However, the schemes proposed in (Pak et al., 2019; Wu et al.,
2018b) were vulnerable to the chosen plaintext attack by revealing equivalent
encryption elements (Li, Wang, Liu and Fan, 2019; Chen et al., 2020). Ping
et al. (2018) proposed an image encryption method based on a two-point
diffusion strategy, integrating the permutation and diffusion processes into a
single step. The authors claimed that their encryption algorithm is secure
against chosen plaintext attacks. However, we discovered the existence of
equivalent keys in their scheme, where the same encrypted output can be
generated by at least two different keys.

The hybrid model of a chaotic function and genetic algorithm has been
widely applied in image encryption algorithms. The crossover and mutation are
used as the confusion and diffusion processes, respectively. Pseudorandom bit
sequence that generated by chaotic function can be used as the parent bit strings
of the crossover process or used in determining the crossover point of the parent
bit strings. Wang and Xu (2014) proposed an image encryption scheme based
on genetic algorithm and intertwining logistic map. Monte Carlo method is
used to choose two parent binary strings. The simple operation of the genetic
algorithms could avoid the complexity of using mathematical transformation.
Biswas et al. (2015) proposed an image encryption based on N-logistic tent map
and genetic algorithms for wireless sensor network. They used mutation and
two-point crossover in the encryption algorithms. Later, Das et al. (2018)
proposed image encryption scheme based on Arnold cat map and genetic
algorithms. Zhang, He, Li and Wang (2020) proposed a color image encryption
scheme that combines the two-dimensional non-linear coupling map lattice
system with genetic algorithms. Although the genetic algorithm-based image
encryption schemes proposed in Biswas et al. (2015); Das et al. (2018); Wang

and Xu (2014); Zhang, He, Li and Wang (2020) claimed that their schemes can



resist various types of attack and provide sufficient security, we found that the
simple operation of genetic algorithm may be vulnerable to known plaintext
attack (Biham and Kocher, 1994). Therefore, it is crucial to conduct research on
improving the security level of chaotic-based image encryption against various

cryptanalytic attacks.

1.2 Objectives

After reviewing recent studies on chaotic systems and image encryption
schemes, this research aims to design a secure chaotic based image encryption
scheme capable of resisting various cryptanalytic attacks. The three main

objectives of this research are as follows.

1. To perform thorough study on how the existing design rules of chaotic
based image encryption schemes impact their security. This includes
exploring different combinations of permutation and diffusion
mechanisms within encryption architectures, as well as cryptanalyzing

existing schemes under various cryptanalytic attack models.

2. To propose new chaotic maps using cascading methods to enhance their
chaotic behavior. This involves comparing their dynamical performance
with the existing chaotic maps and evaluating the effectiveness of the new

cascading maps in key generation and encryption processes.

3. To propose improved techniques in constructing a secure chaotic based
image encryption scheme. This can be achieved by integrating cascading
chaotic maps and cross-plane encryption within a permutation-diffusion

architecture.



1.3 Contributions

In this thesis, we conduct cryptanalysis of existing chaotic based image
encryption schemes to identify their strengths and vulnerabilities. We propose
new chaotic maps that demonstrate better dynamical performance as compared
to the existing chaotic maps. Finally, we propose novel image encryption
schemes based on the newly proposed chaotic map and the insights gained from

the cryptanalysis. The contributions of this thesis are listed as follows:

* Cryptanalyses of existing chaotic based image encryption schemes. A
known plaintext attack was applied on the image encryption scheme
proposed by Biswas et al. (2015). The properties of genetic algorithm
were analyzed. The proposed attack methodology can be extended to
other encryption schemes designed using genetic algorithm. Besides, a
chosen plaintext attack was applied to the image encryption scheme
proposed by Ping et al. (2018). The dynamical degradation of the henon
map was studied. The security and efficiency of the two-point diffusion
strategy were evaluated. Possible enhancements to the attacked ciphers

are suggested.

* Proposals of new chaotic maps. A cascading technique was applied to
develop a new one-dimensional chaotic map derived from the classical
logistic map and beta map. Next, a chaotification method was introduced
by cascading a two-dimensional chaotic map with a one-dimensional
chaotic map using modular operations. The effectiveness of this method
was demonstrated using the henon and logistic maps. Besides, the
cascading technique was extended to develop a new two-dimensional
using sine map and henon map that can address the limitations of
discontinuous chaotic ranges encountered in both one-dimensional and

high-dimensional chaotic maps. Dynamical performance results indicated
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the proposed chaotic maps are suitable for pseudorandom number

generation and image encryption applications.

* Proposals of new chaotic based image encryption schemes. A new
grayscale image encryption scheme was developed using a
four-dimensional hyperchaotic system and a permutation-diffusion
architecture. Lastly, by leveraging the findings from the chaotic maps and
cryptanalyses of chaotic based image encryption schemes, this thesis
proposes a new color image encryption scheme that fulfills the confusion
and diffusion properties necessary for secure image encryption.
Experimental results demonstrated that the proposed schemes exhibits

strong resistance to the statistical and differential attacks.

1.4 Organization of the thesis

The remainder of this thesis is organised as follows:

* Literature review. Chapter 2 provides a comprehensive review of the
evolution of image encryption schemes based on the chaotic maps from
1980s to the present. Various chaotification method used in developing
chaotic map are discussed. In addition, common cryptanalytic techniques

applied to the image encryption schemes are reviewed.

* Our new cryptanalytic results. Chapters 3 and 4 present our
cryptanalytic results on the image encryption schemes (Biswas et al.,
2015; Ping et al., 2018). Each chapter begins with an overview of the
respective encryption scheme, then followed by a detailed descruption of
our cryptanalytic results. Finally, the chapters conclude with a summary

remark.



* Our new chaotic maps. Chapters 5 and 6 introduces the newly proposed
chaotic maps, including logistic-beta map, 2D-Henonlog map. The
mathematical models and dynamical analyses of these chaotic maps are

discussed.

* Our new image encryption schemes. Chapters 7 and 8 presents the
proposed image encryption schemes. Experiment analyses show that the

proposed schemes achieve the desired cryptographic properties.

* Conclusion and future work. Chapter 9 summarizes results obtained in

this thesis and provide suggestions for future research directions.



In recent years, chaos-based image encryption has become a significant area of
research within information and communication security. Chaotic systems
possess inherent characteristics such as aperiodicity, sensitivity to initial
conditions and system parameters, ergodicity, and random-like behavior. These
properties make them highly suitable for developing fast and efficient
encryption schemes.
cryptanalytic methods used to break image encryption schemes. Following that,

we present a literature review of various chaos-based image encryption schemes

CHAPTER 2

LITERATURE REVIEW

that utilize different architectures.

2.1 Notation

Unless otherwise indicated, most of the notations used in this thesis are listed in

Table 2.1.
Table 2.1: Summary of the adopted notations
Notation Description
A an assembly, which can be a vector, sequence, a matrix
and a 2D or 3D image
A0 superscript i denotes i encryption round
a(i) or a; i"" element of the corresponding 1D assembly A
a(i,j) or | element or pixel value at i/ row and j column of the
A;j corresponding 2D matrix or grayscale image A
a(i, j,k) or | pixel value at i'* row and j column of k" plane of the
Ak corresponding 3D color image A
floor rounding a number down to the nearest integer

This chapter begins with an overview of common




S bitwise logical exclusively-or (XOR) of two bit strings
of the same length

2.2 Image encyption designs

An image encryption is an important primitive that processes a plain image P to
generate a cipher image C using secret key K. A secure encryption algorithm
must possess the confusion and diffusion functions in its algorithm (Shannon,
1949). Confusion can be attained by obscuring the relationship between
cipher-image and the secret key. In other words, every pixel of cipher-image
should be affected by secret key as many as possible. Besides, diffusion can
reduce the redundancy of the plain-image by spreading it over the cipher-image.
It also means that changing a pixel of plain-image will change a large number
of pixels of cipher-image. In order to achieve good confusion and diffusion
properties, the architecture of the chaotic based image encryption scheme can
be designed based on permutation-only, diffusion-only, diffusion-permutation
and permutation-diffusion.

In this section, we compare the architectures of various image encryption
schemes and their vulnerabilities to different cryptanalytic methods. Before
delving into the literature review of various proposals, we introduce common

cryptanalytic attack models.



2.2.1 Cryptanalytic attack models

Image encryption is a technique of used to protect visual data by transforming
plain images into cipher images. This process is to ensure a secure
communication by preventing unauthorized access to the plain images when
they are transmitted over public channels. According to Kerckhoffs’ Principle,
the security of a cryptosystem should rely solely on the secrecy of the key, not
on the secrecy of the cryptosystem. This means that while anyone can
eavesdrop and obtain the cipher image, the plain image should remain
inaccessible without the key.  Cryptanalytic attack, or also known as
cryptanalysis, refers to the process of recovering the plain image from the
cipher image without the key, or even more challenging, deducing the secret key
(Petitcolas, 2023).

Attack models specify the information available to an attacker when they
attempt to break a cryptographic system. The most common attack models are

listed as follows.

1. Ciphertext-only attack: The attacker has access to a number of
ciphertexts but does not know the corresponding plaintexts. By solely
observing these ciphertexts, the attacker attempts to deduce the
decryption key or plaintext. Any encryption scheme that is vulnerable to

this type of attack is considered to be completely insecure.

2. Known-plaintext attack: The attacker has access to a collection of
plaintext-ciphertext pairs. The plaintexts are assumed to be randomly

selected.

3. Chosen-plaintext attack: The attacker has access to the encryption
algorithm, allowing them to choose any plaintext and generate the

corresponding ciphertext.
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4. Chosen-ciphertext attack: The attacker has access to the decryption
algorithm, even without the secret key, by potentially compromising the
decryption equipment, it allows the attacker to select ciphertexts and
obtain the corresponding plaintexts. It is important to note that decrypting
information is not always sufficient to compromise a system. For
example, some video-protection devices allow attackers to perform
encryption and decryption queries using the device’s chip, but the primary
goal of the attacker in such cases is to obtain the key for redistribution.
Merely being able to decrypt data without the key may not be enough to

break the system.

Next, we will explore image encryption schemes with different designs and

their weaknesses against cryptanalytic attacks.

2.2.2 Permutation-only algorithm

Permutation-only image encryption scheme encrypts the images by changing
the positions of all the pixels of the image in a secret manner. The permutation
process is an invertible function to allow a plain-image to be recovered from the
decryption. Let the plain image P = {p(i)}L,, where L = M x N. Let
W = {w(i)}1_, be the permutation vector with length L. In a permutation-only

algorithm, the plain image is encrypted to produce the cipher image

C = {c(i)}L, by using

c(wli)) = pli). @.1)

Li et al. (2008) proposed a general quantitative cryptanalysis on the

multimedia algorithms against the known- or chosen-plaintexts attacks. The
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cryptanalysis was achieved by reconstructing the permutation matrix instead of
recovering the key. They proved that only O(log;(MN)) plain-images are
needed to break the permutation-only algorithm, where MN is the size of the
plain-image in terms of row and column and L is the number of possible
different pixel values.  The attack complexity of this cryptanalysis is
O(M?*N?log; (MN)).

Li and Lo (2011) optimized the cryptanalysis in (Li et al., 2008) by adopting
a binary tree classification method and a multi-branch tree classification
method. With these methods, the permutation-only algorithm can also be
broken with O(log;(MN)) plain-images. However, the spatial and
computational complexities are O(MN) and O([log; (MN)| - MN), which are
much lower than the attack complexity of the method in (Li et al., 2008).
Therefore, the permutation-only algorithm has been proven to be insecure

against plaintext attacks based on these cryptanalytic methods.

2.2.3 Diffusion-only algorithm

Diffusion is a substitution function defined by

c(i) = p() B f(c(i—1))Bg(0), 22

where H denotes an arithmetic operation, G = {g(i) } is the diffusion mask made
up by chaotic sequences, f(-) is a nonlinear function, and c(i) and p(i) represent
cipher pixel and plain pixel, respectively. An image encryption scheme solely
based on diffusion operation is considered a less robust design as the confusion
property has been neglected.

Ye and Zhou (2014) proposed an image encryption schemes using

diffusion-only algorithm. They proposed a block image encryption that depends
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on double chaotic systems, i.e. Logistic map and 4D hyper-chaotic system. The
authors claimed that the diffusion only architecture could overcome the
problems inherent in permutation-diffusion process, such as many number of
rounds required, permutation process can be easily exploited by
known-plaintext attack and chosen-plaintext attack, and the key-dependent
problem in the keystream.

However, this architecture was attacked by Yap and Phan (2017) using
chosen-plaintext and chosen-ciphertext attacks with the exploitation on the
r-round differential with probability of 1. This was also the first attack that
demonstrates the vulnerability of image encryption scheme against
distinguishing attack. Distinguishing attack is a cryptanalytic method that
allows an attacker to distinguish the images encrypted by the underlying
encryption algorithm from the random encrypted images. A plaintext-ciphertext
pairs with the input differential of (0, ) were chosen. If the plaintext-ciphertext
were generated by using proposed encryption scheme, then the output
difference should also be (0,8). The success rate of distinguishing the
encrypted images from a truly random images is 1 — 2787, given that size of p
pixels is 8-bit long. Besides, Yap and Phan also applied chosen-ciphertext
attack on the Ye and Zhou’s encryption scheme as the encryption scheme did
not satisfy the confusion and diffusion properties due to the linear
transformation function of images that uses the modular addition. The authors
should investigate how the input difference can influence the output difference
under the encryption. To improve the confusion and diffusion properties, adding
the addition-rotation-XOR (ARX) operations to the encryption scheme were
suggested by Yap and Phan.

Essaid et al. (2019) proposed a novel image encryption algorithm based on a
variant of the Hill Cipher and three enhanced one-dimensional chaotic maps,
1.e. enhanced logistic map, enhanced chebyshev map and enhanced sine map.

The chaotic maps are used to generate the chaotic sequences. The confusion
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and diffusion process are achieved through the combination of a vector
comprising key-pixel pairs and a 2 x 2 Hill matrix, as well as the addition of a
pseudo-random translation vector. However, a comprehensive cryptanalysis
conducted by Wen, Lin, Yang and Chen (2024) reveals inherent vulnerabilities
in the scheme proposed by Essaid et al., making it susceptible to both
chosen-plaintext attack and chosen-ciphertext attack. In a chosen-plaintext
attack, the adversary first selects a plaintext image with all pixel values set to
zero and obtains the corresponding ciphertext. Through algebraic analysis, they
derive an equivalent keystream to compromise the scheme. Next, a plaintext
image with all pixel values set to one is chosen, and the resulting ciphertext is
used to extract parameters related to the Hill Cipher variant. By combining the
findings from these two steps, the original plaintext image can be recovered
from any given ciphertext image. Similarly, the scheme is also vulnerable to
chosen-ciphertext attacks, which can bypass its security due to these
fundamental design flaws. Furthermore, the lack of permutation in the scheme
diminishes the algorithm’s confusion effect, making it weak and susceptible to

attacks.

2.2.4 Diffusion-permutation algorithm

The diffusion-permutation algorithm is constructed using Equations (2.1) and

(2.2) as

(2.3)

where H denotes an arithmetic operation, G = {g(i)} is the diffusion mask made

up by chaotic sequences, f(-) is a nonlinear function, and p(i), b(i) and c(i)
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represent plain pixel, diffused plain pixel, and cipher pixel respectively.

According to Wang et al. (2016), diffusion-permutation algorithm is a poorer
design as compared to permutation-diffusion due to low key sensitivity. There
were two chaotic based image encryption schemes designed based on diffusion-
permutation algorithm and were cryptanalyzed by using differential attack.

An image encryption based on a compound chaotic sequence was proposed
by Tong and Cui (2008). The compound pseudo-random number sequence
generated by two correlated chaotic maps was used to perform XOR
substitution of the pixel values. Two chaotic maps were used to perform circular
shift position permutations of rows and columns. However, Li et al. (2009)
pointed out that there are some defects found in the encryption scheme, making
it vulnerable to the differential attack. The weaknesses include insensitivity of
the scheme with respect to the changes of plaintexts, existence of weak and
equivalent keys, and insufficient randomness of the compound chaotic
sequence. Weak keys are referring to some fixed points of the chaotic maps that
will affect the randomness of the chaotic sequences, while equivalent keys are
referring to some different keys that will result in the same cipher-image, for
any given plain-image. Differential chosen-plaintext attack was implemented
together with divide-and-conquer (DAC) attack. DAC attack is a method to
break the encryption algorithms into two or more smaller components, until
these components can be solved easily and directly. In (Tong and Cui, 2008),
only three plain-image were required to solve for the row and column circular
shift permutations, thereafter the XOR substitution was merely a simple
XOR-based stream cipher which can be solved easily.

Dhall et al. (2018) cryptanalyzed a four-round image encryption schemes
involving hybrid 1D chaotic systems that made up by linearly combination of
logistic map, tent map and sine map (Zhou, Bao and Chen, 2014).
Multidimensional chaotic system can improve the security level of the cipher,

but the downsides are resulting in the increase of difficulty level of hardware or
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software implementations and high computation complexity. To overcome this
drawback, Zhou, Bao and Chen proposed a new chaotic system that could
enhance the chaotic behavior of the chaotic map and also increase the chaotic
ranges for the seed maps. Three hybrid chaotic systems suggested by them are
Logistic-Tent system, Logistic-Sine system and Tent-Sine system.  The
four-round encryption scheme involves random pixel insertion, row separation,
1D substitution using Logistic-Tent system, row combination and image
rotation. There are many weaknesses found in this encryption scheme by Dhall
et al. They performed differential cryptanalysis on four-round encryption
scheme without the knowledge of the key. They pointed out that the number of
rounds of the encryption scheme was fixed and too small. The permutation step
or rotation of the cipher images by 90° counter-clockwise was static and
key-independent. There were 4M random pixels required to be inserted into M
rows of image for each round. Even though the one-time usage of random
pixels could provide certain level of security to the cipher, the huge amount of
information to be communicated between the sender and receiver was
practically infeasible in the real life application. The encryption scheme totally
depended on the chaotic behavior of the hybrid chaotic systems and omitted the
importance of confusion and diffusion properties in the encryption. To improve
this scheme, Dhall et al. suggested to adopt key-based generation of random
pixel instead of one-time used pixels. To enhance the confusion properties, key
and plaintext-dependent permutation stage is suggested and to be performed
before the substitution stage, so that the encryption will follow the
permutation-substitution architecture. The fixed and small number of rounds
can be solved by introducing a key-dependence of number of rounds with some
lower and upper limit. To improve the diffusion properties, instead of having
the row-independent substitution process, inter-row feedback can be imposed in
1D-substitution. With these improvements, the desired confusion and diffusion

properties of a secure encryption scheme can be satisfied.
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In 2016, Xu et al. presented a bit-level image encryption algorithm called
BCIEA, based on chaotic maps, which they claimed was secure due to
statistical analysis. BCIEA utilizes diffusion-permutation mechanisms, with its
security largely depending on the diffusion process that uses cyclic right shifts
and bitwise XOR operations. However, Wen, Lin and Feng (2024) later
discovered critical security flaws in BCIEA. They found that the chaotic
sequences used in BCIEA could act as an equivalent key, weakening its security.
Furthermore, the confusion mechanism exhibited regular statistical patterns,
making it vulnerable to attacks, particularly an all-zero ciphertext attack. Wen,
Lin and Feng also noted that the description of BCIEA was not detailed enough
for accurate decryption. As a result, they proposed a chosen-ciphertext attack,
which first reduces BCIEA to a diffusion-only algorithm and then uses cipher

images with matching sum values to break the confusion mechanism.

2.2.5 Permutation-diffusion algorithm

The permutation-diffusion algorithm is reverse order of diffusion-permutation

algorithm. It is represented mathematically by

(2.4)
c(i) = d (@) B f(c(i—1))Bg(),
where H denotes an arithmetic operation, G = {g(i) } is the diffusion mask made
up by chaotic sequences, f(-) is a nonlinear function, and p(i), d(i) and c(i)
represent plain pixel, permutated plain pixel, and cipher pixel respectively.
Most of the chaotic based image encryption algorithms are based on
permutation-diffusion algorithm. It is also known as Fridrich’s algorithm

because it was firstly proposed by Fridrich (1998). The permutation diffusion
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operations are presented in the following equation. This is the most typical
structure that fulfils confusion and diffusion and it had been widely used by
other researchers in their ciphers. However, the permutation function of this
kind of the encryption algorithm is independent of plaintext and the diffusion
function, therefore it might expose to chosen plaintext attack and chosen
ciphertext attack. The one-round encryption scheme based on this design is
insecure and can be attacked by differential attacks (Fridrich, 1998; Solak et al.,
2010; Fu et al.,, 2013; Boriga et al., 2014). Fridrich’s algorithm with
multi-round was attacked by Solak et al. (2010) using the chosen ciphertext
attack. However, the attack by Solak et al. is getting harder with the increase of
the number of rounds. Some minor defects of the attack proposed by Solak was
detected and the attack was further optimized by Xie et al. (2017).

Behnia et al. (2008) proposed a chaotic cryptographic scheme based on two
composite polynomial chaotic maps. These two composition maps are used to
perform the permutation and substitution processes of the encryption scheme.
Li et al. (2010) found that this encryption scheme was vulnerable to the
differential attack. The attack involves three steps, breaking confusions I and I,
and breaking permutation. The confusions I and II were solved by using the
differential cipher-image and also the equivalent key.  The remaining
permutation process was solved by reconstructing the permutation matrix with
O(log; (MN)) known or chosen plaintexts, where L is the number of different
elements in the plaintexts. Some other weaknesses are insufficient randomness
of pseudo-randomness number sequences and insensitivity of ciphertext to the
change of plaintext.

Zhang et al. (2007) proposed an image encryption scheme using alternate
structure (IEAS) based on generalized cat map and one-way coupled map lattice
(OCML) in 2007. Zhang et al. (2012) found that the proposed encryption
scheme was vulnerable to differential attack. The equivalent secret key could be

recovered when the integer parameter is even. Differential cryptanalysis was
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performed in order to reveal the equivalent secret key of the encryption
algorithm by studying the impact of differential plain-image on the differential
cipher-image. Some other defects were found in the encryption scheme, i.e.,
small key space and insensitivity of ciphertext to the change of plaintext due to
the implementation of linear operations, such as S-box in the encryption.

Yap et al. (2015) applied impossible differential attack and DAC attack on
the image alternate encryption algorithm based on chaotic map which was
proposed by Wang and Guo (2014). Yap et al. revisited the key space of Wang
and Guo encryption scheme and found that the time complexity for a
brute-force attack is 2093 which is smaller than 2!%°43 the key space
claimed by Wang and Guo. This shows that the encryption scheme is insecure.
Impossible differential attack was applied on 9-round encryption scheme. This
cryptanalysis was employing the miss-in-the-middle approach (Biham et al.,
1999). Since the number of round, 7 = 9, then there was an 8-round impossible
differential with the i-round and j-round differentials with probability of 1, for
i+ j = 8, where the intermediate differences of these two differential were an
contradiction. In other words, the probability of i-round differential resulting in
j-round differential is zero. Yap et al. also applied a DAC attack on the
encryption scheme by using a plain black image. These two methods
demonstrated that the image encryption scheme proposed by Wang and Guo
was insecure.

Fu et al. (2013) proposed a medical image protection scheme based on
chaotic systems. They claimed that bit-level permutation based on discrete cat
map has a good confusion properties and able to attain the security level.
However, Zhang et al. (2015) later cryptanalyzed the one-round encryption of
the proposed scheme. They demonstrate that the bit-level permutation does not
practically add the additional strength to the cryptosystem. Zhang et al. also
suggested permutation-substitution-permutation architecture could improve the

current permutation-substitution structure. The suggestion was later criticized
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by Chen and Wang (2015) because the permutation-substitution-permutation
architecture is insufficient to resist differential attack. Instead of cryptanalyzing
on one-round encryption, Chen and Wang performed the differential
cryptanalysis on multi-round original scheme and proved that the substitution
keystream has no impact on the differential cipher-image and it depends only on
the permutation step. They also proposed a new technique called double
differential cryptanalysis comparison (DDCC) to attack three or more rounds of
encryption.

Boriga et al. (2014) proposed an image encryption scheme based on a
two-dimensional hyper-chaotic map that derived from the equations of
serpentine curve. The encryption algorithm follows a bi-modular architecture
which consists of diffusion and confusion processes and depends on the two
serpentine maps. The first serpentine map is adopted to generate random
permutation vector and this vector is then used to shuffle the pixels of plain
image. The second serpentine map is used to produce two keystreams and the
keystreams will be used for the confusion process which alters the pixel values
after permutation to reduce the correlation between the plain image and cipher
image. A differential attack was performed on this encryption schemes by Wen
et al. (2017). selected two special plain-images, P; and P>, in which each pixel
of the images was made up by the same value, but the pixel values for P; and P>
are different. This is to eliminate the permutation effect in the algorithm and the
encryption became diffusion only algorithm. The diffusion keystreams were
revealed by XORing the two cipher-images and the image encryption scheme
was broken.

Zhou et al. (2015) proposed an image encryption algorithm based on skew
tent map and Line map which adopted a permutation-substitution architecture.
The skew tent map was used to generate three chaotic sequences which were
used as the secret keys for the permutation and diffusion processes. The binary

plain image was permutated using Line map. Chen et al. (2017) applied
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differential cryptanalysis for one-round encryption with only M x N — 1 chosen
plain images. For two-round encryption, Chen et al. applied forward differential
and backward differential, or known as two-way differential comparison
method in order to obtain permutation matrices for each round. Chen et al.
found that the differential cipher-image are independent of the diffusion keys
which would substantially reduce the key space of the cryptosystem. The
differential cipher-image also depends on a series of linear function of the
differential plain-image. If one of the plain images was chosen to be a plain
black image with all zero pixels, then the differential cipher-image solely
depends on the other plain image and the permutation key. The cryptosystem
was broken once the permutation key was revealed. However, permutation
matrices for more than 2 rounds are difficult to be obtained by using these two
methods. Since the differential cipher-image was formed by linear
transformation of the differential plain-image, therefore Chen et al. used
codebook attack to break the multi-round encryption algorithm. Codebook
attack is a cryptanalytic method that the attacker attempts to construct a
“codebook” which is a listing of ciphertexts that correspond to the plaintexts.
Chen et al. pointed out three important rules to have a secure
permutation-diffusion encryption algorithm, i.e. having a self-synchronous
key-stream, permutation process related to plain image, and a nonlinear and
complicated diffusion rules.

