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ABSTRACT

CRYPTANALYSIS AND DESIGN OF CHAOS-BASED IMAGE

ENCRYPTION SCHEMES

WONG KUAN WAI

Chaos theory has been widely applied in designing image encryption

schemes due to its deep connection with cryptographic properties, such as

sensitivity to initial conditions and unpredictability. However, many existing

image encryption schemes have been shown to be insecure against

cryptanalysis. Cryptanalysis is essential for uncovering potential vulnerabilities,

as it evaluates the security of encryption schemes, identifies weaknesses, and

guides the development of more secure frameworks. Our research reveals that

the scheme proposed by Biswas et al. is vulnerable to known plaintext attacks,

requiring a time complexity of 2264.28 encryptions. This is 2183.72 times faster

than brute-force attacks. Similarly, a chosen plaintext attack on Ping et al.’s

scheme reveals a reduced key space of 2216.51, down from the claimed 2356, and

identifies inefficiencies in its Henon map-based sequential encryption method.

These findings emphasize the need for a more comprehensive analysis of

encryption schemes that utilize genetic algorithm and sequential encryption

techniques.

To address these challenges, we propose secure image encryption schemes

that are based on enhanced chaotic maps. Specifically, we enhance the chaotic

behavior of one-dimensional and two-dimensional chaotic maps using

cascading techniques. This results in the development of the Logistic-Beta map,

the 2D-Henonlog map, and the 2D-Sine-Henon Chaotic Map (2D-SHCM).

Furthermore, we present a grayscale image encryption scheme utilizing a

permutation-diffusion architecture, as well as a color image encryption scheme

based on a genetic algorithm and the 2D-SHCM. Both schemes are designed to



ensure high levels of confusion and diffusion in the encrypted images.

Experimental results demonstrate that the proposed schemes effectively

resist both statistical and differential attacks. These results highlight the

importance of cryptanalysis of existing schemes to identify weaknesses and

develop secure encryption methods. The proposed work underscores the need

for robust chaotic maps, strong confusion and diffusion mechanisms, and

thorough security evaluations as fundamental principles for designing reliable

image encryption schemes.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

With the advancement of technology, sharing image data on social media

platforms such as Instagram, Facebook and WhatsApp has become an essential

daily activity in today’s society. Image encryption is an important primitive for

protecting image data against various types of attacks, preventing unauthorized

users from recovering the original image even if the encrypted image is

captured. However, the traditional encryption methods such as Data Encryption

Standard (DES) (National Bureau of Standards, 1977), Advanced Encryption

Standard (AES) (Daemen and Rijmen, 2013) and International Data Encryption

Algorithm (IDEA) (Lai and Massey, 1990) are not well-suited for encrypting

image data due to the bulky capacity of the images and also the high correlation

between the image pixels. These convensional methods are more suitable for

textual data rather than image data.

In recent years, chaotic based image encryption becomes a main focal of

research in the information and communication security field. Chaotic system

has many inherent characteristics such as ergodicity, aperiodicity and highly

sensitive to initial conditions and control parameters making it to be popular in

designing an image encryption scheme. Therefore, it is widely used in building

the permutation matrices, generating a pseudorandom bit sequence which is

useful in performing some basic encryption operations, and producing the

ciphertext directly when the elements of plaintext are used as the control

parameters or initial conditions of the chaotic systems. Many encryption
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schemes applied the logistic map (May, 1974) due to its simple structure and

low computational power requirements. However, its small chaotic range leads

to a limited key space, which contributes to weak security. To overcome this

drawback, Zahmoul et al. (2017) proposed a one-dimensional chaotic map that

based on Beta function which consists of more control parameters.

Two-dimensional chaotic maps such as Henon map and modified Henon map

proposed by Hua et al. (2020), as well as 2D-CLSS proposed by Teng et al.