Hu et al. (2020) proposed a color image encryption algorithm that utilizes a
cloud model Fibonacci chaotic system combined with matrix convolution to
protect image data. The algorithm began by merging the RGB channels of the
original color image and used the generalized Fibonacci sequence to scramble
the pixel coordinates. Next, pixel values were substituted through matrix
convolution. Finally, forward-backward XOR diffusion was applied between
adjacent pixels, and the encrypted image was generated by splitting and

reintegrating the three channels.
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Liu and Liu (2020) proposed a color image encryption algorithm based on
DNA coding and a double chaos system. First, they used the Arnold algorithm
to scramble the three color image components, with the number of iterations
determined by the average value of these components, enhancing the
scrambling effect. Next, they introduced a double chaos system composed of
Lorenz chaotic mapping with variable parameters and fourth-order Rossler
hyperchaotic mapping to generate three sets of chaotic sequences for diffusion.
This double chaos system compensates for the pseudo-randomness of each
individual chaotic map, making the sequences more unpredictable. They then
transformed both the chaotic component images and chaotic sequences into
DNA sequences based on eight DNA coding rules, where the rules are
determined by either plaintext information or the generated chaotic sequences.
Addition, subtraction, and XOR operations were applied to these DNA
sequences. This DNA computation process enables bit-level diffusion for the
color images and reduces the overall computational cost.

Recently, Dawahdeh et al. (2018) proposed an encryption scheme that
combines elliptic curve cryptography (ECC) and the Hill cipher technique. The
scheme’s confusion and diffusion architecture is achieved through a 3D Arnold
map, ECC, and bit-wise XOR operations. The core concept of this scheme is to
transform the Hill cipher from symmetric to asymmetric by using
ECC-generated parameters to create the secret key. However, the scheme
contains a critical vulnerability related to its secret key, making it susceptible to
brute force attacks. With a key space of only 232, the scheme can be easily
compromised using brute force methods, as demonstrated by Lone et al. (2022).

Alexan et al. (2023) proposed a color image encryption algorithm that
combines the KAA map with multiple chaotic maps. The algorithm leverages
Shannon’s principles of security, employing bit-level confusion and diffusion
for encryption. Each channel’s pixels are shuffled using a sequence generated

from the KAA map, while diffusion is achieved through bitwise XOR
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operations involving two chaotic sequences. The first chaotic sequence is
produced by the 2D Sine Logistic Map and the Linear Congruential Generator,
while the second is generated using the Bernoulli and Tent chaotic maps.
However, it is noted that this simple diffusion process may be vulnerable to
plaintext-related attacks.

Zhou and Yu (2024) conducted a comprehensive security analysis of an
improved chaos-based image encryption algorithm. The initial algorithm,
proposed by Li et al. (2018), involves a permutation process based on the sum
of plaintext pixel values and a diffusion process reliant on nine specific pixel
values within the permuted image. However, Liu et al. (2019) identified two
significant vulnerabilities in the original algorithm: (1) the gray values of the
nine specific pixels remain unchanged during the diffusion process, and (2) the
permutation process is reversible.

Exploiting these weaknesses, Liu et al. demonstrated that the permuted
image could be reconstructed by creating a special plaintext image where the
nine specific pixel positions in the permuted image match those of the cipher
image. By using the reconstructed permuted image as plaintext, the diffusion
process could be attacked to retrieve the permuted image. Since the permutation
process is reversible, the original plaintext image could then be recovered
entirely. In response, Liu et al. proposed improvements to address these issues,
including incorporating a separate permutation step for the nine specific pixels
and modifying the original permutation method.

Despite these enhancements, Zhou and Yu revealed that the improved
algorithm still contains critical vulnerabilities. Firstly, the improved
permutation process introduces equivalent keys, enabling the construction of
special plaintexts with identical pixel value sums to those of the original
plaintext.  This flaw allows the equivalent permutation sequence to be
compromised via a chosen-plaintext attack. Secondly, the additional

permutation for the specific pixels only permutes these pixels twice in
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succession, which constitutes a permutation-only encryption. This approach
fails to effectively obscure the correlation between adjacent pixels, leaving the
encryption scheme insecure.

Recently, Patro et al. (2020) proposed a multiple grayscale image encryption
scheme based on cross-coupled chaotic maps, claiming that it could resist
known plaintext and chosen-plaintext attacks. The method encrypted multiple
images by scrambling them row-wise and column-wise using a permutation
table generated by a cross-coupled Piecewise Linear Chaotic Map. Two keys,
key, and key,, were used to encrypt the first row or column, followed by a
feed-forward XOR operation to generate the cipher image. However, due to its
reliance on feed-forward data, all parts of the scrambled image (except the first
row and column) could be accurately recovered through a ciphertext-only
attack, demonstrating the scheme’s insecurity (Singh et al., 2024). Additionally,
the high horizontal and vertical correlation inherent in standard images
facilitated the effective reversal of the scrambling process. By iteratively
matching rows or columns in the scrambled image based on pixel value
similarity, the original image structure could be reconstructed without requiring
the secret keys. Although the recovered image might not precisely match the
original arrangement, the overall information of the multiple images could still
be obtained, and reorganization of correlated blocks could produce a
near-perfect match. These findings revealed critical vulnerabilities in the Patro

et al. scheme, emphasizing the need for more robust encryption designs.

2.3 Summary

From the literature review, we found out that there are some common

weaknesses in the chaotic based image encryption schemes and causing the
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encryption schemes vulnerable to the cryptanalytic attack. The encryption
operation involves the following weaknesses should be avoided in the design of
a secure chaotic based image encryption scheme. The weaknesses and the

suggested improvement are listed as follows.

1. Low sensitivity to the changes of plain-image
This is the major problem happening in the current image encryption
schemes (Ye and Zhou, 2014; Yap et al., 2016; Tong and Cui, 2008; Li et al.,
2009; Behnia et al., 2008; Li et al., 2010; Zhang et al., 2007, 2012; Zhou
et al., 2015; Chen and Wang, 2015; Patro et al., 2020; Singh et al., 2024). An
ideal encryption algorithm should allow a bit of change in the plain-image
leading to a large change in the cipher-image. However, linear
transformation implemented in the encryption process, such as S-box and
XOR operations violate the design rules of nonlinearity of the cryptography.
To overcome this problem, nonlinear and complicated operations should be

considered in the design of the algorithm (Chen and Wang, 2015).

A pixel of plaintext can only affect the higher pixel of the corresponding
ciphertext and cannot influence other pixels of ciphertexts uniformly. The
plaintext-dependent permutation should be implemented in encryption. To
link the connection to other row of images, the substitution operation should
apply inter-row feedback instead of performing substitution on rows
independent of each other (Dhall et al., 2018; Zhou, Bao and Chen, 2014).
Besides, problem of independent of keystream from plain-image can be

solved by applying the self-synchronous keystream.

2. Existence of equivalent key and weak key
Equivalent key causes same cipher-image to be generated using a particular
plain-image under the encryption of some different keys (Tong and Cui,
2008; Li et al., 2009; Zhang et al., 2007, 2012; Xu et al., 2016; Wen, Lin and
Feng, 2024; Essaid et al., 2019; Wen, Lin, Yang and Chen, 2024; Li et al.,
2018; Liu et al., 2019; Zhou and Yu, 2024). This could reduce the key space
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and allow the attacker to access the information of the plain-image easily
(Singh et al., 2024). Suppose the differential cipher-image is dependent on a
series of functions and the differential plain image. If a special image, P is
chosen (e.g. all zero pixels) and with the information of equivalent key,
another image P, can be recovered by inverting the function. On the other
hand, weak key causes the encryption part fails at the certain fixed points of
chaotic maps. Therefore, it is important to identify the equivalent and weak

keys of the chaotic systems.

. Differential cipher-image is not related to keystream sequence

The keystream sequence should not be considered in the cryptanalysis as it
could greatly reduce the key space (Fu et al., 2013; Zhang et al., 2015; Chen
and Wang, 2015; Zhou et al., 2015; Chen and Wang, 2015). The
key-dependent permutation and substitution processes should be

implemented.

. Insufficient randomness of pseudo-random number sequences

The chaotic system was not a good random number generator based on the
random tests (Tong and Cui, 2008; Li et al., 2009; Behnia et al., 2008; Li et al.,
2010). Random tests should be performed on chaotic systems to make sure
the selected chaotic system can achieve the deterministic pseudo-randomness

of the cryptography.

. Number of rounds of the encryption schemes is fixed and small

The diffusion and confusion processes could be decrypted easily. Increasing
the number of encryption rounds typically strengthens the confusion,
diffusion, and avalanche effects in encryption algorithms, thereby enhancing
their resilience against cryptographic attacks (Wen, Chen, Yang, Zheng, Wu,
Lin, Jian, Lin, Ma, Liu et al., 2024). To overcome this problem, Dhall et al.
suggested to implement an alternate forward and backward image encryption

algorithms in the substitution stage. Key dependence number of rounds
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could also be implemented based on the availability of the resources and

security requirements.

In this chapter, we have examined and analyzed existing cryptanalyses related
to chaotic-based image encryption. The current security evaluation methods,
which primarily rely on quantitative analyses, are inadequate in demonstrating
the strength of encryption algorithms against various cryptanalytic attacks.
Common weaknesses in the chaotic-based image encryption schemes have been
identified and discussed. When constructing encryption algorithms, it is crucial
to avoid the poorer designs highlighted in this chapter. To enhance the security
of chaotic-based image encryption against cryptanalytic attacks, the following

steps will be taken in subsequent chapters:

* Investigate further cryptanalytic attacks that may threaten the security of

chaotic-based image encryption.

* Design a secure and efficient chaotic-based image encryption scheme that

addresses the identified vulnerabilities.
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CHAPTER 3

CRYPTANALYSIS OF GENETIC ALGORITHM-BASED ENCRYPTION

SCHEME

This chapter focuses on the cryptanalysis of an image encryption scheme
developed by Biswas et al. (2015), which is based on genetic algorithms. The
main objective is to explore how the design of chaos-based image encryption
schemes affects their security. Through a critical analysis of this design, the
chapter aims to identify the weaknesses in the existing method and provide
guidelines for creating more robust encryption techniques.

Genetic algorithms, which mimic the process of natural selection to
optimize solutions, have been applied in image encryption due to their potential
to enhance diffusion and confusion properties. However, our study of the
Biswas et al.. scheme reveals significant vulnerabilities. Through a known
plaintext attack, we demonstrate that the scheme is low sensitivity to changes in
the plain image, which violates the essential cryptographic design rule of
nonlinearity. Additionally, the scheme’s diffusion mechanism is found to be
inadequate, rendering it vulnerable to cryptanalysis.

The findings presented in this chapter emphasize the necessity of integrating
more efficient diffusion functions to improve the encryption process. By
identifying and addressing the existing weaknesses, this chapter establishes a
foundation for proposing an enhanced image encryption scheme that utilizes
genetic algorithms while adhering to strong cryptographic principles. The
insights gained here not only contribute to the research objective of analyzing
current encryption designs but also serve as a stepping stone for developing

more secure encryption schemes in the following chapters.
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3.1 Introduction

One of the popular image encryption methods is based on genetic algorithms
which was proposed by Holland (1975, 1992). This is a method that mimics
the natural evolution and selection. Genetic algorithms involve three operations:
selection, crossover and mutation. Selection is a process of selecting a portion
of the existing population in order to reproduce a new generation. Crossover, or
also known as recombination is a process of combining the genetic information
of two parents to reproduce a new offspring. Mutation is a process involving a
sudden change happens at the genomic level. In image encryption, the genetic
information are replaced by the pixel levels of an image.

The evolutionary principles of genetic algorithm can also be applied in
searching and optimization. Each solution will be assigned a fitness value. It
will be done iteratively by applying these operations until the termination
criterion is met. The old population will be replaced by the new population with
the optimized fitness value. Therefore, genetic algorithms were used as the
optimization method to find the best solution of cipher-image (Abdullah et al.,
2012; Enayatifar et al., 2013, 2014) with the entropy as the fitness function. For
this method, a specified number of cipher-images are generated using chaotic
map. Genetic algorithms are used to modify the cipher-images in order to
identify the best cipher image with highest entropy and lowest correlation
coefficient. =~ However, this method involves operations with high time
complexities. To overcome the weakness, Nematzadeh et al. (2018) modified
the genetic algorithm by including a experimental stop criterion.

Besides of the application of optimization, hybrid model of a chaotic function
and genetic algorithm has been widely applied in image encryption algorithms.
The crossover and mutation are used as the confusion and diffusion processes,

respectively. Pseudorandom bit sequence that generated by chaotic function can
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be used as the parent bit strings of the crossover process or used in determining
the crossover point of the parent bit strings. Wang and Xu (2014) proposed an
image encryption scheme based on genetic algorithm and intertwining logistic
map. Monte Carlo method is used to choose two parent binary strings. The
simple operation of the genetic algorithms could avoid the complexity of using
mathematical transformation. Biswas et al. (2015) proposed an image encryption
based on N-logistic tent map and genetic algorithms for wireless sensor network.
They used mutation and two-point crossover in the encryption algorithms. Das
et al. (2018) proposed image encryption scheme based on Arnold cat map and
genetic algorithms.

Even though the genetic algorithm-based image encryption schemes
proposed in (Biswas et al., 2015; Das et al., 2018; Wang and Xu, 2014) claimed
that their schemes can resist various types of attack and provide sufficient
security, we found that the simple operation of genetic algorithm may be
vulnerable to known plaintext attack (Biham and Kocher, 1994). To prove the
weakness, we demonstrate the cryptanalysis on the Biswas et al. scheme that
applied the two-point crossover operator . From the cryptographic perspective,
a scheme is claimed to be vulnerable to a cryptanalytic attack if its time
complexity is less than 2lKI encryptions, where |K| denotes the length of the
secret key K in bits (Yap et al., 2016). We dispute the security claims made by
Biswas et al. by showing their scheme is not even secure against known
plaintext attack.

Organization: The remainder of this chapter is organised as follows. In the
next section, we describe the genetic algorithm and prove that the mutation and
crossover are one-to-one operations. We then discuss the image encryption
scheme proposed by Biswas et al. in Subsection 3.2.6. In Section 3.3, we
present recovery attacks on the keystream and the secret keys against Biswas et

al. scheme. Section 3.4 concludes the chapter.
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3.2 Preliminaries

Genetic algorithm is an evolutionary algorithm involving three operations, i.e.
selection, crossover and mutation. In this section, we explain the descriptions

for each stage in details.

3.2.1 Selection

Selection is a process of choosing two parents from population for crossover
(Sivanandam and Deepa, 2008). Random selection is used in determining the
parent bit string. However, in Biswas et al. scheme, the parent bit strings are
selected based on the weight of sub-block that is made up by the pseudorandom

bit sequence.

3.2.2 Mutation

Mutation M is a process that is normally conducted after crossover (Sivanandam
and Deepa, 2008). However, there is an exceptional case, whereby the mutation
is used as a substitution function that conducted before the crossover operation.
This process is important in disturbing genetic information of the bit strings. M
is commonly known as a negation operator that changes one or multiple bits in a
given bit string.

Let x = (x1,X2,...,X,) € I} be a n-bit string. Let k be an arbitrary integer, for

0 <k < n. For demonstration, we define the mutation operation as a function that
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takes two inputs, x and k, and produces an output y = M(x,k) = (y1,y2,...,¥n) €
[F. The mutation operation inverts the bits from the k- to n'-bit in x, as follows.
o If k=0, theny =x;
xi, forl <i<k-—1,

o Else, y; =
X, fork<i<n,

where X; = 1 —x;. Refer to Figure 3.1 for the graphical illustration of M

operation.
k™ bit n't bit
x1 T2 v | XTh—1| Tk | Lh4L| - Tn
T
|
. M
\J
x1 T2 coe | Th=1| T | Tpgr| - T
)

Figure 3.1: Graphical illustration of Mutation M operation

3.2.3 Crossover

Crossover operation CO is a recombining function that creates the child bit
strings by exchanging the selected part of their corresponding parent bit stings.
There are various types of crossover operation such as single-point, two-point
and multi-point crossover. Single-point crossover is a function in which one
crossover point is selected and the portion after the crossover points are
swapped between two parent bit strings (Kumar and Nirmala, 2012). This
method was used in (Das et al., 2018; Hassan and Abuhaiba, 2011; Wang and

Xu, 2014).
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Apart from single-point crossover, two-point and multi-point crossovers are
the generalization of single point crossover, where two or multiple crossover
points are selected and the contents between these points are exchanged between
two parent bit strings Sivanandam and Deepa (2008). This method was used in
the permutation process to change the bit positions (Biswas et al., 2015; Guesmi
et al., 2016; Premkumar and Anand, 2018; Ravichandran et al., 2016).

To make our later illustration clearer, we demonstrate one-point crossover
operator, in which one crossover point is selected and the contents after the
point are exchanged between two parent bit strings. The results obtained can be
generalized and applied to the two-point and multi-point crossovers. Let
A = (ay,az,...,a,) and B = (by,by,...,b,) be two n-bit strings. Let / be an
arbitrary integer, for 0 </ < n. We define the crossover operation to be a
function that takes A and B to be two parent bit strings and produces two child
bit strings A’ = (d,d),...,a,) and B’ = (b}, D}, ...,b),) based on the crossover
point /, i.e (A',B’) = CO(A,B,l). The crossover operation is described as

follows.
o If I =0, then (A’,B") = (A,B).

o Else,

a;, forl <i<lI,
a. = and

b;, forl <i<n,

b;, forl <i<lI;
b=

a;, forl <i<n.
Refer to Figure 3.2 for graphical illustration of single-point Crossover CO
operation.

The next two propositions show that the genetic algorithm deterministic

algorithms.

Proposition 3.2.1: The Mutation M is a one-to-one operation.

Proof Recall M that described in Subsection 3.2.2. Let
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Figure 3.2: Graphical illustration of single-point crossover CO operation

V] = (vl(l),vl(z), e :Vl(n)) and v, = (vz(l),vz(z), e ,vz(n)) be two n-bit strings.
For j=1,2, let v_’i = M(v}, k) be the output of M using the same mutation key k.

To prove M is one-to-one, we need to show the following implication is true.
If vi = v, then v; = v,

where v; and v, are bit strings of length n. Consider the contrapositive form of
this implication:

If vi # vy, then v} # V5.

Our approach is to prove the contrapositive form by using the method of
contradiction.

Suppose v; # vp. Assume V| = v,. Then, we have

(i) For I <i<k,letv) = vig and v, = vy

i i

i i

(ii) For k <i<n,letv), = v and vy, = vy

i i

For 1 <i <k, we have v;(; = v(; by comparing V| (i) and Vlz() in Part (i). For
k <i<n, we flip every v’l(i) and V/Z(i) which causing the vy(;) = vy(; in Part

(i1). Therefore, we have v; = v, which is a contradiction. This shows that our

assumption is wrong. Thus, v} # v,. Therefore, M is a one-to-one operation. [J
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Proposition 3.2.2: The single-point Crossover CO a is one-to-one operation.

Proof Recall CO of Subsection 3.2.3. Consider two pairs of parents bit strings
(A1,By) and (A,B,) with the same crossover point at I. For j = 1,2, let
(A’,B;) = CO(A},Bj,1) be the output of CO using a single crossover point of /.

To prove CO is one-to-one, we need to show the following implication is
true:  If (A],B]) = (A5,B)),thenA; = Arand By = B,. Consider the

contrapositive form of this implication:
If Ay #Az or B 75 B, then (AII,B/I) 7§ (AIZ,BIZ).

Similar to Proposition 3.2.1, we prove the contrapositive form of this implication
by using contradiction.

Suppose A; # Ay or By # By. Assume (A},B}) = (A5,B)). Let
Ay = (a11),a12),---,a1(n)) and By = (by1),b1(2),---,b1(n))-  Also, let

A2 = (az(l), az(z), .. ,az(n)) and Bz = (b2(1)7b2(2)7 N 7b2(n))- Then, we have

(i) For j=1,2and 1 <i<l,letd}, = a;q and ;) = b,

(ii) For j=1,2and [ <i<n,let a;.(i) =bj(;) and b’j(l.) =aj(j)-
So, we obtain ay(;y = ay(;) and by(;) = by(;), for [ < i < n, forcing A} = A and

B1 = B3 which is a contradiction. Hence, our assumption is wrong. Therefore,

(A],B}) # (A},B)). So, CO is a one-to-one operation. O

Corollary 3.2.1: Let .# = {M(x,k) | x € F5,0 < k < n} be a set that consists
of the output of M with the inputs of n-bit string x and mutation key k. Then,

|.#|=n+1.

Corollary 3.2.2: Let .¥ = {CO(A,B,l) | A,B € F5,0 <[ < n} be a set that
consists of the output of CO of two parent bit strings A and B with the single

crossover point /. Then, |.Z| =n+ 1.

To show the weaknesses of genetic algorithms, we applies the cryptanalysis

on Biswas et al. image encryption scheme in the next section.
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3.2.4 Key establishment phase

In this phase, a large key pool is generated by using the elliptic curve over prime

field p which is defined by

y? mod p = x>+ ox+ ff mod p, (3.1)

where o and B are the coefficients and x,y € F,. A number of secret keys where
each secret key, denoted as k; = (x;0,yi0) for i > 0, is shared between two sensor
nodes. Each key is referred to as an elliptic curve point which is generated by
using Equation (3.1). All of these elliptic curve points form a key pool. When
a node wishes to transmit data to another node, it randomly selects a point from
its key pool and generates a hash digest of such a point. This hash digest will
then be transmitted to the destination node. Upon receiving the hash code, the
destination node can retrieve the selected point by matching the received hash

digest with the hash digest generated for each point of its shared key pool.

3.2.5 Generation of pseudorandom bit sequence

An N-logistic tent map (Fang et al., 2008), a chaotic map which deals with
integer parameters, is used to generate pseudorandom bit sequences. The
control parameters (i.e., i, 3,m and N) are pre-distributed securely among all
sensor nodes in the wireless sensor network whereas the initial conditions (i.e.,
X;0,yi0) are the elliptic curve points selected during the key establishment

phase as explained in subsection 3.2.4. More precisely, the pseudorandom bit
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sequences (i.e., x sequence and y sequence) are generated by

Yid+1
2 )

Vid+1 = BN =N —yiql), (3.3)

.
Xid+1 = Mxiq(N — %)/N— (3.2)

where x = {x; j}7_o € (0,mxN),y={yij}79 € (0,2xN), n € (0,4}, B € [1,2],
N = [1,2'%8], m € [1,25%] and d is the number of chaotic map iterations. Note that
Biswas et al. claimed that the key space of their proposed scheme is around 248,
where x,y, i, B,N and m are integers. More precisely, x,y and N are with 128-bit
length and m is with 64-bit length. Meanwhile, u and 8 can be ignored due to
smaller key space after being fixed as integers only. As Biswas et al. treated

x and y as integers only, thus we assume that the x and y sequences consist of

integers value only.

From now onward, we use M to represent mutation operation and XO to
represent two-point crossover operation. Let the subscript j be an integer modulo
of 16, i.e. j mod 16. Since we only consider 1 < j < 16, if j = 0(mod 16), then

without loss of generality, we replace j = 0 with j = 16.

3.2.6 Encryption process

The encryption process proposed by Biswas et al. (shown in Figure 3.3) consists
of three main operations, i.e. exclusively-or XOR (), M and XO (Biswas et al.,
2015). In Subsection 3.2.5, pseudorandom bit sequence is generated based on
the point chosen randomly in each session. The sequence is divided into 256-bit
blocks denoted as KS; for i > 0. Each 256-bit block is needed to encrypt every

128-bit plaintext P to a 128-bit ciphertext Cip. The overall process is described
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Figure 3.3: Encryption process proposed by Biswas et al.

as follows:

1. Divide KS; into two 128-bit sub-blocks, i.e. KS; = KS!||KS?.
2. Compute V1 =KS! ©P.

3. Generate V2 using M as follows:

(a) Divide V1 into 16 bytes, i.e. V1 =v{||v2]|...||vi6, Where v; denotes the

j"-byte of V1, for 1 < j < 16.

(b) Similarly, divide KS? into 16 bytes, i.e. KS? = KS7,||KS7, || ... ||KS} ¢,

where KS,% j denotes the j"-byte of KSi2 for1 < j<16.
(c) Compute v; = M(v;,0;), where 6; = wt(KS7 ) for 1 < j < 16.
(d) Obtain V2 by concatenating v'; for 1 < j <16, 1i.e. V2 =v[Vy|]...|[vis.
4. Generate ciphertext Cip using XO as follows.
(a) Let j = 1, generate two parent 16-bit strings V; = v}|| v}, | and V;4, =
V}+2|\V}+3-
(b) Compute 7; = 0;|| 6j41 and Tj1» = 0j42|| 0j43, Where o; denotes the

weight of KS%J..
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(a) If Tj > Tj+2;

15t bit Tt bt
| i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Alar az azg as as as ay as ag aip ai1 Ai12 A13 A14 A15 A16

B bl b2 b3 b4 b5 b6 b7 b8 b9 b10bll b12b13b14bl5b16

J
|
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15t bit ¢ Tt bit
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(b) If 7j40 > 75,
(17 — Tjrz)th bit 16”1 bit
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Figure 3.4: Graphical Illustration of Two-Point Crossover Operation

(c) Compute XO(V;,V;12,7), Tj42) to generate two child bit strings V]{ and
V]{ 4o~ Figure 3.4(a) shows a graphical illustration of 7; =7 when 7; >

T2 while Figure 3.4(b) shows 7;,, =8 when 7,2 > 7;.

: . / / : — !/ /
(d) Obtain V2 by concatenating V; and V;,,,i.e. V2 =V/|[V],,.

+20
(e) Repeat Step 4(a)-(d) for j = 3,5,7,9,11,13 and 15. Hence, the XO

function is repeated for eight times.
5. Obtain Cip = V2.

The decryption process is simply the inverse of the encryption process.
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3.3 On the security of the encryption process

Instead of recovering the secret key, k;, we aim to recover the 256-bit block
of pseudorandom bit sequence, KS;, for i > 0, provided both plaintext and its
corresponding ciphertext are given. In this section, we state some results which
will be used in the key recovery attack on Biswas et al. scheme later.

In Biswas et al. scheme, the mutation key k and crossover point / are based
on the weight of the second sub-block of KS;, i.e. KSiZ. Therefore, Proposition
3.2.1 discussed in Section 3.2 is applied here by replacing k with wt (KSl2 j) for

i >0and 1 < j <16. While Proposition 3.2.2 is amended as follows.

Proposition 3.3.1: The two-point crossover XO is a one-to-one operation.

Proof Recall a two-point crossover can be illustrated as follows: Suppose the
two parent bit strings are A = V||V, and B =V ,|[V} 5. Suppose their
corresponding bit strings in KS? are C = KSi27j||KSl.27jJrl and D = KS?JJFZH
KSI-% 43 The weight of C and D are denoted as 7¢ and 7p, respectively. Then,
we compute the child bit strings (A, B') = XO(A, B, 1¢, Tp).

To prove XO is one-to-one, we consider two pairs of parents bit strings
(A1,B1) and (A2, B,), where their corresponding bit strings in KS? are (Cy,D;)
and (Cy,D;), respectively. Suppose both wt(C;) and wt(C,) equal to 7¢ while
both wr(D;) and wr(D;) equal to 7p. We need to show the following
implication is true: If (A}, B]) = (A5,B}),then A} = A3 and B| = B,. To do so,
we  consider the  contrapositive  form  of this  implication:
If A # A or By # By, then (A],B}) # (A}, B}). Similar to Proposition 3.2.2,
our approach is to prove the contrapositive form by using contradiction.

Suppose A; # Aj or B| # B,. Assume (A}, B}) = (A5,B}). For j = 1,2, let
Aj=(aju),aj@2)--- aju1e)) and Bj = (bj),bj2),---,bje))- If 7c > Tp, then

(A}, B)) and (A}, B5) are given by the following conditions. For j = 1,2,
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(1) let a’j() =bj;) and b;.() =aj(), for 1 <i< 1c;

i i

>i1) let a’]( ) = 4aji) and b;( )= bj(i)7 for ¢ < i < 16.

i i
Otherwise, if Tp > 1¢, then (A},B)) and (A},B)) are given by the following

conditions. For j = 1,2,

(iii) let a;() =4aj( and b/]() = bj(i)a for1 <i<16—1p;

i i

(iv) let a;(i) =bj(;) and b’j(i) =aj(, for 16 —1p < i < 16.
Since wt(Cy) = wt(C,) and wt (D) = wt(D;), therefore the crossover points are
the same. So, in Part (1), we obtain a;(;) = ay(;) and by(;) = by(;), for 1 <i < 1.
In Part (iv), we obtain ay(;y = ay;) and by ;) = by(;), for 16 — 7p < i < 16. This

forces A| = Ay and By = B, which is a contradiction. Hence, our assumption is

wrong. Therefore, (A}, B)) # (A},B}). So, XO is a one-to-one operation. [

Proposition 3.3.2: Suppose .# is defined in Corollary 3.2.1. For 1 < j <n,
consider .# takes v; in V1 as the inputs and mutation key is based on o; =

wt(KSl%j) . Then, [.# ={M(v,0;) | v, €F5,0<0;<8,1<j<n} =9"

Proposition 3.3.3: For j =2/—1and 1 <[ <8, letV; = v9||v;.+1 and 7; =
0j+0j1. Suppose ./ is a set that consists of the outputs of XO of two parent
bit strings (V;,Vj;2) with the crossover points, (7}, 7j42), for j=2/—1and 1 <
[<8,ie. N = {XO(Vj,Vj+2,Tj,Tj+2) ‘ Vi,Vig € Fé6,0 <7;,Tj42<16,j =

20 —1,1 <1< 8}. Then, |.#|=17.

wt(KS?)| = 23414,

Proposition 3.3.4: For the worst case scenario,

Proof Recall XO that described in Subsection 3.2.6. For j = 1,3,5,...15, let

;= |Tj| and 0, = |‘L'j+2\ which can be obtained as follows.
1. If Tj > Tjt2, then
« if 7; <8, then 6; = 7;+ 1 and 6,5 = %I
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e if 7;>8,then §; = 17— 7j and 6, = 81 — 0;(1+6,)

.
2. If Tjt2 > T, then
. (24T
e if 7,0 <8,then 6, =T; ;o +1and 0; = w;

e if T;1, > 8, then 6j 5 = 17— ;4 and 0, = 81 — 22l

When 7; > 717, 6; can be calculated by taking all the candidates of o; and
0j+1 because 7, = 0+ 04 1. If 7; <8, then [(0},0j41)| = 7j + 1. Let’s say, if
T = 2, then (0j,0;41) € {(1,1),(2,0),(0,2)}. If 7; > 8, then
l(0j,0i+1)] = 17 — 7. For instance, if 7, = 9, then
(0j,0i41) € {(1,8),(2,7),(3,6),(4,5),(5,4), (6,3),(7,2),(8,1)}. On the other
hand, to find 6>, we sum up all the candidates of (0;,0;11) from 7; = 0 until
7; — 1. Similar explanation applies to the case when 7;, > 7;.

The worst case scenario of 6; and 6, is when 7; and 7, are a and 10 for
two 16-bit strings in KSl-z, alternately, where a is a non-negative integer less than
10. There are exactly (17 —10) x (81 — @) =7 x 53 =371 values for 6; and

012 in this case. Since the weight of two 16-bit strings in KSl-2 is known to be

371, therefore the weight of 128-bit KS? is 3714 ~ 23414, O

3.3.1 A divide-and-conquer attack

In the traditional security setting of block cipher, same secret key is used in
every session to generate same pseudorandom bit sequences. We present a key
recovery attack against Biswas et al. scheme under the traditional security setting
of block cipher by using divide-and-conquer attack. The attacker is assumed to
have the plaintext pairs (P;,Cip;), where Cip; is the corresponding encrypted
image of a grayscale image P; for i > 1. For ease of understanding, we assume

each P; and each Cip; are with the length of 128 bits. Based on Propositions
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3.3.2-3.3.4, the keystream recovery attack against Biswas et al. scheme can be

launched as follows.

I Consider KS} = KS7 [[KST,l...[|KST ¢ with weights T; = 0+ 041,
where 0; = wt(KSij) for j =1,3,...,15. Since the crossover operation is
performed using four consecutive bytes, therefore guess the possible values
of 713, 715 and 7;. Based on Proposition 3.3.3, there are 17° = 4913 possible

values for these three weights.

2 For each guess of 4913 possible values of the aforementioned three weights,

perform as follows:

(a) Let Py = pil|p2l|...|[p16 and Cipy = c1[ca|| .. . [|c16.

(b) Let A = cysl|ci6.

(c) Let B=cy3|c14.

(d) Let C = cyl|ca.

(e) Let D = 1y5s.

() Let E = 113.

(g) Let F =1.

(h) Compute (A’,C") = XO'(A,C,D,F), where XO~! is the inverse
function of XO.

(i) Compute (B',A") =XO"(B,A’ E,D).

(G) As A” =v|s||V}s, we perform inverse of mutation on V|5 and v/, based
on the the weight of 05 and 076. Therefore, guess the possible values
of 015 and 0}¢. Based on the guessed 75, we compute 015 and 0;4. For
the worst case scenario, there are 9% = 81 possible values for these two
weights based on Proposition 3.3.2. For each guess of the possible
values of the aforementioned two  weights, compute
KS}’J. = M’l(v;(j,aj) @ pj, for j = 15,16 where M~ is the inverse

function of M.
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(k) Repeat Steps 2a to 2j by using other plaintext-ciphertext pairs, i.e.
(P;,Cip;) for 2 <i < n, where the value of n will be discussed in the
experiment result in this section later. Store the following data if similar

values for KS } 15 and KS % 16 for all used plaintext-ciphertext pairs.

* Possible weights of 075 and o7¢;
¢ Possible values for KSL15 and KS}’K);

* Store the possible B’ and C’ and the weights of their corresponding

bytes in KS? ie. Eand F.

(I) Repeat Steps 2j and 2k for the other guesses of possible values of the

O15 and O16-

(m) Repeat Step 2 for the other guesses of 4913 possible values of the

aforementioned 71, 713 and 7;s.

3 Let j = 13. Guess the possible values of 7;. Based on Proposition 3.3.3, there

are 17 possible values for this weight.

4 For each guess of 17 possible values of 7; and also each possible values of

(B',E) stored in Step 2, perform as follows:

(a) Let G = C(j—Z)HC(j—l)~
(b) Let H = 1/_,.
(c) Compute (G',B") =XO"'(G,B,H,E).

(d) As B" = v’J||v’( we perform inverse of mutation on V', and v/

J+1y? J (+1)
based on 0} and 0;;1. Based on the guessed 7;, we compute ¢; and
0. For the worst case scenario, there are 92 = 81 possible values for
these two weights based on Proposition 3.3.2. For each guess of the

possible values of the aforementioned two weights, compute KS% L=

M~ (v}, 00) @ py, for k= j, j+ 1.

(e) Repeat Steps 4a to 4d by using other plaintext-ciphertext pairs, i.e.

(P;,Cip;) for 2 < i < n. Store the following data if similar values for
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KS % i and K SL 41 for all used plaintext-ciphertext pairs.

* Possible weights of 6; and 0y, 1);

* Possible values for KS}J and KS%,(HI);
« Store the possible G’ and the weight of its corresponding bytes in

KSi,ie H.

(f) Repeat Steps 4d and 4e for other guesses of the possible values of the o;

and Oj+t1-

(g) Repeat Step 4 for the other guesses of 17 possible values of the
aforementioned 7; and other possible values of (B',E). Store the
following data if similar values for KSi ; and KS%_(]. +1) for all used

plaintext-ciphertext pairs:

(h) Repeat Step 4 for other guesses of 17 possible values of the

aforementioned weight and other possible values of (B',E).

(i) Replace B’ and E in Step 4 by G’ and H respectively.
5 Repeat Steps 3 and 4 for j =11,9,7 and 5.

6 Consider (C',F) and (B',E) that stored in Steps 2 and Step 5 respectively,
where F = 7 and E = 13. For each possible values of (C',F) and (B',E),

perform as follows:

(a) Compute (C",B") = XO~'(C",B',F,E), where C" = v\||}, and B" =
v

(b) As C" =v}|[vy B” = v3]|vj, we perform inverse of mutation on v/; based
on 0, for j = 1,2,3,4. Based on the guessed 7; and 73 , we compute
o; for j =1,2,3,4. For the worst case scenario, there are 9* = 6561
possible values for these four weights based on Proposition 3.3.2. For
each guess of the possible values of the aforementioned two weights,

compute KS| ; =M~ (v, 0;) @ pj, for j =1,2,3,4.
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(c) Repeat Steps 6a and 6b by using other plaintext-ciphertext pairs, i.e.
(P, Cip;) for 2 < i <n. Store the following data if similar values of

KS!

o for j =1,2,3, and 4 for all used plaintext-ciphertext pairs:

* Possible weights of 07, 0,,03, and 04;

¢ Possible KS% i

for j =1,2,3,4.

(d) Repeat Steps 6b and 6¢ for other guesses of the possible values of the o
for j =1,2,3,4.

(e) Repeat Step 6 for the remaining values of (C',F) and (B',E) stored in

Step 2 and Step 5 respectively.

Experiment result: Recovering KS|.

Based on Proposition 3.33, 1; = 0; + 0j4; is determined for
j=1,3,5,7,9,11,13 and 15, there are 178 ~ 23270 possible values for the
weight of KS%’ jas KSI-2 is made up by eight 16-bit strings. From 178 possible
values, we deduce the possible o; for 1 < j < 16 based on Proposition 3.3.4 and
there are 7 x 53 = 371 possible outcomes for 0; and ¢, 1. Then, each possible
values of o; will be used to determine KS}’j for 1 < j <16 by following Steps
1-6.

We run the computer simulations 50 times by using MATLAB R2017a
environment to verify our results. Let the weight of each byte in KS% be
oj=wt(u;) €{0,1,2,...,8}, for 1 < j < 16. Let T = 0+ 0j41. Let n be the
number of plaintext-ciphertext pair. The total number of possible candidates for
KS! is equivalent to the possible values of (0j,0j+1). The worst case scenario
for the weights of I{Si2 is (01,0,...,016) = (0,10,0,10,0,10,0,10,0, 10,
0,10,0,10,0,10). We obtained 23*!* pairs (KS},KS?) by using n = 5
plaintext-ciphertext pairs which is tallied with the number of possible
candidates for K S% in Proposition 3.3.4.

To calculate the time complexity of XO~! operation for the experiment, we
follow Proposition 3.3.3, i.e. |.#'| = 17/, where [ is the number of 16-bit of the

input bit strings. Steps 2h and 2i use two XO~! operations to determine 7, 7;3
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and ;5. Therefore, for n plaintext-ciphertext pairs, n x 2 x 17> XO~! operations
are required in these steps. Step 4c is used to find 7; for j = 13,11,8,7, and
5, so it requires n x 5 x 17 XO~! operations. Lastly, Step 6a requires n X0~
operation to identify 7; and 73. The total time complexity of XO~! operations is
n(2x 17345 x 17+ 1) ~ 2'3-?7n for one encryption.

On the other hand, we follow Proposition 3.3.2 to calculate the time
complexity of M~! operation, i.e. |.#| = 9™, where m is the number of bytes of
the input bit strings. For n plaintext-ciphertext pairs, Step 2j requires n x 92
M~! operations to determine ;5 and oj6. Meanwhile, Step 4d requires
nx5x92M! operations respectively to determine the o;, for j = 13,11,8,7,
and 5. While Step 6b requires n x 9* M~! operations to recover o;, for
Jj = 1,2,3,4. The total time complexity of M~! operations is
n(9% +5 x 9% +9%) ~ 2!278, for one encryption.

Based on the experiment, we require five plaintext-ciphertext pairs to
recover the K§ % on average. By considering n = 5, the total time complexity of
the proposed attack is 5 x 21327 &~ 21559 XO~! and 5 x 21278 & 21510 p~!
operations. As one encryption requires 8 XO and 16 M operations only, thus the

~ 01259

proposed attack has the time complexity around 2135 / 23 encryptions.

3.3.2 Recovering the correct secret key

Recall from Section 3.2.5, we know that pseudorandom bit sequence KS; is
formed by x and y sequences generated by using Equations (3.2) and (3.3).
Since KS; = KS}||KS?, then we let KS! = Xid+1 and KS? = Yid+1, Where
(xi0,¥i0) is the secret key and d is the number of chaotic map iterations to
avoid harmful transient effect. We here assume that x and y sequences are

integers. Given the parameters u,f,N,m,x;;, and y;;, one can generate x;;
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and y; ;4 j for any integers i,7, and j.

For ease of understanding, we denote KS% = x171,KS% = ylﬁl,KSf = X1,

and KS‘I1 = y1,2, Where d is ignored as it is used to avoid harmful transient effect

and will not affect the validity of our proposed attack. We perform the

following known plaintext-ciphertext attack procedure to recover the remaining

secret parameters as follows:

1. Fromu €[0,4], B €[1,2], N =[1,2'28], m € [1,254], guess a value for u, B, N,

and m.

2. Based on Proposition 3.3.4, for each guess of (u,3,N,m) and each pair out

of 23%14 pairs! of (KS},KS?), compute the values of (KS3,KS}) based on

Equations (3.2) and (3.3).

3. Let (P,Cip;) and (P,,Cip;) be two different plaintext-ciphertext pairs,

where P, = pi||p2l|..-||p1e and Cip; = cil|ca]|...||c16, for i =1 and 2.

Consider KS7 = KS%’1||KS%72||...||KS%’16. Let o; be the weight of KS%J.

Then, perform the following:

(a) For Py, compute v; = M((KSij @ pj),0;), for 1 < j <16, where KS%J

th 3
denotes the j""-byte of KSy.

(b) For j =1, generate Cip; as follows:

il.

ii.

1v.

V.

Vi.

Generate two parent 16-bit strings A = V.||V, | and B=V' ,[|V},;
Compute two 16-bit strings 7; = wr(KS{ ;)+ wi(KS} ;, ;) and Tj;, =
wt(KS?7j+2+ wt(KS‘l‘JH), where KS‘I‘J denotes the j-byte of KS7.
Compute (A’,B") =XO(A, B, 7}, Tj;2) to generate two child bit strings
A’and B'.

Obtain V2 by concatenating A" and B, i.e. V2 =A'||B'.

Repeat Steps 3b(i) to b(iv) for j =3,5,7,9,11,13, and 15.

Obtain Cip} = V2.

'We assume worse case scenario to obtain the worse case time complexity of the proposed

attack
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(c) Repeat Steps 3(a) to (b) for (P»,Cip).

4. If Cip/, = Cip and Cip), = Cip,, then the guessed values for i, 3,N,m,KS},
and KS% are correct. If not, then the guessed values are wrong and repeat

Steps 1 to 4 until we find the correct guess.

Analysis. For Step 2, the total possible value of (KS3,KS7) is
4 x 2 x 2128 x 264 x (23414)2 x5 226328 For each guess of (KS37,KS7), Step 3a
requires 16 M operations and Step 3b requires 8 XO operations. Overall, the
total time complexity of the proposed attack is 226328 x 16 ~ 226722 M
operations and 220328 x 8 ~ 226628 X(O operations. On average, to reduce
226328 hossible values of secret key to one, two plaintext-ciphertext pairs (i.e.
256-bit consistency check) are needed. As one encryption requires 8 XO and 16
M, hence the time complexity needed to recover secret key k; is around
(226728 % 2) /24 ~ 226428 encryptions.

Therefore, the time complexity needed to launch such known plaintext

attack under traditional security setting of block cipher is around

212.59 + 2264.28 ~ 2264.28 2448

which is much lesser than as claimed by Biswas et

al. Therefore, this scheme is vulnerable to the known plaintext attack.

3.3.3 Key recovery attack under defined security setting

In Biswas er al. proposed scheme, different secret keys k;, for i > 0, are
randomly selected for every session from a same key pool to generate chaotic
pseudorandom bit sequences. In each sensor node, a number of secret keys are
generated by using elliptic curve operations and then a key pool is formed by
these elliptic curve points. If the key pool size is large, then the probability of
selecting same secret key is negligible. However, to encrypt an image with the

size greater than 128 bits, the pseudorandom bit sequences that generated by the
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secret key from the same session will continue to be used to encrypt the image.
The attack performed in Section 3.3.1 is enough to reveal the secret parameters
of the N-logistic tent map, i.e. u,,N and m. The encryption scheme is then
broken. Therefore, the cryptosystem is vulnerable to the known plaintext attack

by using the keystream generated for one session.

3.4 Summary

This chapter showed that known plaintext attack (which involved
divide-and-conquer attack) can be launched against the image encryption
scheme designed based on the genetic algorithms. A demonstration of attack is
performed on the Biswas et al. and the time complexity required to recover the

secret keys is 226428

encryptions. Even though the time complexity is still high,
the proposed attack is still faster than brute force attack for 23372 times. The
proposed attack showed that the security of an image encryption scheme
designed based on genetic algorithms remains unknown and requires further
in-depth analysis. The proposed attack and its analysis can be utilized and

extended to other image encryption schemes designed based on genetic

algorithms.
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CHAPTER 4

CRYPTANALYSIS OF AN IMAGE ENCRYPTION SCHEME BASED

ON TWO-POINT DIFFUSION STRATEGY AND HENON MAP

This chapter provides a cryptanalysis of an image encryption scheme proposed
by Ping et al. (2018), which utilizes a two-point diffusion strategy and the
classical Henon map to generate chaotic sequences. The discrete Henon map is
employed as the encryption operation. The aim of this chapter is to further
investigate the vulnerabilities present in existing encryption methods.

The Ping et al. scheme presents an interesting encryption architecture that
integrates permutation and diffusion into a single process, utilizing the Henon
map as the primary method for generating the keystream. However, our
cryptanalysis, performed through a chosen plaintext attack, reveals significant
vulnerabilities in this approach. The scheme’s reliance on the Henon map for
both permutation and diffusion leads to a sequential encryption process that
lacks effective diffusion. This dependency compromises the security of the
encryption, as it fails to achieve the necessary level of randomness and
resilience against cryptographic attacks.

The findings in this chapter emphasize the need for more robust chaotic
maps and better-designed permutation-diffusion strategies to mitigate these
vulnerabilities. Building on this analysis, the subsequent chapter will focus on
addressing the dynamical degradation of the Henon map and developing
improved techniques to enhance its chaotic behavior for more secure encryption

methods.
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4.1 Introduction

To improve the security of image encryption, proposals utilizing more than one
chaotic maps or chaotic maps with higher dimensions were introduced to
increase the key space. Two serpentine maps were used by Boriga et al. (2014).
One of the serpentine maps was used to generate a random permutation vector
which is applied in the permutation process, while another serpentine map was
used to generate two keystreams that involve in the diffusion process. Along the
same direction, Zhou et al. (2015) applied permutation-diffusion structure in the
encryption scheme with the involvement of two chaotic maps: 1) Chaotic
sequences generated by skew tent map were used as the secret keys in
permutation and diffusion processes and 2) Line map was used to shuffle the
pixels of plain-image. Wu et al. (2018b) proposed a new chaotic map, called
two-dimensional Henon-Sine map which improves the chaotic behaviours of
the underlying chaotic maps. To have high complexity and add more
randomness, Julia set fractals and three-dimensional chaotic Lorenz map were
applied in the shuffling process of the encryption algorithm (Masood et al.,
2020). However, these image encryption schemes are found vulnerable against
differential cryptanalysis and chosen plaintext attacks (Wen et al., 2017; Chen
et al., 2017, 2020; Munir et al., 2021). Their common mistakes are the
differential cipher-images are independent of the diffusion keys but dependent
on a series of linear functions of the differential plain-image. So, the
permutation effect in the encryption algorithm can be eliminated and the
equivalent encryption elements can be found easily.

Even though some chaotic maps demonstrate a good dynamical properties
in continuous domain, but the problem of dynamical degradation of chaotic
maps in digital domain is inevitable. The performance of chaotic maps

jeopardized dramatically when implemented on a limited precision device (for
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example, digital computer) because the phase space of the chaotic map will be
constrained to a finite state phase. It causes the chaotic map to have short cycle
length, low complexity and poor randomness. State-mapping network is a
graphical method to study the periodicities of a digital map in a quick and
accurate way. The dynamical properties of logistic map, tent map, generalized
Arnold’s Cat map have been studied using the state-mapping network in (Fan
and Ding, 2019; Li, Feng, Li, Kurths and Chen, 2019; Li et al., 2021).
Permutation-diffusion architecture is a popular approach used to design a
secure image encryption scheme. However, there exist concerns in terms of
computational efficiency and security. Many image encryption schemes treat
the permutation and diffusion as two stages, therefore the image is processed
twice for every round of encryption. Ping et al. (2018) pointed out that the
diffusion process is time-consuming and the process cannot be parallelized,
therefore it is not applicable in real life. A novel image encryption scheme that
is highly optimized for massively parallel architecture was then proposed based
on lightweight chaotic maps and simple logical and arithmetic operation by Lee
et al. (2018). Ping et al. proposed an image encryption scheme based on two
two-dimensional chaotic maps, i.e. a classical Henon map was used to generate
a keystream while a discrete Henon map was applied in the encryption
algorithm. Instead of having two independent permutation and diffusion
processes, they proposed an improved permutation-diffusion process which
allows the permutation and diffusion process to intermingle with each other.
After calculating the new position of two pixels, the pixel values of these two
pixels are changed instead of calculating the position of the next pixel. A
two-point diffusion strategy was proposed by Ping et al. to further improve the
efficiency of the scheme. This strategy can process two pixels simultaneously,
which mean the change of one pixel value will affect its subsequent two pixels.
They claimed that this strategy can speed up the spreading process in diffusion

and can resist the chosen-plaintext or known plaintext attack because the

53



keystream generation is dependent on the plain images. The key space size is of

approximately 23

which can effectively prevent the brute-force attack.

This chapter investigates the two-point diffusion strategy proposed by Ping
et al.. Our main contributions can be summarized as follows. Firstly, we show
that the scheme is insecure against the chosen plaintext attack even though the
key is dependent on the plain image. The equivalent key is revealed by using
chosen plaintext attack. Moreover, the attack complexity of the encryption
scheme is lower than that of the exhaustive attack. Lastly, the efficiency of
two-point strategy has been discussed. We show that the encryption structure is
not suitable for parallel computing and suggestion has been given.
Organization: The remainder of this chapter is organised as follows. Section
4.2 describes the encryption algorithms proposed by Ping et al. Section 4.3

demonstrate the detailed cryptanalysis and attacks. In Section 4.4, the efficiency

analysis and suggestions are given. The last section concludes the chapter.

4.2 Encryption scheme

The plain image considered in Ping et al.’s scheme is a gray-scale square image
with m = N x N pixels, where N indicates the number of rows or columns of
image and m is an even number. Thus, the plain image can be denoted as a
. . . . A IN—1,N—1
square matrix in the domain of Zjse, i.e., P = [p(z,])]i:OAJ.ZO :
A two-dimensional classical Henon map is used to generate subkeys and a

discrete Henon map is used in permutation-diffusion encryption architecture.

The definition of these chaotic maps are given as follows.
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¢ Classical Henon map

Xar1=1—ax3+yg; @D

Yd+1 = bxg,

where a = 1.4 and b = 0.3 are the control parameters and d is the d-th
iteration of the chaotic map. Lastly, xo and yq are the initial values of the

chaotic map.

¢ Discrete Henon map

X, =1—s X3+ mod N);
d+1 2t ya ( ) “2)

Yd+1 = Xq+s2 (mod N),

where 51,5, € {1,... ,2128} are the control parameters.

The image encryption algorithm can be divided into two main algorithms,

keystream generation and encryption.
4.2.1 Keystream generation

* Secret keys/initial values: xg,yp € (0,1) with 10~ decimal precision and
s1,82 € {1,...,2128} the control parameters of discrete Henon map given in

Equation (4.2).
» Keystream generation consists of the following steps:

1. Compute

suml =Y Y p(i, j) (mod 256) (4.3)
i

and

sum2 =YY" p(i, j)* (mod 256). (4.4)
i
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2. Compute the following equations.

If 51 < 52,
_ (suml+1)x(sum2+1) _ (suml+2)x(sum?242) .
o1 = 2572 X z_;u Oy = 2582 X %’
If 51 > 9,
141 2+1) 142 2+2)
o) = (sum +2)5x7(2sum +1) 2 %’ cy = (sum +2)5xg(zsum +2) % ;_?
4.5)
3. Compute
xy =xo=[o1 x 10° —floor(oy x 103)] x 1073, (4.6)
Yy =yo=E[on x 10° —floor(o, x 10°)] x 1077, 4.7

Note that the plus-minus symbol (%) represents a function that applies
addition operation (+) if the x6 is in the range of (0,1), otherwise

subtraction operation (—) will be applied.