(2022) based on logistic and sine maps, can widen the chaotic range. However,

these chaotic maps still contain periodic windows that could affect their chaotic

behavior. Even though the 3D-chaotic map (Bouteghrine et al., 2021) has many

control parameters that contribute to a complex chaotic structure, it results in

difficult hardware implementation.

The first chaotic based encryption algorithm was proposed by Matthews

(1989) and he showed that chaotic system can be applied to cryptography. A

secure encryption algorithm must possess the confusion and diffusion functions

in its algorithm (Shannon, 1949). Confusion can be attained by obscuring the

relationship between cipher-image and the secret key. In other words, every

pixel of cipher-image should be affected by secret key as many as possible.

Besides, diffusion can reduce the redundancy of the plain-image by spreading it

over the cipher-image. It also means that changing a pixel of plain-image will

change a large number of pixels of cipher-image. Most of the chaotic based

image encryption algorithms are based on permutation-diffusion architecture. It

is also known as Fridrich’s algorithm because it was firstly proposed by Fridrich

(1998). This is the most typical structure that fulfils confusion and diffusion and

it had been widely used by other researchers in their ciphers. Pak et al. (2019)

proposed a bit-level color image encryption scheme using improved chaotic

map on the existing one-dimensional chaotic maps (i.e., logistic map and sine

map). The encryption scheme consists of permutation, diffusion, and linear

transformation processes. Wu et al. (2018b) applied two-dimensional

2



henon-sine map and DNA coding in designing an image encryption scheme.

DNA addition, subtraction and XOR operations are combined to modify the

pixel value. However, the schemes proposed in (Pak et al., 2019; Wu et al.,

2018b) were vulnerable to the chosen plaintext attack by revealing equivalent

encryption elements (Li, Wang, Liu and Fan, 2019; Chen et al., 2020). Ping

et al. (2018) proposed an image encryption method based on a two-point

diffusion strategy, integrating the permutation and diffusion processes into a

single step. The authors claimed that their encryption algorithm is secure

against chosen plaintext attacks. However, we discovered the existence of

equivalent keys in their scheme, where the same encrypted output can be

generated by at least two different keys.

The hybrid model of a chaotic function and genetic algorithm has been

widely applied in image encryption algorithms. The crossover and mutation are

used as the confusion and diffusion processes, respectively. Pseudorandom bit

sequence that generated by chaotic function can be used as the parent bit strings

of the crossover process or used in determining the crossover point of the parent

bit strings. Wang and Xu (2014) proposed an image encryption scheme based

on genetic algorithm and intertwining logistic map. Monte Carlo method is

used to choose two parent binary strings. The simple operation of the genetic

algorithms could avoid the complexity of using mathematical transformation.

Biswas et al. (2015) proposed an image encryption based on N-logistic tent map

and genetic algorithms for wireless sensor network. They used mutation and

two-point crossover in the encryption algorithms. Later, Das et al. (2018)

proposed image encryption scheme based on Arnold cat map and genetic

algorithms. Zhang, He, Li and Wang (2020) proposed a color image encryption

scheme that combines the two-dimensional non-linear coupling map lattice

system with genetic algorithms. Although the genetic algorithm-based image

encryption schemes proposed in Biswas et al. (2015); Das et al. (2018); Wang

and Xu (2014); Zhang, He, Li and Wang (2020) claimed that their schemes can

3



resist various types of attack and provide sufficient security, we found that the

simple operation of genetic algorithm may be vulnerable to known plaintext

attack (Biham and Kocher, 1994). Therefore, it is crucial to conduct research on

improving the security level of chaotic-based image encryption against various

cryptanalytic attacks.

1.2 Objectives

After reviewing recent studies on chaotic systems and image encryption

schemes, this research aims to design a secure chaotic based image encryption

scheme capable of resisting various cryptanalytic attacks. The three main

objectives of this research are as follows.

1. To perform thorough study on how the existing design rules of chaotic

based image encryption schemes impact their security. This includes

exploring different combinations of permutation and diffusion

mechanisms within encryption architectures, as well as cryptanalyzing

existing schemes under various cryptanalytic attack models.

2. To propose new chaotic maps using cascading methods to enhance their

chaotic behavior. This involves comparing their dynamical performance

with the existing chaotic maps and evaluating the effectiveness of the new

cascading maps in key generation and encryption processes.

3. To propose improved techniques in constructing a secure chaotic based

image encryption scheme. This can be achieved by integrating cascading

chaotic maps and cross-plane encryption within a permutation-diffusion

architecture.

4



1.3 Contributions

In this thesis, we conduct cryptanalysis of existing chaotic based image

encryption schemes to identify their strengths and vulnerabilities. We propose

new chaotic maps that demonstrate better dynamical performance as compared

to the existing chaotic maps. Finally, we propose novel image encryption

schemes based on the newly proposed chaotic map and the insights gained from

the cryptanalysis. The contributions of this thesis are listed as follows:

• Cryptanalyses of existing chaotic based image encryption schemes. A

known plaintext attack was applied on the image encryption scheme

proposed by Biswas et al. (2015). The properties of genetic algorithm

were analyzed. The proposed attack methodology can be extended to

other encryption schemes designed using genetic algorithm. Besides, a

chosen plaintext attack was applied to the image encryption scheme

proposed by Ping et al. (2018). The dynamical degradation of the henon

map was studied. The security and efficiency of the two-point diffusion

strategy were evaluated. Possible enhancements to the attacked ciphers

are suggested.

• Proposals of new chaotic maps. A cascading technique was applied to

develop a new one-dimensional chaotic map derived from the classical

logistic map and beta map. Next, a chaotification method was introduced

by cascading a two-dimensional chaotic map with a one-dimensional

chaotic map using modular operations. The effectiveness of this method

was demonstrated using the henon and logistic maps. Besides, the

cascading technique was extended to develop a new two-dimensional

using sine map and henon map that can address the limitations of

discontinuous chaotic ranges encountered in both one-dimensional and

high-dimensional chaotic maps. Dynamical performance results indicated
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the proposed chaotic maps are suitable for pseudorandom number

generation and image encryption applications.

• Proposals of new chaotic based image encryption schemes. A new

grayscale image encryption scheme was developed using a

four-dimensional hyperchaotic system and a permutation-diffusion

architecture. Lastly, by leveraging the findings from the chaotic maps and

cryptanalyses of chaotic based image encryption schemes, this thesis

proposes a new color image encryption scheme that fulfills the confusion

and diffusion properties necessary for secure image encryption.

Experimental results demonstrated that the proposed schemes exhibits

strong resistance to the statistical and differential attacks.

1.4 Organization of the thesis

The remainder of this thesis is organised as follows:

• Literature review. Chapter 2 provides a comprehensive review of the

evolution of image encryption schemes based on the chaotic maps from

1980s to the present. Various chaotification method used in developing

chaotic map are discussed. In addition, common cryptanalytic techniques

applied to the image encryption schemes are reviewed.

• Our new cryptanalytic results. Chapters 3 and 4 present our

cryptanalytic results on the image encryption schemes (Biswas et al.,

2015; Ping et al., 2018). Each chapter begins with an overview of the

respective encryption scheme, then followed by a detailed descruption of

our cryptanalytic results. Finally, the chapters conclude with a summary

remark.
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• Our new chaotic maps. Chapters 5 and 6 introduces the newly proposed

chaotic maps, including logistic-beta map, 2D-Henonlog map. The

mathematical models and dynamical analyses of these chaotic maps are

discussed.

• Our new image encryption schemes. Chapters 7 and 8 presents the

proposed image encryption schemes. Experiment analyses show that the

proposed schemes achieve the desired cryptographic properties.

• Conclusion and future work. Chapter 9 summarizes results obtained in

this thesis and provide suggestions for future research directions.