4. Compute x4 and y ., for k =1,...,3m/2 by iterating Equation (4.1)
with the initial values of (x;,y;), where d is the number of chaotic map

iterations to avoid harmful transient effect.

5. Compute the first keystream ks = {ks,(:) | ks,(cl) =
floor(|xs14| x 10'° (mod 256),k=1,...,3m/2)}.

6. Compute the second keystream Ks® = {ks,(cz) | ks,(cz) =

floor(|ya+«| x 10! (mod 256),k =1,...,3m/2)}.

4.2.2 Encryption

Unlike the traditional permutation-diffusion architecture, Ping et al. proposed
an image encryption allowing the permutation and substitution processed to be

done after one another for every two pixels. The author called this method as
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two-point diffusion strategy. As demonstration, the process flow of the two-point
diffusion process for a 2 x 2 image is shown in Figures 4.1 and 4.2. Process (1a)
and (1b) indicated in Figures 4.1 and 4.2 shows the permutation process on how
the pixels being changed to a new position. On the other hand, process (2a) and
(2b) indicated in Figures 4.1 and 4.2 shows the diffusion process on how the
pixel values being changed by the plain pixels and previous cipher values.

As shown in Figure 4.1, the first two pixels p(0,0) and p(0, 1) are moved to
the location (0/,0') and (0”,07) via process (1a) and (1b). After that, diffusion is
done by altering the pixel values and generate two outputs ¢() (0,0) and ¢(")(0,1)
through process (2a) and (2b). The cipher pixel clr) (0,0) relies on the permutated
pixels p(0/,0') and p(0”,0”), whereas ¢(")(0, 1) relies on p(0,0) only. Referring
to process (3) in Figure 4.1, let ¢()(0,0) and ¢(")(0, 1) be ¢(0*,0*) and ¢(0*, 1*),

respectively, and they will be used in the encryption for the next two pixels.

____________ D 1
1 .
* i \ ©)
p(0,0) | p(0,1) - — p(0',0) 2 (0,0)c™ (0, 1 )—= (0%, 17)
I
I
(0//7 0//
I @
l A v
—————————— ! | | C(O*, 0*)
Permutation Diffusion —l

Figure 4.1: One-round encryption for p(0,0) and p(0, 1)

Same for the next two pixels p(1,0) and p(1,1) in Figure 4.2, they move to
new positions (1’,0") and (1”,0”) through process (1a) and (1b). As shown in
process (2a), the diffusion process to generate () (1,0) involves the permutated
pixel p(1’,0") and p(17,0”) that indicated by red solid lines, and the previous
cipher pixels ¢(0*,0%) and ¢(0*,1*) that indicated by red dotted lines. For
process (2b), ¢(”)(1,1) relies on p(1’,0) that indicated by blue solid line, and
the previous cipher pixel ¢(0*,0%) that indicated by blue dotted line. Then, we

will let ¢(")(1,0) and ¢")(1,1) be ¢(0%,0%) and ¢(0*, 1*) which are to be used in
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the next round.

p(0,0) | p(0,1) p(17,0")|p(0,0)| - ™)(0,0)) (0, 1)4|_> (0%, 1%)
| ]
1
p(1,0) | p(1,1) | - —— - H #p(1”,0"p(0"”,0") —c() (1,0)c() (1, 1) ,'
3l )
| v 7 g
0@ |
‘\ \k - ’ Vs , ¢
) b ~ ~ - g ’

Il T

l—Permutation Il Diffusion

Figure 4.2: One-round encryption for p(1,0) and p(1,1)

The overall 3-round image encryption algorithm suggested by Ping et al.
is illustrated graphically in Figure 4.3. The keystream generation process have
been discussed in 4.2.1. The detailed process of the whole image encryption
algorithm is given in Algorithm 1.

Repeat for another 3 x 3 — 1 rounds

p(i, j) p(i', ') (i, j)
ImageP — Permutation I
p(i,j+1) p(i", 5" ‘ (i, +1)

Permutation key Diffusion key
51,82 KS® Ks®

i

Keystream
Generation

v

Figure 4.3: The overview of Ping et al. image encryption scheme

4.3 Investigating the security of two-point diffusion strategy

Ping et al. claimed that the encryption algorithm is secure against chosen

plaintext attack. However, the authors ignored the existence of equivalent key in
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Algorithm 1: Image encryption

Input: Plain image P and control parameters of the discrete Henon map

S1,52
Output: Cipher image C,(ﬁ)
1 Obtain the keystreams ksgl), . ,ks,(;/)2 and ksgz), - ,ks,(nz/)2 based on the

key stream generation algorithm;
2 ¢(0%,07) =0, c(0%,1") =0,k= 1,
sforr=1:3do
4 fori=0:N—-1do

5 for j=0:42:N—1do

6 Calculate the new positions (¢, j') and (i, j”') for the two
pixels p(i, j) and p(i, j+ 1) as follows:

7 i’ =1—s1i>+ j (mod N);

8 j =i+sy(modN); Indicated by la of Figure 4.1

9 i"=1—s12+(j+1) (mod N);

10 j/=i+sy (modN); Indicated by 1b of Figure 4.1

11 Compute cipher pixels ¢(”) (i, j) and ¢(") (i, j4 1) using
two-point diffusion operation as follows:

5 (i) =1~ ks [p(1. )+ eli*, )P+ p(i" ) +
c(i*,j+1%) (mod256); Indicated by 2a of Figure
4.2

13 (i, j+1) = p(i', /') +c(i*, j*) +ks\>) (mod256) ;
Indicated by 2b of Figure 4.2

14 k=k+1;

15 end

16 end

17 end
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their scheme where the same encryption output can be generated by at least two
different keys. From Subsection 4.2.1, we can see that the generation of
keystream depends on the sum of image pixels and secret keys. Assuming the
secret keys remain the same, there exist more than one plain image producing
the same keystream as long as the sum of pixels for two different images are the
same.

Besides, the encryption algorithm can be expressed by multiple linear and
quadratic equations using modular arithmetic. = Therefore, we apply the
algebraic attack to recover the keystream and the equivalent key by substituting
in the known data for some of the wvariables (i.e. a number of
plaintext-ciphertext pairs). We demonstrate the scheme is insecure by showing
the time complexity to break the scheme is less than 2/K|, where |K| denotes the
size of key space (Yap et al.,, 2016). In this section, we first present the
cryptanalysis of the Ping ef al. scheme by recovering the keystream used in the
encryption scheme, with the knowledge of the chosen plain images and their

cipher images. After that, we use the recovered keystream to reveal the secret

keys (x0,Y0,51,52).

4.3.1 Rewriting system of equations

For simplicity, the demonstration of the attack is illustrated based on the smallest
square images with the size of 2 x 2. For m > 0, the m" plain image Py, =
1,1 1,1

[pm(i, j)];Zo, j—o and the r-round output image Cn) = [cg,f)(i,j)] ’

i20, j—0 are in the

domain of Z,5¢, where Cm? is the cipher image. We first express the encryption

algorithm as a system of equations as follows.
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First round

c3(0,0) =1 — ks'" [p(1,52)]% + pm(0,52) (4.8)
c(0,1) =pm(1,57) + s\, (4.9)

e (1,0) =1 — ks [pun(1 = 51,1+ 52) + ¢ (0,0)2 + p(—s1,1 +52)
+ci(0,1) (4.10)

S (1,1) =pm(1 = 51,1+ 52) + ¢ (0,0) + ks 4.11)
Second round

c$2(0,0) =1 — ks{" [eh) (1,50) + ¢ (1,0))2 + ¢4 (0,50) + ¢ (1,1)  (4.12)
20, 1) =cW (1,50) + eV (1,0) + ks, (4.13)

c,(nz)(l,O) =1 —ksgl)[c,(nl)(l —s1, 1 +57) +c£,12)(0,0)]2+c,(nl)(—s1, 1+s2)

+c20,1) (4.14)
csy%)(l, 1) :c,(ﬂ])(l —s51,1457) —I—cf,%)(0,0) +ks§2). (4.15)

Third round

i(0,0) =1 —ksiV e (1,52) + ¢ (1,0))2 + 52 (0,50) + i) (1,1)  (4.16)
CS)(O,I):C,(,%)(l,sz)—i-cg,%)(l,O)-l—ksgz). (4.17)

CS)(I,O) =1 —ksél)[c,(f)(l —s1,1457) +C,(1§)(0,0)]2+C,(3)(—s1, 1+s7)

+cP 0,1 (4.18)
e (1,1) =ca (1 = 51,14 52) + ¢ (0,0) +kSé2). (4.19)

The cipher pixels at the third round cg,?)(0,0), cg,f) (0,1), cg,?)(l,O) and
cf,f )(1, 1) are known under the chosen plaintext attack. All the twelve subkeys
(ks,((l), ks,Ez)), for 1 <k < 6 are required to be recovered. In the first round, there

are totally 12 unknown variables which are ksgl), ksgz), ksél) and ksgz) and

P(0,52), Pn(1,82) Pm(—=s1,1+ 52) and pu(1 — 51,1+ 52). ¢ (0,0), CS»:)(O, 1),
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cf,})(l,O) and c,(ﬂl)(l, 1). The plain and cipher images are unknown because of

the unknown of s; and s».

In the second round, the additional unknown variables are ksgl), ksgz), ksil)
and ksgz), c,(nl)(O,SQ), c,(wl)(l,sz), c,(nl)(—sl, 1+s2), cgnl)(l —s1,1452), cg)(0,0),
¢20,1), ¢{(1,0) and ¢(1,1). While in the third round, the additional
unknown variables are ksgl), ksgz), ksé]) and kséz), c,(n2 ) (0,s2), cf,? ) (1,s2),
c,(nz)(—sl, 1+s7), and c,(nz)(l —s1, 1+57).

Hence, there are 32 unknown variables and 4 known variables (c,(,;5 ) (0,0),
3 )(0, 1), s )(1,0) and ¢ )(1, 1)) in total. To solve these unknown variables,
there must be at least as many equations as the number of variables. With four

images, we can identify the unknown variables, even though this does not

guarantee a unique solution.

4.3.2 Recovering the keystream

As the plaintext-ciphertext pairs are known by the attacker, thus the plain pixels
pm(i, j) and cipher pixels c,gf)(i,j) are known, for 0 < i,j < 1. Let Ac") (i, j) =
cg,r)(i, J)— cl()r)(i, ), which is the difference between a'* and b images for r-
round output pixels at position (i, j).

Before recovering the keystream, we first determine the permutation keys

(s1,52) of the encryption scheme. It can be done by considering two plaintext-

0 0
ciphertext pairs, i.e. an all black 2 x 2 plain image P = and another plain
0 0
. 128 O . . . . .
image Q = , in which their sum1 and sum?2 in Equations (4.3) and
0 128

(4.4) are zero. Then, compute Ac®) (i,), for 0 <i,j < 1. There are four possible

cases for permutation keys and are listed in Table 4.1.

62



Table 4.1: List of possible cases for permutation keys s and s,

Ac®)(0,0) AcP)(0,1) AP)(1,0) API(1,1)

case s; 5
1 0 O 0 0 0 128
2 0 1 128 128 0 128
3 1 0 0 0 0 0
4 1 1 0 128 0 0

After knowing which case the permutation keys belong to, then the
keystream KS(!) = (ksgl),ksgl),...,ksél)) and KS©® = (ksgz),ksgz),..., kséz))

can be recovered by following the steps below.

1. Consider four 2 x 2 plaintext-ciphertext pairs (Py,C17)), (Py,Cy®),

(Ps, C3(3)), and (Py, C4(3)), where the plain images are shown as follows.

z 0 0 z 00 00
P = Py = ,P3= and Py = :

00 00 z 0 0 z

where z € Zjse.

2. There are 232 possible candidates for ksgl),ksgz),ksél),ksg) in Equations

(4.16)- (4.19), respectively. For each guess of 232 possible values of the

aforementioned four keys and 1 < m < 4, compute

e (1= 51,1+ 52) =cf (1,1) — ¢ (0,0) — ks, (4.20)

D (=511 +82) = (1,0) = 2 (0,1) — 1+

ks e (1—s1,14+:)+c (0,0P, @421
D (1,52) +¢5)(1,0) = (0, 1) — ks 4.22)

$(0,52) + e (1,1) = (0,0 — 1+ ksi el (1,52) + 2 (1,0)12.

(4.23)

3. To obtain ksgl), compute Ac(?)(0,1) for the images with p(0,s,) = z and

p(—s1,1+57) = z, respectively, using Equation (4.13) as follows.
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(a)

(b)

For cases 1 and 3, Ac®(0,1) = 2A¢D(1,0) = 2[—ks\" (22 + 22) — 2.
Solve ksgl) by using Ac(?)(0,1) determined from Equations (4.21) and

(4.20) for cases 1 and 3, respectively.

For cases 2 and 4, Ac?(0,1) = Ac(D(1,1) + Ac(D(1,0) =
7+ [—ksgl)(ZZ +7%) —z]. Solve ksgl) by using Ac(?(0,1) determined
from Equations (4.22) and (4.23).

4. Obtain ksgn as follows.

(a)

(b)

5. Fr

For cases 1 and 3, since ¢(?)(0, 1) for image with p(0,s,) = z is obtained
from Equations (4.21) and (4.20), respectively, substitute the known
c? (0,1) and ksgl) into Equations (4.10) and (4.13) to obtain
2ksg2) —|—ksg2). Then, solve ks(ll) by substituting the 2ks(12) +ksg2) and

ksgl) into ¢?) (0,1) for image with p(1,s,) = z in Equation (4.13).

For cases 2 and 4, since ¢(?)(0, 1) for image with p(0,s,) = z is obtained
from Equation (4.22), substitute the known ¢(2)(0,1) and ksgl) into
Equation (4.13) to obtain ksgz) —|—ks§2) —|-ksg2) . Then, solve ksgl) by
substituting the ksgz) + ksgz) + ksgz) and ksgl) into ¢ (0,1) for image

with p(1,s2) = z in Equation (4.13).

(2)

om Steps 2 to 4, we have determined C,,,”. From Equation (4.14), we have

ksy (e (1= 51,14 52) +cip (0,002 =1+ ¢y (=s1,1+52) + e (0,1)

—2(1,0), (4.24)
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where c(l)(l —s1,14s7) for 0 <sy,50 <1 are

c,(nl)(l —s1,14+57)

c,(,p(l,l): pm(1,1)+1—ksgl)(pm(l,O))z—l—pm(O,O)+ks§2), for case 1,

(1,00 = 1—kst" (pm(1,0) +ca)(0,0))2 + pu(0,0)+
(2)

- Pm(1,1) + ks, for case 2,
C/(nl)(oa 1)=pn(1,0) —&-ksgz), for case 3,
C’(”})(an): 1*ksgl)(pm(l,1))2+pm(071)7 for case 4.

\

(4.25)

(a) For the first three cases, form three equations from Equation (4.24) with
different m. Based on the secret key involved in c,(ﬂl)(l — 51,1 +s7) of
Equation (4.25), we can solve the three equations simultaneously to

obtain the following secret keys.

1. For case 1, we can obtain ksé(ll) and ksgz). Since c,(nl)(—sl, 1+s2) in

Equation (4.24) is eV (0,1) = pm(1,1) +ks§2) , therefore ksgz) can be

obtained by substituting ksgl) and ksgz) into Equation (4.24).

1. For cases 2 and 3, we can obtain ksil) and ksgz).

(b) For case 4, from Equation (4.25), no secret key involves in C;(nl )(0,0),
(1)

therefore only two equations from (4.24) are needed to determine ks,

and ks\”) with different m.

6. From Steps 4 and 5, we can obtain the following secret keys.

(a) For cases 1 and 3, obtain ksgz) by substituting ksgz) obtained from Step

5(a)i into 2ks§2) + ksgz) from Step 4a.

(b) For cases 2 and 4, obtain ksgz) + ksgz) by substituting ksgz) obtained from

Step 5(a)ii or Step 5b into ksgz) + ksgz) + ksgz) from Step 4b.
(1)

7. Since ¢, (1 — 51,1+ 57) from Equation (4.25) can been recovered based on

the ks(lz) and kséz) determined in Step 5, therefore we can obtain ksgz) by
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substituting c,(nl)(l —s1, 1 +57) into Equation (4.15) as follows.

ks = el (1,1) = ¢ (0,0) — el (1 — 51,1+ 52). (4.26)

8. The remaining subkeys can be obtained by solving Equation (4.12) as

follows.

(a) For case 1, since ksgl), ks(lz) and ksg) have been determined in Steps

3a and 5(a)i, therefore ksgl) can be solved by substituting the values in

(4.12) with any m value. Take m = 1 as example, ksgl) can be determined

by solving 4ks{ (1 — aks\") +kst?)2 =5—¢1(0,0) + ks,
(b) For case 2, since ksg) is unknown, therefore form three equations from

2)

(4.12) with different m. Substitute ksgl) and ks(1 that obtained in Steps

3b and 5(a)ii into these three equations. Then, solve the equations
simultaneously to get ksgl) and ksgz). Obtain ksgz) by substituting ksgz)

into kséz) + ksgz) that obtained in Step 6b.

(c) For case 3, take two equations from Equation (4.12) with different m.

Substitute ksél) and ksgz) obtained in Steps 3a and 5(a)ii into the

equations.  Obtain ksgl) and ksgz) by solving these two equations
simultaneously.

2) obtained

(d) For case 4, it is similar to Step 8b. Substitute ksgl) and ksg
from Steps 3b and 5b into three equations formed by using Equation
(4.12) with different m. Solve the equations simultaneously to obtain
ksgl) and ksgz). Then, kséz) is substituted into kséz) +ksg2) determined in

Step 6b to obtain ksgz).

We demonstrate the algorithm of recovery process for the permutation keys
s1 =0 and 5o = O under case 1, using Py, for I <m <4 with z=1 in Algorithm
2.

Analysis. To test the performance of the proposed recovering method,

simulations are conducted using Matlab R2019a, running on a personal
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computer with Intel(R) Core(TM) 15-8250 CPU @ 1.60GHz, 8 GB memory and
a Windows 10 operating system. The keystream generated by using secrets keys
(s1 =45, 5o =170, xo = 0.213377264386424 and yy = 0.166908249009117),
which are the same as provided in Ping et al. (2018), have been identified for
plaintext-ciphertext pairs with z =1 and z = 2 in Step 1. The possible values for
keystreams (KS(I), KS(Z)) and (KS(3), KS(4)) are 2°1 and 290, respectively.

To validate the results for worst case scenario, the possible values of the
(ksgl) , ksgl), ... ,ksél)) and (ksgz) , ksgz), . ,kséz)) for z = 1 have also been verified
on another 120 different sets of keystreams using Matlab environment.

Let |u| denote the possible value of u. Recall that case 1 is s; = 0,50 =0,
case 2is 51 =0,5p = 1,case 3iss; = 1,5p =0,and case 4is s; = 1,50 = 1. The

results of possible values are summarized as follows.
i. From Step 2, we have [J¢_ |ks,(€1)| : |ks](<2)| = (256)* = 2%,

ii. From Step 3, for cases 1 and 3, |ks§1)| =2, while for cases 2 and 4, |ks§1)] =1.

iii. From Step 4, the possible value of ksgl) can be found as follows.

For case 1, ]ks§1)| € (8,2%); For case 3, |ks§l)| € (8,2%);
4.27)

For case 2, |ks§l)| € (1,2); For case 4, |ks§l)\ € (1,2).

2) (2)

iv. From Step 5, the possible value for ksil) and ksg or ks, are determined

together as follows.

For case 1, |ks{"| € (1,2), [ks??)| € (4,2%) and |ks\?)| € (1,2):  (4.28)

For case 2, [ks{"| - [ks\?)| € (4,219); (4.29)
(1) @) 8.

For case 3, |ks, | € (1,2) and |ks,”| € (4,2°); (4.30)

For case 4, [ks\")| = |ks{¥] = 1. (4.31)

v. From Steps 6 and 7, the possible values for ksgz) and ksgz) are shown as
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follows.

For cases 1 and 3, ]ksg2)| = |ks§2)| =1; (4.32)
For cases 2 and 4, ]ks£2)| =1 (4.33)

vi. From Step 8, the possible values for the remaining keys are obtained as

follows.

For case 1, 51 = 0,5, =0, [ks\| € (1,2%); (4.34)
For case 2, 51 = 0,50 = 1, [ks{"| - |ks$)] € (1,2%) and ks | = 1;  (4.35)
For case 3, 51 = 1,5, =0, [ks"| € (4,2%) and [ks\?| = 1; (4.36)

For case 4, 51 = 1,5, = 1, [ks\"| - [ks$”)| € (1,2%) and [ks{| = 1. (4.37)
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Algorithm 2: Chosen Plaintext Attack

Input: Chosen plaintext-ciphertext pairs (Py,Cy 3)), (P5,C,3)), (P3, C3(3>) and (P4,C4))
Output: Keystreams kS and K52

-

for ks{) = 0:255 do
for kst = 0:255 do
for kst = 0:255 do
for ks{") = 0:255 do
form=1:4do
D=1 - -k
20,1y =) (1,0) - “)(01) 1+ ks$) e (1, 1)+ (0,002 5
><10 |/2<cm)<01> ‘Zh-
<00 0,0) =1+t el (1,0) +¢ (1,02 = P (1,1). :
— ks =
w .1 =c?0n-?01
for k =0:255do
it A (0,1) == 2[—k(3)2 — 1] then

kst = kst k5

e ® N A ! R W N

)=
)=
) =
) =

A <=
R W N =S

2% +kst) = 2 (1,0) =242k ;

[
N

for [ =0:255do

e
® 2

(]> [/(v(l> 1
k-vﬁ” =ikt = kol = ks =
for s =0:255 do

ST I
- S ©

fort =0:255 do

N
[N

A (0,1) — AP (1,0) ;
23 then
24 ksl = sl
25 ks = ksPin)
26 for u=0:255 do

// Refer to
// Refer to
// Refer to

// Refer to

Eq. (4.20)

Eq. (4.21)

Eq. (4.22)

Eq. (4.23)

// Refer to Step 3a

// Refer to Step 4a

it 201 — k(1 - 1)2] == 2 0,1) - (2P + k5P then

// Refer to Eq.

it s2 41+ (0,002 —s2+1 -+ 0,002 ==

(4.24)

27 w=s2+t+c2 0,02 -1- 0,1+

2(1.0)
28 ks = [ksy (2);
5(a)i

ul; // Refer to Step

29 ks =P (1,0 =2+ 2% -2k ;

// Refer to Step 6a

30 Ay =241

(4.25)

31 v=cP -

// Refer to Step 7 Eq.

32 ks = 1;

33 for w=10:255 do

34 if
4w(1
then
35

36 end
37 end
38 end

39 end

40 end

41 end

42 end

43 end

44 end

45 end

46 end

47 end

48 end

49 end
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50 end

—4k+u) =5

P

// Refer to Eq.

(0,00 — {1, 1);

(4.26)

(0,0)+1

k.sgl) = [ksgl);w] ; // Refer

to Step 8a




From the results above, we found that case 3 is the worst case scenario that
having the highest possible value of secret keys. The total possible value of
(ksgl),ksgl), ... ,ksél)) and (ks(lz),ksgz), . ,kséz)) for this case is 232 x 2 x 28 x
2x28x1x28x1=2%.

The time complexity of the recovery process under the worst case scenario
are calculated as follows. To recover permutation keys s; and s, it requires

two plaintext-ciphertext pairs. Step 1 involves 4 equations. For Step 2, with

28 possible values of kséz), Equation (4.20) is required to run for 28 x 4 = 210

times to get c,(nz)(l — 51,14 s7). With 2! possible values for c,(nz)(l — 51,14+ 57)

and ksél), Equation (4.21) is required to run for 2'6 x 4 = 2!8 times. Similarly,
both ksgz) and ksgl) have 28 possible values. Hence, Equation (4.22) runs for
216 % 28 x 4 = 226 times to get ) (1,s2)+ ) (1,0) while Equation (4.23) runs

for 224 x 28 x 4 = 23 times to get c,gf)(O,sz) —|—c,(nz)(l, 1).

With 232 possible values for ks,(cl) and ks,((z) for k = 5,6, the remaining secret

(1)

keys can be obtained as follows. To obtain ks, ’, Step 3 requires to compute

Ac?)(0,1) for 232 times. Since there are 2 possible values of ksgl) under the worst

(1)

case, Step 4 computes 232 x 2 x 2 = 23* equations to obtain ks, ’. Since there are

28 possible value for ksgl), Step S5 requires approximately 233 x 28 x 6 ~ 2388

2) (2)

equations to obtain ksil) and ksg or ks, . There are 2 X 28 x 1 = 2? possible

values for ksgl) and ks(lz) or ksgz). So, Steps 6 and 7 require 24! x 2% x 1 =29

250

equations for each step. Finally, Step 8 requires approximately X6x 1~

equations to obtain ksgl) or ksgz) and ksgz).

52.58

The whole process involves approximately 22 + 210 4 218 1 226 4 234
232 4234 1 23858 1 950 9 4 25258 x5 233 equations in total. Since 3-round
encryption involves 12 equations, so the proposed attack has the time

296

complexity around 23 /12 ~ 244! encryptions to reduce possible values of

(ksgl),ksgl),...,ksél)) and (ks§2),ks§2), ...,kséz)) to 2% possible values under

the worst case scenario for z = 1.
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4.3.3 Recovering the secret keys

Recall from Subsection 4.3.2, let the four plain images in Step 1 have z = 1.
The recovered keystream are needed to recover updated initial conditions x{, and
yo- To recover the correct secret keys (xo,Yo,51,52), we require another four
chosen plaintext-ciphertext pairs P, for 5 < m < 8, to generate another set of
keystreams. Their updated initial conditions calculated from Equations (4.6) and
(4.7) are x; and y{ and the subkeys generated by Equation (4.1) are denoted as
ksl@ and kslw, for 1 <i < 6. For ease of understanding, we let d = 0 in Equation
(4.1) as it is used to avoid harmful transient effect and will not affect the validity
of our proposed attack. We perform the following procedure to recover the secret

parameters.

1. Repeat Steps 1 to 8 in Subsection 4.3.2 to obtain ksl@) and ks§4), for1 <i<6,

with z = 2 for the four plain images in Step 1.

2. Guess the value for (x),y)) with 10'> computational precision of floating

numbers and perform the following steps.

(a) Fori= 1, use the guess value of (x;,y;) to compute

x=1-a(¥_)*+yi 1,

/

yé =bx;_;.

If floor(|¥)| x  10'%)(mod256) =  ks\" and

1

floor([y!| x 10'%)(mod256) = ksl(z), then store the guess value of
(%0:0)-
(b) Repeat Step 2a by using the corresponding ksgl) and ksgz), fori>1to

reduce the number of possible candidates of (x{,y()-

3. From Equations (4.6) and (4.7), the updated initial values are different from
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6 decimal places onwards. Repeat Step 2 to get the possible (x(,y;) by using

ks and ks for 1 <i <6.
4. Compute dy = |x{j — x;)|.

(a) Ifd; < 107°, then Equation (4.6) becomes

xy =xoto], x5 =xotof. (4.38)

where o] = —(1+12)5X7(21+1) X ;—; and o] = —(2+12)5X7(24+1) X ;—;
Then, compute L = — d
2 2572 2572
(b) Else, we have
xy, =xp%[o] x 10° —floor(o] x 10°)] x 1072, (4.39)
xy =x0+[o] x 10° —floor(o] x 10°)] x 107. (4.40)

Note that the upper bound of o] and o] are 25% = 0.000060561

and 5227 = 0.000227104, respectively, when {1 = 1.

The upper bound of [floor(o] x 10°)] x 107> = 0.00006.

The upper bound of [floor(oy’ x 103)] x 1075 = 0.00022.

So, the possible value of their difference d, = [floor(o] x 10°) —
floor(a! x 10%)] x 10~5 € {0,0.00001,0.00002, ..., 0.00016}.

dy+dp
15 4

Then, compute “;—; = for all the possible d,.

2572 2572
5. Obtain x¢ by substituting i—; from Step 4 into Equations (4.38) if or (4.39).
Similarly, obtain yg by substituting ! into the following equation.

N
2

(14 x(142) st

= 4.41
%2 2582 e (4.41)
Yo =Yo+£03, ifd, < 107°; (4.42)
Yo = yo %[04 x 10° —floor(c) x 10°)] x 107, if dy > 107%. (4.43)
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Analysis. Recall the keystream recovery process in Subsection 4.3.2, there are
28 possible values of KSM (ksi" ks{" .. kst") and KS® = (ks'® ks,
...,kséz)) under the worst case scenario for plain image with z = 1. For each
possible value of KS(") and KS®), there are (13#)2 ~ 28366 possible candidates
for x;, and y; in Step 2. After repeating Step 2b using ksgl) and ksl@), for
2 <i <6, the number of candidates for x{, and y;, are reducing approximately to

101922 53,66 1 s ich i i
e ~ 2770 7 In Step 4, we recover é which is the equivalent key for s; and

s7, meaning that the 2256 possible values of s; and s; are reduced to 17 possible
values of ;—; Since this attack requires four additional plaintext-ciphertext pairs,
therefore the time complexity for the whole secret keys processes is
2 x 24941 5 113+ ISHI0HI0 5 921651 According to Yap et al. (2016), an
encryption scheme is insecure if its time complexity is less than 2/KI
encryptions, where |K| denotes the length of the secret key K in bits. We show
that the time complexity of the recovery process is much lower than the length
of the secret key claimed by Ping et al., around 233, Through the key recovery

51 has been reduced to

process, the possible value of xp, yg and
238 5 23:66 5 17 2 26574 then the recovered xo, yo and % can be used to recover

other images of various sizes.

4.4 Investigating the efficiency of two-point diffusion strategy

Ping et al. has pointed out that the two-point diffusion strategy can enhance
diffusion effect if more than one processing unit is used. However, the proposed
method encrypts every two image pixels sequentially and the value of the
current cipher pixel depends on its previous cipher pixels. As shown in Figure

4.4, to diffuse the last pixels 7 and 8, all the previous pixels need to be diffused

IThis result is estimated by using x; and y;, with the computational precision of floating point
from 10° to 107.
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first. This is just similar to the traditional diffusion method, whereby each pixel
is influenced by one or more previous pixels. This can greatly jeopardize the

parallelism of algorithm and its efficiency.

1 3 5 7

2 4 6 8
Figure 4.4: Two-diffusion strategy proposed by Ping et al.

To allow the algorithm to be executed parallelly, the image needs to be
divided into block and running on the multi-core processing units
simultaneously. However, the processing unit that processes the image data of
the current block needs to wait for the other processing unit that processes the
previous block to complete. This time-consuming encryption method is similar
to encryption algorithms with ciphertext block chain (CBC) mode, whereby one
cipher pixel is affected by previous cipher (Wang et al., 2018). This shortage
limits the application on the platform based on field programmable gate array
(FPGA)/complex programmable logic device (CPLD) or digital circuits that can
support parallel processing.

Since computational speed can be greatly accelerated in the parallel
encryption mode, the CBC-like diffusion mode must be avoided. To have the

parallel encryption mode, there are suggestions to be considered.

1. The image data is divided into blocks.

2. Each processing unit processes each block independently and possesses

their own memory.

3. The encryption within each block must satisfy the confusion and

diffusion properties adequately (Katz and Lindell, 2020). This can be
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done by using the block cipher with counter (CTR) mode to avoid the
current plaintext block from being influenced by previous block. This
method is suitable for parallel computing because the counter values are
encrypted independently in parallel before combining with the plaintext
to produce the ciphertext. Besides, it is also proven that the CTR mode is

secure against the chosen plaintext attack.

4. To further enhance the diffusion effect, the encrypted data are exchanged

and communicated among the processing units.

4.5 Summary

In this chapter, we analyzed an image encryption network that adopting two
point diffusion strategy, where its diffusion process is intermingled with the
permutation process. The analysis shows that chosen plaintext attack can be
launched against the image encryption scheme by using ten 2 X 2 plain images.

The time complexity of the attack is 216.51

encryptions, which is much lower
than the key space claimed by Ping et al., i.e. 235, The possible values of secret
keys xog and yo and the equivalent key i—; has also been reduced substantially to
26575 The recovered keys can be used to recover the plain image with larger
size. The key space can be further diminished when pseudorandom sequences
generated by the Henon map are implemented using digital computers in real
applications, with a more detailed discussion provided in Chapter 6.
Additionally, the method proposed by Ping et al. does not achieve a
significant improvement in efficiency compared to conventional diffusion
methods, primarily because the encryption process is not parallelized. To ensure

parallelism during the encryption process, images should be classified into

different levels based on the available parallel resources of the computing
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system. The diffusion should then be performed within each group under a
parallelism framework. To avoid sequential encryption within the group, using
a block cipher based on counter mode is a popular method for enabling parallel

encryption.
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CHAPTER 5

DYNAMICS ANALYSIS OF TWO ONE-DIMENSIONAL CHAOTIC

MAPS

This chapter explores the dynamics of two one-dimensional chaotic maps with
the aim of proposing new chaotic map through cascading methods to enhance
their chaotic behavior. This study is significant because the fundamental
properties of chaos, such as sensitivity to initial conditions, unpredictability, and
randomness, which are essential for designing secure encryption algorithms. By
understanding and improving these properties, we intend to contribute to the
development of more robust image encryption schemes.

In this chapter, we focus on the characteristics of one-dimensional chaotic
maps, which are crucial for achieving the second research objective of this
thesis. We have selected two well-known chaotic maps, namely the Logistic
map and the Beta map, to compare the performance of our proposed map with
those existing in the literature. While these maps are widely used, they have
certain limitations, for example, the Logistic map contains periodic windows
within its chaotic range, which can reduce its overall chaoticity and introduce
potential vulnerabilities in encryption applications.

By examining these limitations, this chapter not only highlights the
weaknesses of commonly used chaotic maps but also underscores the
importance of enhanced chaotic behavior for image encryption schemes. The
findings presented here establish a foundation for developing improved chaotic

maps through cascading methods.
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5.1 Introduction

Over the past decade, chaotic systems have received attentions from many
researchers to study their chaotic behaviors. This is due to the interesting
characteristics of chaotic systems, for example, aperiodicity, high sensitivity to
the initial conditions and system parameters, ergodicity and random-like
behaviors. This is just analogous to the confusion and diffusion properties of
cryptographic properties (Shannon, 1949). Matthews (1989) was the first
person to apply chaotic system to image encryption technology. Since then, the
popularity of using chaos in cryptography has been grew significantly.

Chaotic system has been widely applied in designing image encryption
scheme. This is because the conventional encryption methods such as Data
Encryption Standard (DES) (National Bureau of Standards, 1977), Advanced
Encryption Standard (AES) (Daemen and Rijmen, 2013), and International
Data Encryption Algorithm (IDEA) (Lai and Massey, 1990) are no longer
suitable to encrypt image data because of the bulky data capacity and high
correlation among the pixels. Chaotic map is therefore applied in (a)
constructing permutation matrices in the encryption process; (b) generating a
chaotic pseudorandom sequences; and (c) producing the ciphertext by having
the plain pixel to be the secret keys and the chaotic map to be the encryption
operation (Zhang et al., 2012).

Wu et al. (2018b) designed an image encryption based on a chaotic map
which is formed by combining 2D-Henon map and a Sine map. The authors
used the chaotic map to generate keystream and then apply DNA approach to
encrypt the plain image. An image encryption scheme designed based on 2D
Logistic-Sine-Cosine map was presented by Huang (2019). The chaotic system
are created based on 2D Logistic, Sine and Cosine maps. Zhu et al. (2019)

presented a new chaotic map based on 2D Logistic-Modulated-Sine-
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Coupling-Logistic map for image encryption, whereby Sine map is modulated
by the Logistic map and then the result of modulation and Sine map are coupled
together.

In this chapter, we introduce a new chaotic map, called Logistic-Beta map
which is formed by combining Logistic map with Beta map. Logistic map is a
one-dimensional map which has been widely used in encryption scheme (May,
1976). Beta map is a chaotic map proposed by Zahmoul et al. (2017), which is
based on a statistical distribution, called Beta function. We study the chaotic
behaviors of the Logistic-Beta map, i.e. its trajectory, bifurcation diagram and
Lyapunov exponent. We also demonstrate our proposed chaotic map has a
better chaotic behaviors than the classical Logistic and Beta maps, and a
one-dimensional logistic-based chaotic map.

Organization: The remainder of this chapter is organised as follows. Section
5.2 describes the preliminaries of some exisiting chaotic maps. Section 5.3
presents the mathematical model of our newly proposed chaotic map. Section
5.4 discusses the dynamical analysis of our proposed map. The last section

summarizes the chapter.

5.2 Preliminaries

This section briefly discusses the Logistic map and Beta map which are going to
generate our proposed chaotic map. We also discuss a one-dimensional chaotic
map that designed based on Logistic map. We will compare the chaotic
behaviors of our proposed chaotic map with the following three chaotic maps in

next section.
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Logistic map

Logistic map is a one-dimensional discrete-time dynamical system proposed by
May (1976). It is an iterated map that represented by a first order difference

equations as

Xnt1 = rxn(1—x,), (5.1

where x,, € (0,1) and r € [0,4].
Beta map

Zahmoul et al. (2017) proposed a chaotic map based on a Beta function, known

as Beta map. It is defined as

Yn+1 :/J‘B()’n;)’b)%cad); (52)

where B(y,;y1,y2,c,d) denotes the Beta function for y = {y,};_, and u is a
multiplier that controls the amplitude of Beta map. The beta function of y is
represented by
_ c —y\d .
(220)(220)7, ity € (y1.y0):

B(y;yl»)’Z,Cad) = " (53)
0, otherwise.

cyrtdyr

Given that y, = ~;

denotes the weighted mean of y; and y,, where

c,d,y1,y2 € Rand y; < y;. The parameters ¢ and d are determined as

c =pi+qxe (5.4)

d =pr+q2xe, (5.5

where e is a bifurcation parameter and py, p2,q; and g, € R are randomly chosen

constants.
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A chaotic map must be bounded. To prove this, we identify the value of u
that results in y,+1 € (y1,y2). We know that the first derivative test can help to

find the minima and maxima of a function, then we compute —dfl"zl = 0 by fixing
Y1,Y2,Ym as constant.

dyl‘H—l _ d yn_yl Cc )72—)’n d—1 N 1 +
yn H <ym—y1) (yz—ym) ( yz—ym)
Y2—=YuN\d/Yn—Y1yc—1 1
C
(y2_ym) (ym_y1) ()’m_yl)
(yﬂ_yl)cfl(yz—yﬁdfl
0= u \ ez —yn) —d(yn—y1)]
(Ym = Y1) (y2 = ym)? " 4
_ ntdy
Yn crd

(5.6)

Noted that y, = y,,. Next, we compute the second derivative on y, | with respect
to y, as

dzy n+1

R
dy? - ‘u(;:r;)c (yz T

d—2 1 2
Y2—ym) ((yZ_)’m)(ym_yl)) ’

(dyvn—y1)[—c(v2—yn) +(d—1)(ya—y1)] +

c(y2—yu)[=d(n —y1) + (¢ = 1)(y2 —yn)])

(5.7)
Then, substitute Equation (5.6) into Equation (5.7).
dzyn—H 1 2
dyz |,,= - ‘u(()’Z*)’m)(Ym*yl)) [ed(ym —y1) (1 —y2)
+cd(ya —ym)(y1 —y2)] <0, .y <y (5.8)

Therefore, y,, is the local maximum.
By letting y,, = y,,, we determine the range of u by substituting Equation

(5.6) into Equations (5.2) and (5.3) as

y < pe () (22) <

(5.9)
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Hence, u € (y1,y2)-

Modified Logistic map

The is a chaotic map designed by modifying the Logistic map discussed in
Equation (5.1). It is proposed by Lestari et al. (2018) to allow the initial values
to be positive or negative. It can be defined by

g1(Xn);
Xpil = ! (5.10)

hl(xi’l>7

forx, € (—1,1).

The recursive equation of the modification is given as

(=317 = V2[r]) -xn- (2V2=2)x,+ 1), for —1 < x, <O0;
(—% r| —\/E]r|) X (2v2=2)x,—1), for0<x, <1,

Xn4+1 =

(5.11)
where r € [—4,4]. In Section 5.4, we compare the dynamical performance of this

chaotic map with our proposed map.

5.3 The proposed chaotic map

The newly proposed chaotic map, called Logistic-Beta map is designed by
combining of two chaotic maps, i.e. Logistic map and Beta map. The

mathematical model of our new one-dimensional chaotic map is represented by

Xnt+1 = f(xn) = g(h(xn))aandf: [07 1] - [07 1]7
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where h(-) represents the Beta map with pt = 1 given in Equation (5.2). Beta map
is chosen to enlarge phase space, while g(-) represents the Logistic map given in

Equation (5.1). Therefore, the Logistic-Beta map is defined as

X =1 \ [ v2—xn \* X =1\ [ v2—xn \?
= (2L Y (222 ) (o (eem T
Ym — Y1 Y2 = Ym Ym — Y1 Y2 —YVm

where n is the iteration number, y,, = cyij:% and c¢,d,y;,y2 € R and y; < y,.

Recall that parameters ¢ and d are determined by equations (5.4) and (5.5) as

c =prt+q1Xe;

d =pr+q Xe,

where e is a bifurcation parameter and pi, p>,q; and g, are randomly chosen
constants.

Since the chaotic map must be bounded, careful selection of the parameter r
must be done to ensure the phase space is in a closed interval. Rewrite Equation
(5.12) as

X1 = rh(x,) (1= h(x,)) = rh(x,) — rlh(x,)])?, (5.13)

(212X |4 . .
where /1(x,) = (;2531)"($25)". To obtain the maximum value of x,1, solve

Xp by computing

dx,
% — 7 (xn) — 2rh(x) - () = Pl (o) [1 — 2h(x)] =0, (5.14)
n
where
Hg)=  d(Z=)o(2zey (- )y
n Ym—Y1 Y2—Ym Y2—Ym
—Xn d n_ -1 1
C())’}ZZ_;Cm) <;Cm_))7711 )c (Ym_)’l )
_ c—1 _ d—1
(o =y1)™" (y2—Xn) . [C(yz _xn) —d(xn _yl)]- (5.15)

Om=y1)¢(y2—ym)?

When r = 0, x,4.1 = 0 regardless the value of x,.
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Next, when /' (x;,) = 0, we obtain

_nt dyi

5.16
c+d ( )

n

This obtained x, equals to y,, in Equation (5.12). Then, we substitute y,, into

Equation (5.12) and obtain

c d c d
r<ym )’1) (yz ym) [1_<ym y1> (yz ym) }:0' (5.17)
Ym — Y1 Y2 = Ym Ym—Y1 Y2 —Ym

Therefore, when x, = y,,, we will get x,,;1 = O regardless the value of r. We

could not determine the range of r for this case.

So, we look at the final case, i.e. when 1 —2Ah(x,) = 0. We have

Xn— c —Xp d _ 1
(ym_ij’ll) (;ZZ_ym) )
, 1 .
(on =y1) (2 —x)? = 5 m=y1) (2 = Ym)*
1 c 1 d
_ (21/2C (ym—y1)) (m(yz—ym))
1 1 ¢
= |: 21/2637m+(1—21/20>)’1> _y1:| X
1 1 d
2 (1_21/2d>y2+2l/2dym - G18)
So,
1 1 1 1
XnZWyrﬁ-(l—ﬂ)yl = (1—21/2d)y2+21/2dym. (5.19)

To make sure x,;; € [0,1], we determine r by substituting Equation (5.19)

into Equation (5.12). Let %, 1 = s3:¥m+ (1= 572 )y1 and x,2 = (1= 37737)y2 +
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ﬁym. Then, we obtain the range of r as

0<r<xn,1_y1>c(y2_xn,2)d|:1<xnl Y1> <y2_xn2)d:| <1
T\ Ym—)1 V2= Ym Ym Y2—Ym -
0<r(21}z€(ymm))“(zlim(yzym)>d{1_<2lizy(ymy1>) (W v2— )d] -
- Ym— V1 Y2 —Ym Ym — Y1 yZ_ym -
1 1
0<r —)(1-(—=)(—=)) <1
(55)(55)01-(55)(55)
0<r<4
(5.20)

From Equation (5.20), we have r € [0,4] which is same as the Logistic map.

5.4 Dynamical performance

In this section, we will characterize the dynamics of Logistic-Beta map
geometrically with the trajectory and bifurcation plots, and statistically with the

Lyapunov exponent.

5.4.1 Trajectory

Trajectory or orbit presents the moving path of the set of all points in the
dynamical system (Kocarev and Lian, 2011). We show the trajectories for the
Logistic-Beta map and the chaotic maps discussed in Section 5.2.

For Logistic-Beta and Beta maps, we set the initial values, xo = 0, as shown
in Figures 5.1a and 5.1c. While the initial values for Logistic map and modified
Logistic maps, xp = 0.1 and their trajectories are plotted in Figures 5.1b and
5.1d. As shown in Figure 5.1a, Logistic-Beta map has a larger distribution area

as compared to Logistic and Beta maps, referring to Figures 5.1b and 5.1c. Even

85



though the modified Logistic map in Figure 5.1d has a wider range for x,, 1, the
outputs are not random and lack of dispersion. Therefore, Logistic-Beta map

produces more random output and demonstrates a better ergodicity.
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Figure 5.1: Trajectory Diagram: (a) Logistic-Beta map with r = 3.5,e =
0.1,y1 = -1,y =1,p1 =5,po = 3,91 = 1,g2 = —1 (b) Logistic map with
r = 3.58 (c¢) Beta-map with g = 0.85,e = 0.65,y; = —1,y, = 1,p; =5,p» =
3,91 = 1,q2 = —1 (d) Modified Logistic map with r =2

5.4.2 Bifurcation diagram

Bifurcation shows a qualitative change in dynamics for the variation of the
control parameters of a dynamical system (Kocarev and Lian, 2011). In other
word, the dotted area of the diagram describes the chaotic behavior of the

system. As shown in Equation (5.12), Logistic-Beta map consists of two control
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parameters, i.e. r from Logistic map in Equation (5.1) and e from Beta map in
Equation (5.4) and (5.5). We first vary the parameter r and shows the
bifurcation diagram for r = [0,4] in Figure 5.2a. When the parameters exceed
the critical value, i.e. r = 1.155, the Logistic-Beta map exhibits a
period-doubling bifurcation by converting the attractor from a period-1 firing to
a period-2 firing. The following period-doubling bifurcations occur at r = 1.95,
2.1, 2.53, and 3.04. The dotted area in between bifurcations shows that the

onset of chaos as various curves start merging together. As shown in Figure 5.2,
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Figure 5.2: Bifurcation diagram of chaotic maps with different bifurcation
parameters: (a) Logistics-Betamap with0 <r<4,e=04,y;=—1,y,=1,p; =
4,p0 = 2,91 = 1,q0 = 0.2 (b) Logistics map with 2.5 < r < 4 (c¢) Modified
Logistic map with 0.2 <r <2

the logistic-based chaotic maps consists of windows of periodic behaviors

causing the maps vulnerable to parameter estimation attacks (Arroyo et al.,
2010).

Logistic-Beta map has an advantage over the other maps as it has another
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control parameter e which enlarges the phase space and make the proposed map
more chaotic. We compare the bifurcation diagram of Beta map and Logistic-
Beta map by varying parameters e, refer to Figures 5.3 for the comparison. As
shown in Figure 5.3a, the proposed map has excellent chaotic behavior along the
range e € [0,6] as it has a very few periodic windows as compared to Beta and

the dotted points are scattered around the area.

Figure 5.3: Bifurcation diagram of chaotic maps with different bifurcation
parameters: (a) Logistics-Beta map with 0 <e <9 and r =3.57,y; = —1,y, =
IL,pr=4,pp=2,q1 =1,g0=0.2 (b) Betamap with 0 < e <9,u =0.85,y; =
—Lyn=Lpi=4pr=2,q1=1,4=02

5.4.3 Lyapunov exponent

Lyapunov exponent (LE) is a quantitative measure to test the sensitivity of the
chaotic map to the slight changes in the initial conditions and control parameters
(Kocarev and Lian, 2011). A positive LE indicates that the chaotic map has a
good chaotic behavior, and the higher the LE value shows a better sensitivity of
the map to its initial value or system parameters. From Figure 5.4a, it is obvious
that Logistic-Beta map has the highest LE value and also a greater chaotic range,
1.e. it has positive LE for e > 2.3. As shown in Figures 5.4b and 5.4c, Logistic

map has positive LE for r € [3.57,4] while Beta map has positive LE values for
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e > 3.2. For modified Logistic map in Figure 5.4d, the chaotic map only have

positive LE when r € [-2,—1.5]U[1.5,2].

4
0 1 2 3 4 5 6 7 8 9 10 3 31 32 33 34 35 36 37 38 39 4

(a) (b)
(c) (d)

Figure 5.4: Lyapunov Exponent: (a) Logistic-Beta map with e € [0,10],r =
357, yi =Ly, =1,p1 =4,p» = 2,91 = 1,q2 = 0.2, (b) Logistic map with
r € [3,4], (¢) Beta-map with e € [0,6],u =0.85,y; = —1,yp =1,p1 =4,pr =
2,91 = 1,42 = 0.2, (d) Modified Logistic map with r = £2

5.5 Summary

This chapter proposes a new chaotic map, called Logistic-Beta map. We have
proven that the proposed chaotic map has significantly improved the chaotic
behaviors of classical Logistic and Beta maps. The chaotic behaviors of
proposed chaotic map also have been discussed and compared with modified

Logistic map which is a chaotic map designed based on Logistic map. The
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advantages of Logistic-Beta map is summarized as follows.

1. The large distribution area in the phase plane shows that our map has a

good ergodicity.

2. The large darked area in the bifurcation diagram demonstrates that the

proposed map has a large chaotic region, leading to a large key space.

3. A positive Lyapunov Exponent value indicates that our proposed map has

good sensitivity to initial values.

These advantages make the proposed chaotic map suitable to be applied in an

image encryption scheme.
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CHAPTER 6

DYNAMICS ANALYSIS OF A TWO-DIMENSIONAL CHAOTIC MAP

This chapter focuses on the design and application of a two-dimensional chaotic
map that demonstrates enhanced chaotic behavior. It introduces a new chaotic
map developed through cascading methods to overcome the limitations identified
in previous chapters. The goal is to strengthen the chaotic properties of the map
for cryptographic applications.

Building on previous findings, this work is driven by two key observations.
First, Chapter 4 analyzed Ping et al.’s scheme, which uses the Henon map to
generate pseudorandom sequences. The Henon map serves as the foundation
for both the permutation and diffusion processes in this scheme. Under specific
parameter settings and finite precision environments, its chaotic behavior
deteriorates, resulting in reduced unpredictability and randomness.  This
degradation weakens its security, making it vulnerable to cryptographic attacks.
Second, Chapter 5 revealed periodic windows in one-dimensional chaotic maps,
including the Logistic and Beta maps. Even the proposed Logistic-Beta map
exhibits some periodic windows, compromising its effectiveness for encryption.
These weaknesses emphasize the need for more robust chaotic systems.

To address these issues, this chapter proposes a novel two-dimensional
chaotic map by cascading chaotic maps with modular components, enhancing
their overall dynamical properties. The resulting two-dimensional improved
modular chaotic map (2D-IMCM) shows greater sensitivity to initial conditions,
enhanced randomness, and a wider chaotic range than traditional maps. These
improved features are utilized to generate high-quality pseudorandom number
sequences that are suitable for cryptographic applications. Furthermore, this

work lays the foundation for Chapter 8, where a novel two-dimensional
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Sine-Henon map is proposed and applied to a color image encryption scheme.

6.1 Introduction

To solve the dynamical degradation problem, many chaotification approaches
have been proposed by researchers, for example, perturbing chaotic states or
parameters (Luo et al., 2021; Liu et al., 2020), linear feedback control (Liu
et al., 2020; Liu and Liu, 2020), coupling (Liu and Liu, 2020; Pak et al., 2021),
and cascading of multiple chaotic maps (Pak et al., 2021; Zhang, Ding and Li,
2020; Wong, Yap, Goi and Wong, 2020). Comparison of these approaches is

summarized in Table 6.1.