7



CHAPTER 2

LITERATURE REVIEW

In recent years, chaos-based image encryption has become a significant area of

research within information and communication security. Chaotic systems

possess inherent characteristics such as aperiodicity, sensitivity to initial

conditions and system parameters, ergodicity, and random-like behavior. These

properties make them highly suitable for developing fast and efficient

encryption schemes. This chapter begins with an overview of common

cryptanalytic methods used to break image encryption schemes. Following that,

we present a literature review of various chaos-based image encryption schemes

that utilize different architectures.

2.1 Notation

Unless otherwise indicated, most of the notations used in this thesis are listed in

Table 2.1.

Table 2.1: Summary of the adopted notations

Notation Description
A an assembly, which can be a vector, sequence, a matrix

and a 2D or 3D image
A(i) superscript i denotes ith encryption round
a(i) or ai ith element of the corresponding 1D assembly A
a(i, j) or
Ai, j

element or pixel value at ith row and jth column of the
corresponding 2D matrix or grayscale image A

a(i, j,k) or
Ai, j,k

pixel value at ith row and jth column of kth plane of the
corresponding 3D color image A

f loor rounding a number down to the nearest integer

8



⊕ bitwise logical exclusively-or (XOR) of two bit strings
of the same length

2.2 Image encyption designs

An image encryption is an important primitive that processes a plain image P to

generate a cipher image C using secret key K. A secure encryption algorithm

must possess the confusion and diffusion functions in its algorithm (Shannon,

1949). Confusion can be attained by obscuring the relationship between

cipher-image and the secret key. In other words, every pixel of cipher-image

should be affected by secret key as many as possible. Besides, diffusion can

reduce the redundancy of the plain-image by spreading it over the cipher-image.

It also means that changing a pixel of plain-image will change a large number

of pixels of cipher-image. In order to achieve good confusion and diffusion

properties, the architecture of the chaotic based image encryption scheme can

be designed based on permutation-only, diffusion-only, diffusion-permutation

and permutation-diffusion.

In this section, we compare the architectures of various image encryption

schemes and their vulnerabilities to different cryptanalytic methods. Before

delving into the literature review of various proposals, we introduce common

cryptanalytic attack models.
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2.2.1 Cryptanalytic attack models

Image encryption is a technique of used to protect visual data by transforming

plain images into cipher images. This process is to ensure a secure

communication by preventing unauthorized access to the plain images when

they are transmitted over public channels. According to Kerckhoffs’ Principle,

the security of a cryptosystem should rely solely on the secrecy of the key, not

on the secrecy of the cryptosystem. This means that while anyone can

eavesdrop and obtain the cipher image, the plain image should remain

inaccessible without the key. Cryptanalytic attack, or also known as

cryptanalysis, refers to the process of recovering the plain image from the

cipher image without the key, or even more challenging, deducing the secret key

(Petitcolas, 2023).

Attack models specify the information available to an attacker when they

attempt to break a cryptographic system. The most common attack models are

listed as follows.

1. Ciphertext-only attack: The attacker has access to a number of

ciphertexts but does not know the corresponding plaintexts. By solely

observing these ciphertexts, the attacker attempts to deduce the

decryption key or plaintext. Any encryption scheme that is vulnerable to

this type of attack is considered to be completely insecure.

2. Known-plaintext attack: The attacker has access to a collection of

plaintext-ciphertext pairs. The plaintexts are assumed to be randomly

selected.

3. Chosen-plaintext attack: The attacker has access to the encryption

algorithm, allowing them to choose any plaintext and generate the

corresponding ciphertext.
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4. Chosen-ciphertext attack: The attacker has access to the decryption

algorithm, even without the secret key, by potentially compromising the

decryption equipment, it allows the attacker to select ciphertexts and

obtain the corresponding plaintexts. It is important to note that decrypting

information is not always sufficient to compromise a system. For

example, some video-protection devices allow attackers to perform

encryption and decryption queries using the device’s chip, but the primary

goal of the attacker in such cases is to obtain the key for redistribution.