Table 6.1: Comparisons of Chaotification Approaches

Chaotification| Characteristics Limitations

Methods

Perturbation Use external perturbation | High computational cost

sources

Feedback Use state function to | Have to work with other

control manipulate the trajectory | methods to improve the
of chaotic map chaoticity

Coupling Combine chaotic maps High computational cost

Cascading Use outputs of one chaotic | Regular dynamics

map as the state variable

of another map

Comparing to other approaches that require external sources or high
computational costs, cascading technique combines two or more chaotic maps

which can significantly improve the complexity of dynamics characteristics
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with more flexibility and prolong the cycle length. However, the cascading
chaotic systems proposed in (Pak et al., 2021; Zhang, Ding and Li, 2020; Wong,
Yap, Goi and Wong, 2020) that used one-dimensional chaotic maps as the seed
map did not have complex structures. Using Henon map as the seed map in (Wu
et al., 2021) also did not give a good result as the chaotic range of the control
parameters is not broad enough.

The main novelty of this chapter is as follows: (1) We demonstrate the
dynamical degradation of the Henon map in the fixed-point arithmetic domain
using state-mapping network. (2) We apply cascading approach to construct a
new 2-dimensional (2D) chaotic system to produce the pseudorandom
sequences without the usage of external sources and low computational cost. (3)
A pseudorandom number generating algorithm is designed. The output passed
all the subtests in the NIST SP800-22 indicating that it has a good randomness.
Organization: The remainder of this chapter is organised as follows. Section
6.2 describes the preliminaries of some exisiting chaotic maps. Section 6.3
discusses the dynamical degradation of Henon map. Section 6.4 presents the
mathematical model of our newly proposed chaotic map and dynamical analysis
of our proposed map. Section 6.5 discusses the application of our proposed map

to pseudorandom number generator. The last section summarizes the chapter.

6.2 Preliminaries

In this section, we first present the equations of the existing chaotic maps which
will be applied in designing the new chaotic map. A 2D chaotic map, Henon
map will be used as the seed map, while the logistic map will be used as one of
the state variables of 2D chaotic map. We also introduce an 2D modular

chaotification system (2D-MCS) proposed by (Hua et al., 2020) for the
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performance comparison purpose. Given x and y are two state variables, and

n € Z7" is the number of iterations.

Henon map

Recall from Equation (4.1) that the Henon map is mathematically represented by

_ 2. .
Xg+1 =1 —axg+ya;

Yd+1 = bxg,

where a = 1.4 and b = 0.3 are the control parameters and d is the d-th iteration

of the chaotic map. Lastly, xo and yq are the initial values of the chaotic map.

Logistic map

Recall from Equation (5.1), Logistic map is represented by

Xg41 = Mxg(1 —xgq), 6.1)

where U is the control parameter.

2D-MCS

2D-MCS is proposed by Hua et al. (2020) and it is represented by

M(x,y) = F(x,y) mod N, (6.2)

where F(x,y) is a 2D chaotic map and N is a positive integer. We let F(x,y) be
the Henon map where they are given in Equations (4.1). The resulting chaotic

maps are named as Improved Henon map.
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6.3 Dynamical degradation of Henon map

As mentioned in Subsection 4.2.1 of Chapter 4, the Henon map from Equation
(4.1) is utilized to generate pseudorandom sequences for keystream generation.
However, when the Henon map is implemented on digital computers with limited
precision, the dynamic properties of the continuous chaotic map may not be
preserved. This section further explores the dynamical properties of the Henon
map through the state-mapping network (SMN).

According to Li, Feng, Li, Kurths and Chen (2019) and Li et al. (2021),
using the fixed point precision of n and quantifization, the SMN is built with
(2")? possible states. For illustration, SMNs of Henon map are plotted with the
control parameters a = 1.4,b = 0.3 and the precision of n = 3,4 using Matlab
R2019a environment. For n = 3 or 6-bit precision, the output of each iteration
of the henon map will fall into one of the (2%)? = 64 states. For n = 4 or 8-bit
precision, it will have (24)? = 256 possible states. As shown in Figure 6.1, the

characteristics of the iteration trajectories of the Henon map are listed below:

* All the initial states numbered from [—2",2" — 1] converge to fixed points
through the transient process. The fixed points are referring to self-loops

in the SMN, i.e. —16 and —17 for n = 3, and —47 and —49 for n = 4.

 The transient length, namely the distrance from a leaf nodes to a root node
is very short. Many initial states converge to the fixed point in only one or

two iterations.

Based on the observations, different initial values of the henon map can produce
the same chaotic sequence after a short iteration. This indicates that numerous
invalid and equivalent keys may lead to identical chaotic sequences. As a result,
the key space is significantly smaller than anticipated in practical applications.

To address this issue, one might consider utilizing a chaotic system with greater
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Figure 6.1: State-mapping networks of Henon map with @ = 1.4 and b = 0.3,
implemented under different fixed-point precisions n
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complexity and a longer cycle length, which can withstand dynamic degradation

in real-world scenarios.

6.4 Two-dimensional improved modular chaotic map

The 2-dimensional improved modular chaotic map (2D-IMCM) proposed in this

chapter is expressed by

x| = g(x1 4, f(x2.4+k) mod N;
L1 = 8(x1.a. f (2,0 +k) 6.3)

x2.d+1 = 8(x1,4, f(x2,4 +k) mod N,

Under this proposal, a 2-dimensional chaotic system is cascaded with other
function to prolong the cycle length. In other words, the output of f is used to
initiate the pseudo trajectory of another function, g for every iteration. So, f(+)
denotes the logistic map while g(-) denote the seed map which is the 2D chaotic
map.

To show the effectiveness of 2D-IMCM, we use Henon map as the seed map.
We name the resulting chaotic map as 2D-Henonlog map. The equation of the

proposed 2D-Henonlog map is given as

Xgr1=1— axfl +uyq(1 —yg)+k mod N; 6.4)

Yd+1 =bxy mod N,

where UL, a and b are control parameters, NV is positive integer, and & is a constant

to improve the complexity.
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6.4.1 Proof of chaoticity

To prove a dynamical system is chaotic, we must fulfill two criteria: (1) The
chaotic map must be bounded. (2) There must have at least one positive
Lyapunov Exponent (LE). If a dynamical system has at least one positive LE,
then the two extremely close trajectories will diverge in multi-direction over the
time, and make the dynamical system become chaotic.

The first criterion is fulfilled because the equation involves modular
arithmetic, so the outputs are bounded as 0 < x;,y; < N, where N is the number
of iterations. To show 2D-IMCM fulfills the second criterion, we use the
method proposed by Alawida et al. (2019). Let g be the function of 2D chaotic

map and f be the function of logistic map. The LE of 2D-IMCM is given by

LE = iy I g s > g b
. dg df
:n]gg (ln I |f(Xd) +1H|E |Xd ) (©)
_Jgo(ln T ) )*Jﬂ’& (m dx )

When both LE; and LEy are greater than zero, then LE of 2D-IMCM will be
greater than zero, meaning that 2D-IMCM is chaotic. To make LE,, LE; > 0,
the selection of control parameters within the chaotic region of the chaotic map is
important. Henon map is chaotic when a = 1.4 and b = 0.3, whereas the chaotic
region of logistic map is i € (3.5699456,4). As shown in Figures 6.2a and 6.2b,
both chaotic maps have one positive LE.

LE is also an indicator to show the sensitivity to the initial conditions. The
higher the LE values of the chaotic maps, the better its sensitivity. From Figures
6.2a and 6.2c, it is observed that the LE value of 2D-Henonlog map is 1.7119

which is larger than LE value of Henon map, 0.42311. Thus, our proposed 2D-
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IMCM has better chaotic behavior than its underlying map.

6.4.2 Performance evaluations

In this section, we present the dynamics of 2D-IMCM geometrically using the
bifurcation plots to visualize the chaotic range of the 2D-IMCM. We also plot
the state mapping network of the 2D-IMCM to study its periodicity. In the study,
we compare their performance with the existing 2D chaotic system, i.e., Henon

map and Improved Henon map proposed by Hua et al. (2020).

Bifurcation Diagram

Bifurcation diagram is a test showing the dynamical change of a chaotic map
when the control parameters change (Kocarev and Lian, 2011). The dotted area
scattered on the diagram indicates the chaotic area of a chaotic map. In the
experiment, we set xo = 0.1,y90 = 0.1,a = 1.4,b = 0.3,k = 3,u = 3.67 for
Henon, Improved Henon and 2D-Henonlog maps. Figures 6.3a-6.3c shows the
bifurcation diagrams by changing parameter a, Figures 6.3d-6.3f demonstrates
the bifurcation diagrams by changing parameter b. It can be seen that Henon
map in 6.3a & 6.3d and Improved Henon map in Figure 6.3b & 6.3e exist
multiple periodic windows which shows non-chaotic regions on the
discontinuous chaotic ranges.

From Figure 6.3c and 6.3f, it is observed that the outputs of our proposed
2D-Henonlog map are randomly distributed on the entire phase plane for a wide
range of parameters. Besides, 2D-Henonlog also has another advantage of
having additional parameters 4 and k which can widen the phase space and

make the dynamical system more chaotic. We vary the parameter y and k, and
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Figure 6.2: Lyapunov Exponents of underlying seed maps
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show the bifurcation diagrams in Figures 6.3g and 6.3h.  Apparently,
2D-Henonlog has excellent chaotic behaviors because the dotted points are

scattered evenly in the whole range of the parameters.

State mapping network

To investigate the dynamical degradation of the chaotic map, we use the state
mapping network (SMN) to observe iterative trajectories of the digital chaotic
maps. The periodic distribution of chaotic maps is studied in the following
aspects: the maximal transient length, cycle length, number of cycles, and the
number of fixed points. In the study, the SMNs are drawn with (2")? possible
states, where n is the finite computational precision. We use n = 3 in the
experiment, meaning that the outputs of the chaotic maps will fall into 64 states.
We also choose the parameters where the chaotic maps are chaotic, refer to
Figures 6.1a, 6.4a and 6.4b for SMNs of Henon map, Improved Henon map and
2D-Henonlog map, respectively. The results of periodic distribution are
compared and summarized in Table 6.2.

We observe that Henon map and 2D-Henonlog map has two cycles, whereas
Improved Henon map has three cycles. The maximal transient length measures
the largest number of iterations of the state variables before entering into a cycle.
From Figures 6.4a and 6.4b, it is observed that 2D-Henonlog map has the same
maximal transient length with the Improved Henon map. Both chaotic maps
enter into a periodic cycle after 8 iteration operations, but the cycle length of
2D-Henonlog map is longer. Besides, 2D-Henonlog map also does not have
fixed point. The fixed point is represented by the self-loops in the SMNs. From
Figures 6.1a and 6.4a, we can see that Henon and Improved Henon map tends to
converge to the fixed points after limited number of iterations. This means that
there might exist equivalent keys that would result in same chaotic sequences.

The results show that our proposed chaotic maps are outperformed than the other
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Figure 6.4: SMN of chaotic maps

6.5 Application to pseudorandom number generator

Chaotic map is commonly used to design a pseudorandom number generator
(PRNG) whereby the sequence produced by PRNG is useful to build the

permutation vector and perform encryption operations of the image encryption
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Table 6.2: Comparisons of period distribution

Chaotic map Max. Max. | No. of | No. of
(control transient | cycle | cycle | fixed
parameters) length | length points
(a) Henon 3 0 2 2
(b) Improved Henon 8 4 3 1
(c) 2D-HenonLog 8 5 2 0

algorithm. This section presents a PRNG designing algorithm based on

2D-Henonlog. The algorithm is given as follows.

1. Set the initial conditions (xo = 0,yp = 0) and control parameters of the 2D-

Henonlog (a = 1.4,b =0.7,k = 3,u = 3.67) given in Equation (6.4)).
2. Tterate the chaotic maps for 10° times.

3. Apply the following formula to the outputs of 2D-Henonlog.

X = {floor(xy x 10'%)(mod256)}}%

Y = {floor(ys x 10%)(mod256)}.%’, .

4. Obtain sequences X’ and Y’ by converting the sequences X and Y to an 8-bit

binary array.

To test the pseudorandom-like behavior of the PRNG produced from the
algorithm above, we perform the randomness test by using the National
Standard and Technology Institute (NIST) SP800-22 test suite (Bassham III
et al., 2010). It consists of 15 subtests with passing criteria that the p-value of
each test must be greater than or equal to the significance level of o. In our
experiment, we set o = 0.01 and 10 bit in the bitstream length. The results are
presented in Table 6.3. It shows that the PRNG produced by our proposed

chaotic maps passed all the subtests.

!denotes the average values of the respective tests.
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Table 6.3: NIST SP800-22 Test Results

Test p-value

Frequency 0.122325
Block Frequency 0.213309
Cumulative Sums! 0.350485
Runs Test 0.534146
Longest Run 0.350485
Binary Matrix Rank 0.739918
FFT 0.534146
Non-overlapping Template! | 0.494351
Overlapping Template 0.534146
Universal 0.534146
Approximate Entropy 0.122325
Random Excursions! 0.482017
Random Excursions Variant' | 0.232147
Serial! 0.630949
Linear Complexity 0.534146

6.6 Summary

This chapter presents a new two-dimensional chaotic map based on cascading
technique and modular operation. Henon map was chosen as the examples to
show the effectiveness of the proposed chaotic map. The chaoticity of the
chaotic map was proven. The dynamical performance was shown by using
bifurcation diagram and state mapping network. The results show that our
proposed chaotic map possesses a better chaotic behavior as compared to the
underlying seed maps and other existing chaotic maps. The chaotic map was
applied to design a PRNG. The sequences produced by the PRNG passed all the
subtests in the NIST SP800-22 test suite. Despite of that, there are still some
tests can be carried on the produced sequences, e.g., complexity test, speed test,
scale index, etc. Besides, we can further extend the research work to the

application of the cascading chaotic map in the image encryption algorithm.
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CHAPTER 7

A NEW IMAGE ENCRYPTION SCHEME BASED ON

HYPERCHAOTIC SYSTEM AND SHA-2

This chapter builds upon the cryptanalysis conducted in Chapters 3 and 4 by
introducing a new image encryption scheme that addresses the weaknesses
identified in previous methods. Chapter 3 revealed that the genetic
algorithm-based encryption scheme proposed by Biswas et al. has low
sensitivity to changes in plaintext, which violates key cryptographic design
principles such as nonlinearity. Additionally, Chapter 4 demonstrated that the
scheme by Ping et al., which combines permutation and diffusion into a single
process using the Henon map, suffers from dynamical degradation, making it
vulnerable to chosen-plaintext attacks.

To address these limitations, this chapter presents an improved image
encryption scheme that utilizes a hyperchaotic system and SHA-2. The
hyperchaotic system increases unpredictability and expands the keyspace.
Additionally, a nonlinear diffusion process is integrated to enhance security
against differential attacks, which is a response to the weaknesses found in the
sequential encryption methods of the targeted schemes. The incorporation of
SHA-2 further elevates the sensitivity of the cipher to the plaintext, ensuring
that even a slight change in the input results in a significantly different
ciphertext. By implementing these improvements, the proposed encryption
scheme establishes a more robust security framework and overcomes the

vulnerabilities identified in prior schemes.
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7.1 Introduction

The common chaotic based encryption scheme consists of two processes, i.e.,
permutation and diffusion to fulfill the confusion and diffusion properties
(Shannon, 1949). The permutation-diffusion architecture that firstly proposed
by Fridrich (1998) becomes the benchmark in image encryption and was widely
utilized by many researchers. In the permutation process, the position of the
image is changed at the pixel or bit levels and then the values are altered in the
diffusion process. However, Fridrich’s scheme with multi-round was
cryptanalyzed by Solak et al. (2010) by chosen ciphertext attack and the
cryptanalytic attack was further improved by Xie et al. (2017). Besides, there
are many schemes found to be insecure (Boriga et al., 2014; Zhang et al., 2016;
Biswas et al., 2015; Khan, 2015) and cryptanalyzed by chosen plaintext or
ciphertext attacks (Wen et al., 2017; Wu et al., 2018a; Wong, Yap, Wong, Phan
and Goi, 2020; Alanazi et al., 2021) due to the linear relationship between
cipher and plain image and the independence of chaotic sequences from the
plain image. Moreover, the widely applied diffusion mechanisms based on
different combination of modular addition and exclusively-or operation have
been discussed and cracked by Zhang et al. (2018) and Chen et al. (2021),
respectively.

To overcome the weaknesses mentioned above, this chapter presents an
image encryption based on a hyperchaotic system that modified from Lorenz
chaotic attractor in keystream generation process (Zhang et al., 2017). The
initial condition of the hyperchaotic system is generated by SHA-256 hash
algorithm to avoid the chosen plaintext attack. A new nonlinear equation is used
in the diffusion process to further enhance the security of the image encryption
scheme. The remainder of this chapter is organized as follows. Firstly, the

proposed image encryption scheme is discussed in details. Next, the simulation
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results and the security tests are discussed. Finally, the conclusion is drawn.

Organization: The remainder of this chapter is organised as follows. Section
Section 7.2 presents a new image encryption scheme by using a
four-dimensional hyperchaotic system and adopting permutation-diffusion
architecture. Section 7.3 discusses the security analysis to show that the
proposed scheme has large key and subkey space, high key sensitivity, good
information entropy, and capability to resist statistical and differential attacks.

The last section summarizes the chapter.

7.2 The proposed image encryption algorithm

A four-dimensional hyperchaotic system presented by Zhang et al. (2017) is

applied in our scheme and the mathematical equation is given by

x=a(y—x)—ew,

).) :.X,'Z—hy,
(7.1)

Z=b—xy—cz,

w=ky—dw,

where x,y,z,w are the state variable, and a, b, c, d, e, h and k are the control
parameters.

The bifurcation diagrams of the hyperchaotic system given in Equation (7.1)
are shown in Figure 7.1. The bifurcation measures the dynamical variation of
the tiny change in one of the parameters. Fig. 7.1a—7.1g shows the bifurcation
diagram with the change of parameter a, b, c, d, e, h and k, respectively. For
example, Figure 7.1a shows the bifurcation diagram for the range of 0 < a < 25,
while the rest of the parameters remain unchanged. Besides of the changing

parameter, the other parameters used in the plotting are xo = 3.2, yo = 8.5, z0 =
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35,wp=2.0,a=5,6=20,c=1,d=0.1,e=20.6,h=1,k=0.1, xg = 3.2,
yo = 8.5, zo = 3.5 and wg = 2.0. The dotted points in the diagrams indicates
the chaotic region of the system while the solid lines show the periodic region.
The hyperchaotic system shows chaotic behaviors when a > 0, b > 5, ¢ € (0,2),
d>0,e>0,he(0,4) and k > 0.

To increase the sensitivity of image encryption to plain image, SHA-256 hash
algorithm (FIPS, 2001) is used to generate a 256-bit digest of the plain image, K.
Slightly change in the plain image will results in a totally different digest. The

digest is divided into 32 8-bit blocks as

K=k ko, ... k3. (7.2)

The initial conditions of the chaotic system, xg,yo,zo and wg are updated using

K as
;o (ki Bk @+ Dkg)
Xo = X0 + 716 ’

o (ko @kio®---Dkis)
yO =Y0 + 216 )

(fyeok o) (7.3)
/I 17Dk13D---Dkog

2 — <0 + 716 )

wh = wo + (k25€9k23?2"'®k32).

Then, the chaotic system is iterated for Ny + L times by using x{, 20, W, to
generate four pseudorandom sequences. The first Ny elements are removed to
avoid harmful transient effect and four sequences X = {x(i)}}-,, Y = {y(i) }L,.
Z = {z(i)}-,, and W = {w(i) }}-_, are obtained, where L is the size of the plain
image. The sequences X, Y, Z and W will be used in permutation and diffusion

stages which will be discussed in the subsections later.
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Figure 7.1: Bifurcation of hyperchaotic systems by changing the range for
different control parameters
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7.2.1 Permutation stage

Permutation is a process to change the position of the plain pixels in order to
disrupt the correlation between the adjacent pixels of an image. Conventionally,
the pixels are swapped by using two-dimensional area-preserving chaotic maps,
for instance, baker’s map and Arnold’s cat map. However, the periodicity,
existence of fixed points, and constrained cycle length of the chaotic maps
jeopardize the efficiency and security level of the process.

To overcome this problem, the permutation vector is generated by the state
variables from the hyperchaotic system given in Equation (7.1). Suppose the
image pixels are scanned sequentially from left to right and from top to bottom
rows. Without the loss of generality, the plain image with size, L =M X N is
denoted as P = {p(i) }/X. The sequence X = {x(i) }}¥, are changed to an integer

sequence X' = {'(i) }}, where

x/ (i) = floor([abs(x(i)) — floor(x(i))] x 10'9). (7.4)

The permutated image is produced by using Equations (7.5) and (7.6).

[V, 1dx] = sort(X’), (7.5)

P’ = P(Idx). (7.6)

where V is the new vector after sorting X’ in ascending order while the Idx is the
index vector of V. The plain image pixels are then permutated according to the

index value.
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7.2.2 Diffusion stage

To impose the avalanche effect in the encryption scheme, the pixel value is
modified through the diffusion process. Inspired by Hua et al. (2018), a random
matrix R is inserted to the permutated image using the modular addition to
eliminate the linear relationship between plain and cipher images. Firstly, a
sequence Y’ = {y'(i) f‘il(\)] is generated by using the sequence Y from Equation

(7.1) through the following quantization.

y'(i) = floor([abs(y(i)) — floor(y(i))] x 10'%) mod 256. (7.7)

The 1D array of Y’ is then reshape into a M x N matrix R and the modular

addition is applied on the permutated matrix P’ from Equation (7.6) and R.

R = reshape(Y',M,N), (7.8)

P’ = (P’ +R) mod 256, (7.9)

where P” = {p” (i) }I¥.

Besides, the pixel values are further diffused by using a nonlinear equation.
The nonlinear equation is formed by the combination of exclusively-OR and
modular addition of two random masks, permutated pixels and previous cipher

pixels. The random masks are the quantized sequences Z' and W’ given by

7/ (i) = floor([abs(z(i)) — floor(z(i))] x 10'°) mod 256. (7.10)

w (i) = floor([abs(w(i)) — floor(w(i))] x 10'°) mod 256. (7.11)
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Then, the nonlinear equation is represented by

c(i) = [(Z () +w'(i)) mod 256] & ('(i) + [(p" (1) +w'(i))

mod 256 & c(i — 1)]) mod 256, (7.12)

where c(i) is the i pixels of the cipher image C = c(i)?il(\)’ :

7.2.3 Encryption algorithm

The detailed encryption process is given as follows:

Input The plain image P with size of M x N, Secret keys (a,b,c,d, e, h,k),

(x07y07Z07W0)’ and N()-

Output Cipher image C.

1. Generate K and updated initial conditions according to Equation (7.2) and

(7.3).

2. Iterate hyperchaotic system in Equation (7.1) for Ng + MN times and discard
the first Ny elements to avoid harmful transient effect. Four chaotic sequences

are obtained X = {x(i) 'V, Y = {y(i) ¥, Z = {z(i) }}1¥ and W = {w (i) }M¥.

3. Obtain sequence X' using Equation (7.4) and shuffle the plain image pixels

according to the permutation vector given in Equations (7.5) and (7.6).

4. Obtain sequence Y’ using Equation (7.7) and reshape the random matrix R by
using Equation (7.8). Insert the random matrix R into the permutated image

using Equation (7.9).

5. Obtain two random masks Z' and W’ using Eqgs. (7.10) and (7.11) and perform

diffusion using Equation (7.12) to get cipher image C.
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7.2.4 Decryption algorithm

The detailed decryption process is given as follows:
Input The cipher image C, Secret keys (a,b,c,d, e, h,k), (x0,Y0,20,Wo), and Np.

Output The recovered plain image P.

1. Use updated initial conditions to generate hyperchaotic system in Equation

(7.1) for No + MN times and discard the first Ny elements to get rid of the

MN vy _

harmful transient effect and obtain four chaotic sequences X = {x(i) };2,

ORE, 2 = {2} and W = {w(i) 15

2. Obtain quantized chaotic sequences Z' and W’ according to Egs. (7.10) and

(7.11).

3. Obtain P” using the following the operation.
p"(i) = ((((c(i) @ (('(d) + w'(i)) mod 256)) — 2/(i)) mod
256) @ c(i — 1)) — (i) mod 256.

4. Get sequence Y’ and matrix R by using Egs. (7.7) and (7.8) and obtain P’ =
(P —R) mod 256.

5. Recover plain image by performing P(Idx) = P’.

7.3 Security analysis

The simulations for image encryption algorithm were implemented in MATLAB
R2019a, using a personal computer with Intel® Core™ 15-8250 CPU @ 1.60GHz,

8 GB memory and a Windows 10 operating system. To evaluate the performance
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of our proposed encryption scheme, we selected a 256256 plain image titled
‘Airplane’ from the USC-SIPI image database. The secret keys used in the test
area=5,b=20,c=1,d=0.1,e=206,h=1,k=0.1, x0 =3.2, yg = 8.5,
z0 = 3.5 and wo = 2.0. To test the security of the proposed method, the key
and subkey space, ability to resist statistical and differential attacks, information

entropy, and secret key sensitivity are tested in the experiments.

7.3.1 Key and subkey space

For a secure image encryption, the key space must be large enough to withstand
the brute force attack. The secret keys are the initial conditions (xg,yo,z0,Wo)
and control parameters of hyperchaotic system (a,b,c,d,e,h,k), and the digest
of SHA-256 K = ky,kp,... k3. According to IEEE standard for floating point
(Rajaraman, 2016), the computation precision of floating-point number is around
10715, So, the key space is 1019%11 x 2256 x 234237,

According to Yap et al. (2016), the encryption scheme is breakable if the
subkeys can be recovered by the attacker easily. In the proposed scheme, the
plain image can be recovered if the (a,b,c,d,e,h,k) and (x{,y(,2,w,) are
known. There exist 10127 possible values for (a,b,c,d,e,h,k). On the other
hand, the possible values of (xg,Yp,z,w,) depend on (xo,y0,z0,wo) and the
exclusively-or of k;, for 1 <i < 32. To obtain x() in Equation (7.3), we require
xo and k; © ko P - - - P kg, and their possible values are 10'3 and 28, respectively.
Same argument applies on y{, z;, and w;,. Thus, the effective key space of this
scheme is 1027 x (101 x 28)% & 225457 Since it is still greater than 2!%°,

therefore it is sufficient to resist brute-force attack (Alvarez and Li, 2006).
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7.3.2 Statistical attack

Histogram and chi-square test

A secure image encryption must ensure that the cipher image is uniformly
distributed. Histogram is plotted to show the distribution of the pixel intensity
of the image. Figures 7.2a and 7.2b show the plain and cipher images whereas
their respective histogram are plotted in Figures 7.2c and 7.2d. It is obvious that
the pixel values of the plain image are distributed in an unbalanced mode while

the pixel values of the cipher image are uniformly distributed.

0 50 100 150 200 0 50 100 150 200 250

(c) (d

Figure 7.2: Histogram Analysis. (a) Plain image. (b) Cipher Image. (c)
Histogram of Plain image. (d) Histogram of Cipher image.

116



To further verify the uniformity of the pixel distribution of the cipher image,

chi-square (x?) test is carried out using

2 (o(i) —m(i))?
X = ; )
where o(i) and m(i) denote the frequency of observations and expected frequency
at the i’ interval, respectively, and L is the maximum level of grayscale image,
i.e., 256 in this scheme. The smaller the xz value, the closer the distribution of
cipher images to the uniform distribution. The result shows that the x? value is
274.875 which is lower than the critical value of 293 under significance level of

5%. Therefore, the histogram of the cipher image is uniform.
Correlation analysis

Image data have a high correlation to the adjacent pixels in different directions
i.e., horizontal, vertical and diagonal directions. Attacker could exploit this
feature to retrieve the information of the images. To test correlation between the

adjacent pixels of the encrypted image, coefficient of adjacent pixels pxy is

calculated by
COVXY
Pxy =
Ox Oy
1 N
COVXY:NZ(xz_E(X))()’l_E(Y))7
i=1
=1y -1y
EX)=—=) x, E(Y)==) yi
Nl.:1 Ni:l
, 1 2 » 1 2
GX:_Z<xi_E(X))7 GY:_ 7(yl_E<Y))
N ! Ni 1

where X and Y are two adjacent pixels and N is the total number of duplets
(X,Y) from the image. From Table 7.1, it shows that the correlation values for

the cipher image are close to zero, which means that the pixels of the cipher
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Table 7.1: Correlation Analysis of Plain and Cipher Images

Image Horizontal | Vertical | Diagonal
Plain image 0.9571 0.9366 | 0.8927
Cipher image | -0.0093 0.0026 | 0.0055

image are not correlated to each other.

7.3.3 Differential attack

The commonly used statistical tests to measure the strength of the underlying
encryption scheme against differential attack are number of pixels change rate
(NPCR) and unified average change intensity (UACI). They are represented by

?il ley:l F(l7])

NPCR(C1,C2) = =

x 100%,

0, ifCi(i,)) = Ca(i, j),

1, ifCi(i,)) # Ca(i, )),

1M N YM YN ()~ Cai, )
MNZZ - x 100%,

i=1i=1

F(i,j) =

UACI(C1,C) =

where L is the largest allowable pixel value in the image, while C; and C; are two
cipher images with one pixel difference. In the experiment, the upper-left pixel
of the image is added by one pixel to test on the differential attack. As mentioned
in (Wu et al., 2011), the ideal expected values of NPCR and UACI in a grayscale
image should be 99.6094% and 33.4635%, respectively. From the experiment,
the NPCR and UACI values are 99.6307% and 33.4636%, respectively, which
are higher than the ideal values. This shows that our proposed scheme has good

avalanche effect and can resist to differential attack.
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7.3.4 Information entropy

Information entropy is a test to measure the randomness and the distribution of

the image pixels. It can be calculated using

L-1

H(m) = — ;)P[m(i)]logzl’[m(i)],

where P[m(i)] is the probability of occurrence of m(i), L is the maximum level
of grayscale image, 1.e., 256 in this scheme. The maximum value of entropy is
8. The closer the value near to 8, the higher the randomness of the pixels in the
image. In this experiment, the entropy of cipher image is 7.9975, which is close

to 8, so the randomness of the cipher image is satisfactory.

7.3.5 Key sensitivity

This test measures the sensitivity of cipher image to a tiny change in secret key.
A robust algorithm should be able to secure from the attack with a slight change
in the secret key. The attacker cannot break the algorithm and obtain the useful
information by using a similar key. The key sensitivity tests can be conducted in
two methods: (1) a different encrypted image is produced with the altered key,
and (2) the encrypted image cannot be decrypted with a slightly altered key.

For the first method, to determine which secret key xg, yo, zg, or wg has the
highest sensitivity, we conducted a test by adding 10~ to each key individually
while keeping the other keys unchanged. Our comparisons revealed that yy has
the greatest effect on the cipher. Specifically, the image encrypted using yg +

10~15 exhibited the highest difference ratio compared to the image encrypted
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Table 7.2: Difference ratio between the encrypted image using the original key
and the updated key.

Updated Key | xg+1075 [ yo+1071 [ zg+1075 [ wog+10"1
Difference Ratio | 0.995681 | 0.996490 | 0.996124 | 0.996094

with the original key. The difference ratios for each updated key are summarized
in Table 7.2. For graphical illustration, we utilize two keys: key; (xo = 3.2,y9 =
8.5,20 = 3.5 and wp = 2.0) and key, (xo = 3.2,y§ = 8.5+ 10713,z = 3.5 and
wo = 2.0). We encrypt the same plain image using both key; and key,, resulting
in different encrypted images (refer to Figures 7.3b and 7.3c). The difference
ratio between these two encrypted images, as shown in Figure 7.3d, is 0.99649.
This indicates that 99.649% of the pixels between the two images are different.
Therefore, the encrypted image produced by a slightly altered key is entirely
different and cannot be exploited by an attacker.

In the second method, we use key; to encrypt the plain image (see Figures
7.3a and 7.3b). Then, both key; and key, are used to decrypt the cipher image.
Both key; and key; are then employed to decrypt the encrypted image. As shown
in Figures 7.3e and 7.3f, the original image can only be recovered using key.

The image decrypted with key; is completely unrecognizable.

7.3.6 Comparison of the test performance

The performance of the proposed scheme is compared with the encryption
schemes presented by Boriga et al. (2014); Zhang et al. (2016); Biswas et al.
(2015); Khan (2015) and the values are summarized in the Table 7.3.

Our proposed scheme has the largest key space which indicates that it is the
safest against the brute force attack. Even though the correlation of the

proposed scheme is not the best, it is very close to 0. That means the cipher
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Figure 7.3: Key Sensitivity Analysis. (a) Plain image. (b) Cipher Image using
key1. (c) Cipher Image using key;. (d) Difference between Figures 7.3b and 7.3c
(e) Recovered image using key;. (f) Recovered image using key,.
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Table 7.3: Comparison of Test Performance

Test Proposed | Boriga et al. | Zhang et al. | Biswas et al. Khan
Key space 525457 7248 5159 7448 5159
Correlation:

Horizontal -0.0093 0.001587 -0.004223 0.0027 0.0107
Vertical -0.0026 0.014706 0.00055 0.0019 0.0141
Diagonal 0.0055 0.002381 -0.003665 0.0070 0.0097
NPCR 99.6307% 99.27% 99.6155% 99.676% 99.6124%
UACI 33.4636% 33.22% 33.4988% 33.422% 33.4591%
Information

Entropy 7.9975 7.999282 7.9992495 7.9988 7.9972

pixels are not correlated to the adjacent pixels. The NPCR and UACI scores in
our proposed scheme is higher than than the ideal values, i.e. 99.6307% and
33.4636%, respectively. Thus, it is good in resisting against the differential
attack. Lastly, the information entropy of our proposed scheme is not as good as
the other. However, it is very close to the 8, therefore the randomness of the

proposed scheme is still satisfactory.

7.4 Summary

This chapter presents a new image encryption scheme based on the
hyperchaotic system and SHA-2 algorithm. The hyperchaotic system has a
better chaotic behavior over the lower-dimensional chaotic system in terms of
ergodicity, sensitivity to the initial condition and control parameters,
randomness and structural complexity. Furthermore, the use of SHA-256 hash
function in modifying the initial conditions of the hyperchaotic system highly
enhances the sensitivity of the cipher to the change of plain image. The
nonlinear equation used in the diffusion process also introduces a good
avalanche effect in the encryption scheme.

To test the security level of the

proposed scheme, a series of experiments have been conducted. All the
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numerical results demonstrate that our proposed scheme has good security

performance and thus it is suitable for image encryption.
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CHAPTER 8

CROSS-PLANE COLOR IMAGE ENCRYPTION BASED ON
TWO-DIMENSIONAL SINE-HENON MAP AND GENETIC
ALGORITHM

Building on the cryptanalysis conducted in Chapters 3 and 4, this chapter
presents a new image encryption scheme that addresses the weaknesses
identified in previous methods suitable for color images. Chapter 3 examined
Biswas et al.’s encryption scheme, which demonstrated low sensitivity to
plaintext changes, violating fundamental cryptographic principles such as
strong diffusion and nonlinearity. Similarly, Chapter 4 investigated Ping et al.’s
encryption method, which relies heavily on the Henon map for both
permutation and diffusion. However, due to the dynamical degradation of the
Henon map under certain conditions, the encryption exhibited weak diffusion
effects, making it vulnerable to chosen-plaintext attacks. Chapters 5 and 6
introduced the cascading method to improve the chaotic properties of maps.
Motivated by these approaches, we propose a novel chaotic map that integrates
the sine trigonometric function with the Henon map to enhance its chaotic
behavior.

Unlike the grayscale image encryption proposed in Chapter 7, this chapter
focuses on dynamically encrypting the cross-planes of color images to
maximize security. To further enhance the sensitivity of the cipher to plaintext
changes, we incorporate the SHA-256 hash function, ensuring that even minor
modifications in the input image produce significant alterations in the
encryption process. Additionally, we integrate genetic algorithms that leverage
the intrinsic characteristics of image bit distributions, applying mutation and

crossover operations in a dynamic order. A novel uniform crossover method is

124



introduced to improve randomness. Lastly, pixel-level diffusion is implemented
to enhance the avalanche effect, strengthening the overall security of the

encryption scheme against cryptanalysis.

8.1 Introduction

The majority of proposed image encryption schemes work at the pixel level.
Most of these schemes encounter an issue where the pixel value and histogram
statistics remain unchanged after the permutation process, primarily due to
insensitivity to tiny change of the plain-image. To overcome this problem, many
researchers incorporate bit-level operations into their designs, which involve
studying the bit distributions within each pixel. Furthermore, a significant
number of them combine this technique with DNA coding (Rehman et al.,
2019; Akkasaligar and Biradar, 2020). When performing the permutation and
diffusion process, intrinsic features of the image are taken into consideration.
This process involves dividing the image into two blocks, namely those
containing the most significant bits (MSB) and least significant bits (LSB)
respectively. Different treatments are given to MSB and LSB blocks, whereby
the MSB block that carries around 94.12% of information should be given more
attention. In the diffusion process, bit-level encryption is susceptible to
chosen-plaintext attacks. Therefore, we continue to employ pixel-level diffusion
after bit-level encryption.

Genetic algorithm was firstly introduced by Holland (1975, 1992) in
encryption algorithm. This technique imitates the natural evolution and
selection process. To apply genetic algorithm in image encryption, the genetic
information is substituted by the pixel or bit values of an image. There are two

genetic operators in this technique: crossover and mutation. For a new sequence
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to be generated, a pair of parent sequences and the crossover region are chosen.
The information in between the crossover region of parent sequences are
swapped to produce the child sequences. Mutation operator is a process to
change the information of the selected sequences through the flipping of the bit
values. Biswas et al. (2015) presented an image encryption algorithm based on
genetic operations for wireless sensor network but it was found insecure against
the known plaintext attack (Wong, Yap, Wong, Phan and Goi, 2020). Mozaffari
(2018) proposed a grayscale image encryption algorithm using the crossover
and mutation operations to perform the bitplane permutation and substitution
processes. Zhang, He, Li and Wang (2020) proposed an color image encryption
by converting each color plane into a one-dimensional sequence and applying
the genetic algorithms on each color plane separately. The common weaknesses
of these image encryption algorithms are the secret keys for the mutation and
crossover are independent of the plain image, resulting the algorithms are
vulnerable to the plaintext-like attacks.

In this chapter, we present a color image encryption based on the
two-dimensional sine-henon chaotic map and genetic algorithm. We also adopt
the cross-plane selective encryption method to improve the encryption power
and security level.

Organization: The remainder of this chapter is organised as follows. In the
next section, we recall the operations of the genetic algorithm. We then presents
a new two-dimensional chaotic map based on sine and henon maps to generate
the pseudorandom sequences for encryption in Subsection 8.3. In Section 8.4,
we present an image encryption scheme that composes both bit-level encryption
and pixel-level diffusion. In Section 8.5, we present the security analysis on the
key space, key sensitivity and resistance to chosen plaintext attack. Section 8.6

concludes the chapter.
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8.2 Genetic Algorithm

Genetic algorithm is a technique that emulates the principles of natural
selection and genetics observed in biological evolution. It involves two
fundamental operations: crossover and mutation. Crossover is a process of
exchanging the selected part of two parent bit strings to produce the child bit
strings.  The crossover technique includes single-point, two-point and
multi-point crossover Wong, Yap, Wong, Phan and Goi (2020). On the other

hand, mutation introduces random changes to the offspring population.

8.2.1 One-point crossover

Single-point crossover is a process where single point is chosen and the parts

before or after of the chosen point are exchanged between two parent bit strings.

Let A = (aj,ay, ..., ay) and B = (by,by,...,b,) be two parent bit strings with
size of n, and crossover points f € {1,...,n} and g € {1,...,n} are the index of
the parent bit strings to be swapped. Let A" = (d,d}, ..., da),) and

B' = (b,b),...,b)) be the corresponding child bit strings. When the crossover
points f and g are equal, we apply the one-point crossover on the parent bit
strings A and B. If f > 7, then the first bit until the f'™ bit of the parent bit
strings will be interchanged, the crossover process
(A’,B") = Crossover;(A,B,f,g) is given in Equation (8.1). Refer to Figure 8.1a

for graphical illustration.
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bi, forl <i<f,

aj, for f<i<n.
. (8.1)

ai, f0r1§l§f7

b;, for f <i<n.

If £ <%, then the (f+ 1)"” bit until the last bit of the parent bit strings will
be interchanged, refer to Figure 8.1b for the graphical demonstration. The child

bit strings (A’, B") = Crossover;(A,B,f,g) can be obtained by

b;, for f<i<n,

aj, forl <i<f.
) (8.2)

a;, for f<i<n,

bi, forl <i<f.

8.2.2 Two-point crossover

Similar to one-point crossover, the selected part in between two points of two
parent bit strings are exchanged. Let f and g are two crossover points. When f
and g are different, two-point crossover will be applied the parent bit strings A
and B. If f < g, the bit values in between £ until g’ positions of the two parent
bit strings are interchanged and produce the child bit strings A" = (da},d5, ...,
ay,) and B' = (b},b},...,b;,). The equation (A’,B") = Crossover,(A,B,f,g) are
shown in Equation (8.3), refer to Figure 8.2a for graphical illustration. Equation

(8.3) also applies for f > g, where the graphical representation of the process is
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ay af_q ay
Child bit string A’
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Child bit string B’

(b)

Figure 8.1: One-point crossover process
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shown in Figure 8.2b.

bi7 fOI'fSng,

aj, fori< fori>g.
> (8.3)

aj, forf<i<g,

bi, fori< fori>g.

8.2.3 Uniform crossover

Uniform crossover is a process where the child bits are produced from either
parent with equal probability. Let A = (ay,ay, ..., a,) and B = (by,by,...,by)
be the parent bit strings and C = (cy,¢3, ..., ¢;) and D = (dy,da, ..., d,) be
two binary strings with length n. In this chapter, the bits of A and B will be
interchanged if the bits of the corresponding positions in C and D are equal,
ie., ¢j=d; forie {1,2,...,n}. The child bit strings A’ = (d},d}, ..., a},) and
B' = (b},b),...,b),) of the uniform crossover are produced based on (A’,B’) =

Crossover,(A,B,C,D), where

p
, bi, for C; = dl',
a;, =
a;, forc;#d;.
) (8.4)
b/ a;, for Ci = d,',
i
\bi, for Cl';édi.

Refer to the example given in Figure 8.3, as the values of bits at position 2,3,4
and 7 of binary string C and D are the same, the bits at the corresponding

positions of parent bit strings A and B are interchanged.
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Figure 8.2: Two-point crossover process
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bl bz bg b4 [)5 b(, b7 bg

Ci| G| €| C | C5 | Co | C7 |Cg
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Parent bit string B
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Binary string D

ai| ba | bs | by | as| ag | b7 |ag

Child bit string A’

bilag | az | as| bs| bs | @z | bs

Child bit string B’

Figure 8.3: Uniform crossover process

8.2.4 Mutation

Mutation is commonly known as a negation operator that changes one or multiple
bits in a given bit string (Hassan and Abuhaiba, 2011). Let G = (g1,£2,.--,8n)
be a n-bit string. Let k € {0, 1,...,n} be the mutation. Let Mutation(G, k) be the
function of mutation, where G and k are two parameters for this function. The
output of the function, string H = (hy,ho,...,h,) is obtained by flipping every
k' to n'" bits by one bit. If k =0, G = H. If k # 0, then

gjs forl1 <j<k—1,

hj= (8.5)
l—-gj, fork<j<n.

Figure 8.4 shows the graphical illustration of the mutation process.

8.3 Proposed chaotic map

The chaotic map plays a crucial role in image encryption by generating

pseudorandom sequences, and its dynamical performance significantly
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Figure 8.4: Mutation process

influences the security of encryption. Many researchers favor one-dimensional
chaotic maps due to their simple structures, which facilitate high efficiency.
However, they suffer from drawbacks such as limited and discontinuous chaotic
ranges. The control parameters of these maps serve as the secret keys, but their
small chaotic ranges make the key space becomes small. High-dimensional
chaotic maps are applied in cryptographic applications because of their broad
chaotic ranges and complex structures, despite requiring higher computational
cost. The introduction of two-dimensional chaotic maps addresses the
limitations encountered in both one-dimensional and high-dimensional chaotic
maps. By offering a balance between efficiency and performance,

two-dimensional chaotic maps are widely adopted in image encryption.

8.3.1 2D-SHCM

In order to show the chaotic behavior of a dynamical system, it is necessary to
demonstrate that the chaotic map is bounded. The sine function is a

trigonometric function generating the outputs that are bouded within the
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interval [-1,1]. Unlike the regular Henon map, the 2D-SHCM can leverage the
entire range for parameters a and b because the sine function itself exhibits
chaotic behavior when £ is large, and even slight difference in the output of the
seed maps can lead to significant difference in the overall chaotic system.
Moreover, the cascade system further modifies the chaotic states of the Henon
map after each iteration. The dynamical system of 2D-SHCM is represented
mathematically by

Xip1 = sin(z(1+y; — a(x +k)?)),
(8.6)

Vit1 = sin(w(b(x; + k)),

where {x;,y;}7, € [—1, 1] are the state variables, a and b are control parameters
and k is a constant.

The proposed 2D-SHCM improve the chaotic performance of the sine and
henon maps. To demonstrate its strength, we perform evaluatuation on its
chaotic performance and compare it with some recently proposed 2D chaotic
maps. The evaluations are performed using phase diagram, bifurcation diagram,
and state mapping network. A phase diagram visualizes the dynamical behavior
of a chaotic map within the state space over time. Bifurcation diagram
illustrates the transition of chaotic map from periodic to chaotic behavior as the
parameters change. Additionally, the state mapping network serves as a
functional graph to study the period and cycle distribution of the chaotic map in

the digital domain.

8.3.2 Phase diagram

Phase diagram serves as a tool for observing the chaotic trajectories of the

proposed maps in phase space. As illustrated in Fig. 8.5, the attractor of
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2D-SHCM exhibits greater complexity compared to those of 2D-CLSS (Teng
et al., 2022) and 2D-SCS (Hua et al., 2019). Analysis of these diagrams reveals
that the distribution region of 2D-SHCM is significantly larger than that of
2D-CLSS and 2D-SCS. It means that 2D-SHCM has better ergodicity and

randomness, making it more resilient against various forms of attacks.
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Figure 8.5: Trajectories of 2D chaotic maps: (a) 2D-CLSS, (b) 2D-SCS and (c)
2D-SHCM
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8.3.3 Bifurcation

Bifurcation diagram shows the connections between the chaotic points and the
control parameters. The dotted area in the bifurcation diagram indicates the
chaotic region. Bifurcation diagrams are plotted for the control parameters
p € (0,4) for 2D-CLSS and a,b € (—1,4) for 2D-SCS and 2D-SHCM. From
the Figure 8.6, it demonstrate the 2D-SHCM has the least periodic windows and
all the chaotic points are widely distributed over the range of the control

parameters.

8.3.4 State mapping network

When a chaotic map is generated using a digital device with finite precision,
the resulting chaos fails to maintain the dynamic characteristics of the original
chaotic map in the continuous domain. To study the the dynamical behaviours
of chaotic maps in digital domain, state mapping network (SMN) or functional
graph are utilized to observe the iterative trajectories of the digital chaotic maps.
We apply the techniques given by Li, Feng, Li, Kurths and Chen (2019); Li et al.
(2021) which can be constructed in the following way: the (2)? possible states
are are considered as (2")? nodes, where  is the fixed-point arithmetic precision.
Every node (x1,y;) is connected with a directed edge to their corresponding node
(x2,y2) by using integer quantization function. In this chapter, we plot the SMN
for 2D-SHCM with the control parameters @ = 1.4,b = 0.3 and n = 3, by which
the quantized outputs of the chaotic map will fall into 64 possible states. Then,
the results are compared to 2D-CLSS with p =2 and 2D-SCS witha=2,b=1.5.

The SMNs are given in Figure 8.7 and comparisons of the period distribution of
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Figure 8.6: Bifurcation diagrams of 2D chaotic maps: (a) 2D-CLSS, (b) 2D-
CHS when b = 0.3, (¢c) 2D-CHS when a = 1.4 (d) 2D-SHCM when b = 0.3 and
(e) 2D-SHCM whena = 1.4
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Table 8.1: Comparisons of period distribution

Chaotic Max. transient Max. cycle No. of No. of fixed
map length length cycles points
2D-SHCM 7 2 1 0
(Proposed)

2D-CLSS 2 5 1 0
2D-SCS 3 2 3 2

the three chaotic maps are shown in Table 8.1.

From Figure 8.7, we observed that 2D-SCS has two cycles, while 2D-CLSS
and 2D-SHCM have one cycle only. It also observed that the maximal transient
length of the proposed chaotic map is 7, where 2D-CLSS and 2D-SCS are 2
and 3, respectively. The proposed map has the longest maximal transient length,
meaning that the state variables requires to iterate more times before entering
into a cycle. From Figure 8.7b, it is evident that 2D-SCS tends to converge into a
fixed point, which is depicted by a self-loop in one of the cycles. This indicates
the potential existence of equivalent keys of equivalent keys that can generate
the identical chaotic sequences. For 2D-CLSS and 2D-SHCM maps, they enter
into a cycle with the cycle length of 5 and 2. The total cycle length is the sum
of the maximal transient length and the maximum cycle length. The proposed
chaotic map exhibits the longest cycle length compared to the other chaotic maps,

demonstrating that our proposed chaotic maps outperform the others.
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Figure 8.7: State mapping network of 2D chaotic maps: (a) 2D-CLSS, (b) 2D-
SCS and (c) 2D-SHCM
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8.4 Proposed image encryption scheme

8.4.1 Notations

Some notations used in this chapter are listed as follows.

* The bold uppercase letters are used to represent an assembly, which can be
an array or sequence, a matrix, or a 3D color image. A plain color image P
with size 3 X M x N consists of three color planes R, G and B with each color
plane consists of M x N pixels. Each pixel of a color plane ranges from 0 to
255 and consists of 8 bits. Each color plane is divided into eight bitplanes

using the BBD technique Zhou, Cao and Chen (2014), i.e.,

R={Ry.Ry,...,Rs},
G ={G1,G,,...,Gg}, (8.7)

B = {By,B,,...,Bs}.

The i/ bitplane represents the collection of the i bit of all pixels in the

corresponding channel, for i € {1,2,...,8}. The " bitplane can be
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represented in the matrix form as

i i i i i i
Ry Ry, - Ry Gy, G, - Gy
i i i i i i
Ry, Ry, -+ Ry Gy, Ghy o Ghy
R; = ,Gi= )
i i i i i i
Ry, Ry, - Ryy Gyi1 Guo ~ Gun
i i i
By, By, -+ By
i i i
B — By, By, -+ Byy
i=
i i i
By By, - Buyn

(8.8)

* LSB and MSB denote the least significant bit block and the most significant
bit block, respectively. The LSB is composed of the lower four bitplanes of
the three color planes, while the MSB consists of the higher four bitplanes of

the three color planes. Each block size is 12M x N. The equation of LSB and

MSB blocks are given by
l11 li2 I N
LSB — 1 by by 7
(8.9)
homa lomp -+ lomw
T
= (R17G17B17R27G27B27R37G37B37R4;G47B4) ;
my, myp o MmN
m m e m
MSB — 2,1 22 2N |
(8.10)
mim, Mi2mM2 . MI2MN

T
= <R57G57B57R67G67B67R77G77B77R87G87B8> )
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where R;, Gj and B; are given by Equation (8.8).

* The operation & denotes the bitwise logical exclusive OR (XOR) of two bit

strings.

* Let X be a sequence of length L. The operation [Zy,Idxy| = sort(X) denotes
a new sequence Zy obtained by sorting X in ascending order. Corresponding
to the elements in Zy, their indices in X will form a new sequence Idxy, which

is a random permutation of the integers within the range 1 to L.

* The operation floor denotes rounding a number down to the nearest integer.

8.4.2 Intrinsic properties of image

The information percentage of every bitplane can be calculated based on
Equation (8.11) and the results are shown in Table 8.2. Figure 8.8 visualizes the
amount of image information for color plane B in eight bitplanes.

21'—1
§ il
i=12'

B(i) = 8.11)

where i refers to the i bitplane. From Table 8.2, it shows that the lower four

Table 8.2: Information percentage of each bitplane of a color plane

Bitplane, i | Percentage (%) | Bitplane, i | Percentage (%)
1 0.39 5 6.27
2 0.78 6 12.55
3 1.57 7 25.10
4 3.14 8 50.20

bitplanes for i € {1,2,3,4} carry less information as they contribute to a total of
5.88% of the image information, while the higher four bitplanes for

i € {5,6,7,8} carry most of the visually meaningful data as they cover 94.12%
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of the image information. The inherent properties of the bit distribution
motivates us to randomly shuffle the bits from the higher bitplanes with the bits
from lower bitplanes. Another properties is that majority of the bits at the 8"
bitplane has the opposite value from the corresponding bits at 7* bitplane. It is
demonstrated by Figures 8.8g and 8.8h. The processing of interchanging bits
between higher and lower bitplanes can help to eliminate the strong correlation
within the higher bitplanes. In our proposed encryption scheme, the shuffling
process will be done by the crossover process and then followed by the

mutation and non-sequential diffusion process.

8.4.3 Pseudorandom sequences generation

The large key space is important to resist the brute force attack. The secret keys
includes the initial conditions xg,yp € [—1,1] and control parameters a,b € R
of 2D-SHCM. A secure hash function SHA-256 is applied on the plain image
and its digest is used to obtain the secret keys. Using SHA-256 can make a
slight change of the plain image to generate a totally different digest, and hence
enhance the sensitivity of the image encryption to the plain image. Thirty two

8-bit blocks are generated by the hash function as

H={hi,h,....hp}. (8.12)

To produce two chaotic sequences X and Y, the initial conditions and the

control parameters of 2D-SHCM in Equation (8.6), xo,yo,a and b are updated
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(g) 7" bitplane (h) 8" bitplane

Figure 8.8: The eight bitplanes of color plane B
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using the digest H by

/ = xo+ h1®hyD---Dhg

X0 715 )

Yo = o+ Mk s

d =a+ 111769’113162"@9}1247
\ » —=b+ h25®h2§162'"@h32_

(8.13)

We iterate the 2D-SHCM for T + 15rMN times, where the first 7 elements are

discarded to avoid the harmful transient effect, and r is the number of encryption

rounds. The resulting chaotic sequences are X = {xl}lsr MN and Y = {yl 15r MN

Then, these two sequences are divided into following sequences.

12MN [15(r—1)+12]MN
{xlt = {x }z 15(r—=1)MN+1°

12MN [15(r—1)+12]MN
Y1={ub2 =il 15(r—1)MN+17

12M [15(r—1)+12]MN+12M
Xy ={xi}iZy ={x l}z [15(r—1)+12]MN+1 >

12M [15(r—1)+12)MN+12M
Y2 = {2} {)’l}, (15(r—1)+12]MN+1 >

[ AN [15(r—1)+12]MN+12M+N
X3 = {xmifim = {xi} 2 =[15(r—1)+12]MN+12M~+1

_ f. AN [15(r—1)+12]MN+12M+N
Y3 ={ysi}im = {Yz} =[15(r—1)+12]MN+12M+1°

{ } _{ }[15 r—1)+12]MN+12M+N+M
XAi fi=1 = NS i=[15(r— 1)+ 12 MN+12M+N+1

f [15(r—1)+12]MN+12M+4N
Ys4= {y4l}i—l {y } =[15(r—1)+12]MN+12M+N+1’

3MN (r— 1+1]15MN
Xs = {xs;}iz) ={x } 15(r—1)+12JMN+1°

3MN (r=1)+1]1SMN
Ys = {ysi}iZi {Yz} [15(r—1)+12)MN+1

8.4.4 Encryption

(8.14)

The overview of the proposed scheme is graphically presented in Figure 8.9. The

detailed process is given as follows:
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Input The 3 x M x N color image P, Secret keys xg, yo,a and b.

Output Cipher image C.

1. Generate psedorandom sequences according to the process described in

Subsection 8.4.3.

2. Divide the color image P into three color planes: R, G and B. Decompose

each color plane into eight bitplanes by using Equations (8.7) and (8.8).
3. Obtain LSB and MSB according to Equations (8.9) and (8.10), respectively.
4. Perform mutation that has been discussed in Section 3.2.2 as follows:

(a) Compute Xy = {x/}12/N and Y| = {y/}2¥V from X; and Y; given in

Equation (8.14) as

1, ifxy; >0 L, yu>0;
X = yi= (8.15)
0, otherwise, 0, otherwise,

Reshape X and Y] into a 12MN blocks as

/
11 X1.2 XN
/ / /
X X X
/ 2,1 22 2N
X = _ : (8.16)
X X, X
12M,1 *12m2 12M N
/ / /
Vi1 Y12 V1N
/ / /
Y21 Y22 0 2N
/ b b b
Yi=| " _ ol (8.17)
/ / . /
Yiom,1 Yiamp2 Yi2M N

(b) Calculate the hamming weight of every byte in X/ and Y/ that obtained

12M N /8

i1, i1 and

from Equations (8.16) and (8.17) to obtain HW1 = {hwl, ;}
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12M N /8

HW2 = {HW2;;},7;

8j+8 8j+8
/ /

wlijoi= Y, X M= Y Vi (8.18)
k=8j+1 k=8j+1

fori=1,...,12M and j=0,1,....§ — L.

(c) Based on Equation (8.5), perform mutation on LSB from Equation (8.9)
and MSB from Equation (8.10) to obtain two new blocks

Vl= {Vli,k}g{}i] and W1 = {Wli,k},giljfil as

vligjt1:8j+8 = Mutation(l;gji1.8j4+8,hwl; ji1), (8.19)
wl;gjt1:8j+8 = Mutation(m; g 1.8j1+8,hW2; j+1), (8.20)
fori=1,...,12M and j=0,1,...,§ — L.

5. Perform row-wise permutation process using two-point crossover and one-

point crossover that are discussed in Subsections 8.2.2 and 8.2.1 as follows:
(a) Using X3 and Y, from Equation (8.14) to obtain index vectors Idxy, and

Idxy; as

[Zy2,Idxys] = sort(X3), (8.21)

[ZyZ; Idez] = SOI't(Yz). (8.22)

(b) Generate two arrays F = {f;}!2 and G = {g;}*} using X; and Y, for

the crossover points by

f; = floor((xa; x 10'°) mod N) + 1, (8.23)
gi = floor((yz; x 101%) mod N) +1, (8.24)
wherei=1,...,12M and N is the column size.

(c) For i = 1, let Idxy (i) row of the V1 be the parent bit string A and
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Idxy (i) row of the W1 be the parent bit string B, f; and g; be the
crossover points. Perform crossover to obtain child bit strings
(V2(i,:),W2(i,:)) = Crossover(V1(Idxx(i),:), W1(Idxy2(i),:), fi, i)
where Crossover can be either Crossover; or Crossover, depending on

Equations (8.1), (8.2) and (8.3).

(d) Repeat Step 5c fori =2,...12M to obtain two blocks V2 and W2.

6. Perform column-wise permutation process using uniform crossover that are

discussed in Subsection 8.2.3 as follows:

(a) Using X3 and Y3 from Equation (8.14) to obtain index vectors Idxy3 and

Idxy3 as

[Z3, 1dxy3] = sort(X3), (8.25)

[Zy3,Tdxy3] = sort(Y3). (8.26)

(b) For i = 1, let Idx,3(i)" column of the V2 be the parent bit string A and

Idxy3(i)" row of the W2 be the parent bit string B.

(c) To determine the crossover region, select Idxy3(i) and Idxy3(i)”"
columns of the respective X’1 and Y’1 from Equations (8.16) and (8.17) be
the reference arrays C and D. Perform uniform crossover based on
Equation (8.4) to obtain child bit strings (V3(:,i),W3(:,i)) =
Crossover, (V2(:,1dxy3(i)), W2(:,1dxy3(i)), X} (¢, 1dxx3(i)),

Y, (:,1dxy3(0))).

(d) Repeat Steps 6b and 6¢ for i =2,...N to obtain two blocks V3 and W3.

7. Form a block U = {u; j}?i’fﬁ(:l with M x 3N pixels by combining V3 and

W3, where pixels from column 1 until N are R color plane, column N + 1

until 2N are G color plane, and column 2N + 1 until 3N are B color plane.

8. Apply non-linear diffusion as follows:

148



(a) Using X4 and Y4 from Equation (8.14) to obtain index vectors Idxy4 and

Idxy4 as

[Zxq,Idxy4] = sort(Xy), (8.27)

[Zy4,1dxy4] = sort(Yy). (8.28)

(b) Obtain two sequences X5 = {x/}?MN and YL = {y/}3MV from X5 and

Y5 from Equation (8.14) using quantization as

x!! = floor((xs; x 10'°) mod 256), (8.29)

yi = floor((ys; x 1015) mod 256). (8.30)

(c) Let U’ (Idxy4(1),1dxy4(0)) = X1, X2V, u; j mod 256. Compute

/

[(x} +»}) mod 256] &
(3 (U (Tdxga (i — 1), Tdxya (3N))
BU (Idxyy (i), Idxy4(;)) ) mod 256} ,

fori > 1,_] - 17
U’ (Tdxxa (i) Tdxya (/) =
[(x +y) mod 256] &

(3 + (U (1xya (i) Taxga ( — 1))

SU (Idxyy (i), Tdxy4(j)) ) mod 256} ,

otherwise,
\

(8.31)

wherei=1,....M, j=1,....3Nand k=1,...,3MN.

9. Arrange U’ into R, G, B channels. Repeat Step 2 until Step 8 for remaining

r — 1 rounds to obtain the cipher image C.
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Figure 8.9: Encryption Algorithm
8.4.5 Decryption

The decryption is the reverse process of encryption as follows:
Input The cipher image C, Secret keys xg, yo,a and b.

Output Recovered image P.

1. Repeat Step 1.

2. Divide cipher image into R, G and B color planes. Decompose each color

plane into eight bitplanes.

3. Perform the inverse of diffusion process to obtain block U as follows:
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(a) Obtain Idxyg,Idxy4, and X5 and Y5 based on Equations (8.27)-(8.30).

(b) Obtain block U by computing

| (U (1dxya ), Taxya () @
() +y) = %) mod 256 &
U’ (Idxx4(i — 1),1dxy4(3N)),

fori>1,j=1,
U (Idxx4(i), Idxy4(j)) = (8.32)

(U (1xya ), Taxya () &
(x{ +¥}) —x}) mod 256} ®

U’ (Tdxyy (i), Tdxyq(j— 1)),

forVi,j > 1,

\

where i = 1,....M, j =1,...,3N and kK = 1,...,3MN.  Extract

U(Idxx4(1),Idxy4(1)) that satisfying the following equation.

U (Idxyg(1),Idxy4(1)) =[ (U (Idxx4(1), Idxy4(1)) D

(x + %) —x;) mod 256

M 3N
@( Y Y U(Tdxys(i),Idxys(j))+ (8.33)

i=1j=1
i#1&& j#1

U(Idxx4(1),ldxy4(1))) mod 256.
4. Split block U into V3 and W3.

5. Perform the inverse of uniform crossover process as follows:

(a) Obtain Idxy3 and Idxy3 using Equations (8.25) and (8.26).
(b) Obtain X/ and Y} by using Equations (8.15)-(8.17).

(c) Obtain V2 and W2 by reversing the uniform crossover process in Step 6,

ie,  (V2(:,Xdxy3(i)), W2(:,Idxy3(i))) = Crossover,(V3(:,i), W3(:
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), X4 (5, 1dxg3 (i), Y4 (2, 1dxy3(i))) fori=1,...N.
6. Perform the inverse of two-point or one-point crossover process as follows:

(a) Obtain Idxy;, Idxy;, F and G using Equations (8.21)-(8.24).
(b) Obtain V1 and W1 by reversing the crossover process in Step 3, i.e.,
(V1(Idxx2(i),:), W1(Idxy2(i),:)) = Crossover(V2(i,:), W2(i,:), f;, &)

7. Perform the inverse of mutation process as follows.

(a) Obtain the hamming weight HW1 and HW?2 using Equation (8.18).

(b) Obtain LSB and MSB by reversing the mutation process in Step 4.

li,8j+l:8j+8 = Mutation(vlhgjﬂ;g#g, /’lwli,]url), (8.34)

m;gji1:8j+8 = Mutation(wl;gji1.8j+8,hw2; jy1), (8.35)

8. Arrange LSB and MSB into R,G,B channels and combine them as

recovered image P.

8.4.6 Discussion

The proposed encryption scheme exhibits the following advantages.

1. The image encryption scheme fulfills the confusion and diffusion properties
that required by the secure cryptosystem (Shannon, 1949). The mutation
process alters the bit values of the image data and the changes are spread
over whole planes through the crossover process. The non-sequential
permutation and diffusion process can spread the changes from one bit to
another bit in a random order. The bit-level permutation and diffusion shuffle
the eight bit planes thoroughly by considering the intrinsic features of the

image.
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2. The scheme was ended up with a non-linear pixel-level diffusion to further
diffuse the three color planes completely. The diffusion effect depends on the
keystream elements, pixels from the genetic algorithms and previous

encrypted pixel at the random position.

3. The image encryption has the ability to withstand different types of attacks.
This is because the encrypted image will be totally different with a small
change in the pixel, even with the same secret keys being used. The
non-linear diffusion process could magnify the difference in the output of
genetic algorithms through the bitwise exclusively or and modular addition
operations. If any bit is altered, it will alter the U’(Idxx4(1),Idxy4(0)) in
Step 8c of the encryption process and cause all the bits to be changed after
one encryption round. Therefore, the encryption requires one round to obtain
good diffusion effect. Its strength of resistance to different types of attacks

are also shown in Section 8.5 Security Analysis.

4. The structure of the encryption scheme is simple and requires low
computational cost. It requires one encryption round to achieve good

security.

8.5 Security Analysis

This section presents the results of various experiments designed to test the
security level of image encryption. All tests were conducted using the Matlab
R2019a environment on a computer equipped with an Intel® Core™ 15-8250
CPU @ 1.60GHz, 8 GB memory and the Windows 10 operating system. The
experiments were performed using a colour image titled “House” from the
USC-SIPI image database, which has a size of 256 x 256. The secret keys

employed in the tests are xo = 0.1,y =0.1,a=1.4,b = 0.3.
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8.5.1 Key space

For a secure image encryption, the key space must be large enough to withstand
the brute force attack. The secret keys used in the proposed image scheme are
(x0,v0,a,b). Since 2D-SHCM has chaotic behavior when a,b € R, if the
computation precision of floating-point number is around 10~13, then the key

space is (1019)* ~ 219932 which is large enough to resist the brute—force attack.

8.5.2 Key sensitivity analysis

This test measures the sensitivity of cipher image to a tiny changes in secret key.
The proposed image encryption is extremely sensitive to its initial condition and
control parameters. The initial set of secret keys key; (xo = 0.1 and yyp = 0.1) is
changed slightly to keys (x{, = 0.1+ 105 and yj, = 0.1 + 10'5). Both key; and
key, are used to encrypt the same plain image (refer to Figure 8.10a) and their
cipher images are shown in Figures 8.10b and 8.10c, respectively. Figure 8.10d
shows the difference in the pixel values of these two images and their difference
ratio is 99.6048%, which indicates that 99.6048% of their pixels are different.
Thus, a slight change in the secret keys can produce the cipher image that is
almost totally different.

Next, the cipher image in Figure 8.10b is then decrypted by using both key;
and key,. Based on the results shown in Figures 8.10e and 8.10f, only key; can
successfully decrypt the cipher image, while the image decrypted by using key,

is unreadable.
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(e

Figure 8.10: Key Sensitivity Analysis. (a) Plain image. (b) Cipher Image using
keyy. (c) Cipher Image using key,. (d) Difference between Figures 8.10b and
8.10c (e) Recovered image using key;. (f) Recovered image using key.
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8.5.3 Resistance to chosen plaintext attack

The chosen plaintext attack is one of the most threatening attack models
commonly used by adversaries. In this scenario, adversaries possess the
capability to select plaintext images and observe their associated cipher images
(Bleichenbacher, 1998). By exploiting the relationship between the chosen
plain images and corresponding cipher images, the adversaries can recover the
plain image from the cipher image without the need for the secret key.

To resist this plaintext attack, our proposed scheme possesses the following
features: (a) Chaotic random sequence are generated using the plain image
pixel. Small change in the pixel value could result in a totally different
sequence. (b) Crossover and mutation of the genetic algorithm introduces the
permutation-diffusion properties to the encryption model. The possible of the
pixels are shuffled and the slight changes in the plain image could spread over
all the pixels of cipher image. (c) The non-linear diffusion process using the
sum of pixels values as one of the input also amplify the diffusion effect.

To visually demonstrate the robust capabilities of our proposed scheme in
defending against this attack, we conduct the analysis on a color image two
special images with pixels are all zero or 255. The tests that we conducted are
histogram, the coefficients of correlation, NPCR and UACI and information

entropies of cipher images for these two special images.

Histogram

A secure image encryption must ensure that the cipher image is uniformly
distributed. Histogram is plotted to show the distribution of the pixel intensity
of the image. It is obvious that the pixel values of the encrypted image in Figure

8.11c is fairly uniform and totally different from the histogram of plain image in
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Figure 8.11b. The histogram of cipher images for two special images, i.e., all

zeros and 255 pixels are plotted in Figures 8.11d and 8.11d. It is observed that

the outputs are uniformly distributed.
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Figure 8.11: Histogram Analysis

To further verify the uniformity of the pixel distribution, y? test are carried
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out using

(ui — nP)2

1 P

X =

=

: (8.36)

where u; denotes the frequency of observations at the i’ interval and # is the

total frequency and p = % The smaller the 2 value, the closer the distribution
of encrypted images to the uniform distribution. As shown in Table 8.3, the
proposed encryption scheme passed the test and has a lower x? values for the
encrypted image.

Table 8.3: Comparison of 2 values of plain and encrypted images for “House”
and encrypted special images

P2

Image Red Green Blue Average
Plain House 258576.8750 | 299158.6406 | 394038.9453 | 317258.1536
Encrypted House 306.0156 255.7343 298.6718 286.8073
Encrypted all 242.0313 232.7656 260.7344 245.1771
black image

Encrypted all 280.7109 237.9375 257.0547 258.5677
white image

Correlation Analysis

Images have a high correlation to the adjacent pixels in different directions i.e.
horizontal, vertical and diagonal directions. Adversaries could exploit this
feature to retrieve the information of the images. To test correlation between the
adjacent pixels of the encrypted image, coefficient of adjacent pixels p,y is

calculated using

D= X2 (6 — %) (i — )
VE (= D2 (X, - 9)?)

: (8.37)

where X = IlefV: (Xiand y = %VZ{V: 1 vi- From Table 8.4, it can be seen that values
obtained by our scheme are much closer to zero, which means that the pixel

values are not correlated to each other.
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Table 8.4: Correlation coefficient of encrypted images for “House”

Image Correlation Coefficient
Horizontal | Vertical | Diagonal
Proposed -0.00227 | -0.00036 | 0.00179
Black -0.0025 -0.0075 0.0041
White -0.0025 0.0025 0.0005
Paper Liu and Liu (2020) -0.0119 -0.0087 | -0.0045
Paper Hu et al. (2020) 0.0012 0.0034 0.0017
Paper Alexan et al. (2023) 0.0014 -0.0015 0.0079

NPCR and UACI

Differential attack is an attack exploiting the differences of the chosen pairs of
inputs and outputs of a cipher are exploited by the attack (Biham and Shamir,
1991). The commonly used statistical tests to measure the strength of the
underlying encryption scheme against differential attack are number of pixel
change rate (NPCR) and unified average change intensity (UACI). These tests
are applied to two encrypted images C; and C; with one pixel difference. They

are represented by

Y i F(i,j)
NPCR N T 8.38
CR(C1,C3) N <M X o ( )
and
1C1(, J) — Cai
UACI(CI—CQ):Z’J‘ 1) =D g0g, (8.39)
LxMxN
where

0 HCi(i ) = Cofi ),
Fi,j) = ifG(07) = G0 ) (8.40)

1 if C1(i, ) # Cai, ),

and L is the largest allowable pixel value in the image. The ideal expectation
values for NPCR and UACI are 99.6094% and 33.4635%, respectively. From

Table 2?, it shows that all the test images obtain the results that are higher than
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the criterion. We can say that our proposed scheme can effectively withstand the

differential attack.

Table 8.5: NPCR and UACI scores of encrypted images for “House”

Image Average NPCR (%) | Average UACI (%)
Proposed 99.6134 33.5323
Black 99.61700 33.46826
White 99.60175 33.40612
Paper Liu and Liu (2020) 99.6100 32.2000
Paper Hu et al. (2020) 99.6236 33.3619
Paper Alexan et al. (2023) 99.6254 30.5681

Information Entropy

Information entropy serves as a metric for evaluating both the randomness and

the distribution of pixels within an image. It is measured by

H(m) = — Y Plm(i)]log, Pm(i)], (8.41)

where P[m(i)] is the probability of m(i), L is the number of pixel values. A
higher value of information entropy indicates a more uniform distribution of
pixels in the image. The image reaches the theoretical maximum information
entropy when each possible pixel value has an equal probability. In other words,
the information entropy for an 8-bit image is H ()4 = log, 2% = 8. In this
experiment, the information entropy of the cipher image and the special images

are closer to 8, indicating satisfactory randomness.
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Table 8.6: Information entropy of encrypted images for “House”

Image Average Information Entropy
Proposed 7.9989
Black 7.9974
White 7.9972
Paper Liu and Liu (2020) 7.9897
Paper Hu et al. (2020) 7.9941
Paper Alexan et al. (2023) 7.9967

8.6 Summary

This chapter presents a new image encryption scheme based on 2D-SHCM, the
proposed two-dimensional chaotic map, genetic algorithms and SHA-256 hash
function. The 2D-SHCM has a better chaotic behavior over the
lower-dimensional chaotic system in terms of ergodicity, sensitivity to the initial
condition and control parameters, randomness and structural complexity.
Furthermore, the use of SHA-256 hash function in modifying the initial
conditions of the chaotic map highly improves the sensitivity of the cipher to
the change of plain image. The genetic algorithms and the nonlinear diffusion
process also introduces a good avalanche effect in the encryption scheme. To
test the security level of the proposed scheme, a series of experiments have been
conducted. All the numerical results demonstrate that our proposed scheme has

good security performance and thus it is suitable for image encryption.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

In this chapter, we summarize the key contributions and findings of this thesis.

We then conclude with recommendations for future research directions.

9.1 Conclusion

This thesis presents several contributions to the field of chaotic-based image
encryption. Firstly, cryptanalysis of existing chaotic-based image encryption
schemes was conducted to evaluate their security. A known plaintext attack was
applied to the scheme proposed by Biswas et al. (2015), revealing weaknesses
in its genetic algorithm-based design. The study also explored the general
properties of genetic algorithms and demonstrated how similar attacks could be
extended to other encryption systems utilizing genetic algorithms. Additionally,
a chosen plaintext attack was performed on the scheme proposed by Ping et al.
(2018), analyzing the security and efficiency of the two-point diffusion strategy
and highlighting the dynamical degradation of the Henon map. The findings
emphasized the need for improved diffusion mechanisms and robust chaotic
sources, leading to the proposal of enhanced encryption techniques.

Next, novel chaotic maps were introduced to address the limitations of
existing chaotic systems used in encryption. A cascading technique was
employed to construct a one-dimensional chaotic map, the Logistic-Beta map,
combining the classical logistic map and beta map to improve chaotic behavior.

Further, a chaotification approach was developed, integrating a two-dimensional
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chaotic map with a one-dimensional chaotic map through modular operations.
This led to the introduction of the 2D-HenonlLL.og map, which merges the Henon
and logistic maps, and the 2D-SHCM map, which combines sine and Henon
maps. These maps exhibited improved chaotic properties, such as increased
sensitivity to initial conditions, reduced periodic windows, and an extended
chaotic range, making them well-suited for pseudorandom number generation
and image encryption. A mathematical analysis of their graph structure over a
digital device was conducted using state-mapping network analysis, evaluating
their dynamical behavior and confirming their suitability for cryptographic
applications.

A crucial aspect of this research was the mathematical analysis of the graph
structure of chaotic maps in digital devices. In digital implementations, finite
precision effects can lead to dynamic degradation, resulting in periodicity, state
collisions, and reduced entropy, which ultimately compromise the security of
encryption systems. To address these issues, we conducted a state-mapping
network analysis comparing the dynamical performance of our proposed
chaotic maps with several existing chaotic maps, including the Henon map,
improved Henon map, 2D-CLSS, and 2D-SCS. This analysis used a directed
graph to illustrate the evolution of digital states, revealing insights into chaotic
trajectories under finite precision. The study uncovered that some maps exhibit
structural weaknesses, such as attractors with short cycles or biased state
transitions, making them vulnerable to cryptanalytic attacks.

Lastly, new chaotic-based image encryption schemes were proposed to
enhance security and efficiency. A grayscale image encryption system was
designed using a four-dimensional hyperchaotic system with a
permutation-diffusion architecture. To further strengthen security, SHA-2 was
incorporated to improve sensitivity to plaintext changes. Additionally, a novel
color image encryption scheme was introduced based on a two-dimensional

Sine-Henon chaotic map and genetic algorithms.  This scheme utilized
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cross-plane permutation, nonlinear diffusion, and dynamic genetic operations,
including uniform crossover, to optimize confusion and diffusion. Experimental
results demonstrated the robustness of the proposed schemes, showing strong
resistance to statistical and differential attacks.

Beyond the direct contributions, this research also has practical applications
in secure image transmission and real-time multimedia encryption. The
potential for multiple image encryption and parallel image encryption
techniques is further explored in Section 9.2 Future Work, providing directions
for optimizing encryption efficiency and computational performance. By
addressing fundamental weaknesses in existing chaotic encryption schemes and
proposing innovative solutions, this thesis contributes to the advancement of

secure image encryption methodologies in the digital age.

9.2 Future Work

Based on the research conducted in this thesis, we propose some possible new
directions in the field of image encryption. These directions build on the
foundation laid by chaotic based encryption and create new opportunities for
future improvements in the field. While this research primarily emphasizes the
security aspects of encryption, it does not fully address the computational speed
of image encryption. Therefore, exploring methods to enhance computational
efficiency in future studies would be highly beneficial.

We recommend focusing on multiple image encryption and parallel image
encryption, as these methods offer new ways to improve both security and

processing speed when handling large volumes of image data.

e Multiple Image Encryption: This technique encrypts several images

simultaneously using one encryption algorithm. It makes sure that each
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image maintains confidentiality, integrity, and authenticity under one
cryptographic framework. It is particularly useful for secure transmission
or storage of multiple images, as it streamlines the encryption process
without compromising security. Future research could explore the
development of more efficient schemes to handle large volumes of
images, addressing the increasing need for bulk data encryption in

real-world applications.

Parallel Image Encryption: This technique uses parallel processing to
encrypt images concurrently, leveraging the power of multi-core
processors or distributed computing environments. It accelerates the
encryption process, especially for large datasets or real-time applications.
Future research could focus on enhancing the computational efficiency of
the parallel encryption algorithms that can processing either segments of
a single image or multiple images simultaneously. This is also useful for
the applications requiring fast, secure encryption of large volumes of

image data.
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