Merely being able to decrypt data without the key may not be enough to

break the system.

Next, we will explore image encryption schemes with different designs and

their weaknesses against cryptanalytic attacks.

2.2.2 Permutation-only algorithm

Permutation-only image encryption scheme encrypts the images by changing

the positions of all the pixels of the image in a secret manner. The permutation

process is an invertible function to allow a plain-image to be recovered from the

decryption. Let the plain image P = {p(i)}L
i=1, where L = M × N. Let

W = {w(i)}L
i=1 be the permutation vector with length L. In a permutation-only

algorithm, the plain image is encrypted to produce the cipher image

C = {c(i)}L
i=1 by using

c(w(i)) = p(i). (2.1)

Li et al. (2008) proposed a general quantitative cryptanalysis on the

multimedia algorithms against the known- or chosen-plaintexts attacks. The
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cryptanalysis was achieved by reconstructing the permutation matrix instead of

recovering the key. They proved that only O(logL(MN)) plain-images are

needed to break the permutation-only algorithm, where MN is the size of the

plain-image in terms of row and column and L is the number of possible

different pixel values. The attack complexity of this cryptanalysis is

O(M2N2 logL(MN)).

Li and Lo (2011) optimized the cryptanalysis in (Li et al., 2008) by adopting

a binary tree classification method and a multi-branch tree classification

method. With these methods, the permutation-only algorithm can also be

broken with O(logL(MN)) plain-images. However, the spatial and

computational complexities are O(MN) and O(⌈logL(MN)⌉ · MN), which are

much lower than the attack complexity of the method in (Li et al., 2008).

Therefore, the permutation-only algorithm has been proven to be insecure

against plaintext attacks based on these cryptanalytic methods.

2.2.3 Diffusion-only algorithm

Diffusion is a substitution function defined by

c(i) = p(i)⊞ f (c(i−1))⊞g(i), (2.2)

where ⊞ denotes an arithmetic operation, G = {g(i)} is the diffusion mask made

up by chaotic sequences, f (·) is a nonlinear function, and c(i) and p(i) represent

cipher pixel and plain pixel, respectively. An image encryption scheme solely

based on diffusion operation is considered a less robust design as the confusion

property has been neglected.

Ye and Zhou (2014) proposed an image encryption schemes using

diffusion-only algorithm. They proposed a block image encryption that depends
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on double chaotic systems, i.e. Logistic map and 4D hyper-chaotic system. The

authors claimed that the diffusion only architecture could overcome the

problems inherent in permutation-diffusion process, such as many number of

rounds required, permutation process can be easily exploited by

known-plaintext attack and chosen-plaintext attack, and the key-dependent

problem in the keystream.

However, this architecture was attacked by Yap and Phan (2017) using

chosen-plaintext and chosen-ciphertext attacks with the exploitation on the

r-round differential with probability of 1. This was also the first attack that

demonstrates the vulnerability of image encryption scheme against

distinguishing attack. Distinguishing attack is a cryptanalytic method that

allows an attacker to distinguish the images encrypted by the underlying

encryption algorithm from the random encrypted images. A plaintext-ciphertext

pairs with the input differential of (0,β ) were chosen. If the plaintext-ciphertext

were generated by using proposed encryption scheme, then the output

difference should also be (0,β ). The success rate of distinguishing the

encrypted images from a truly random images is 1− 2−8p, given that size of p

pixels is 8-bit long. Besides, Yap and Phan also applied chosen-ciphertext

attack on the Ye and Zhou’s encryption scheme as the encryption scheme did

not satisfy the confusion and diffusion properties due to the linear

transformation function of images that uses the modular addition. The authors

should investigate how the input difference can influence the output difference

under the encryption. To improve the confusion and diffusion properties, adding

the addition-rotation-XOR (ARX) operations to the encryption scheme were

suggested by Yap and Phan.

Essaid et al. (2019) proposed a novel image encryption algorithm based on a

variant of the Hill Cipher and three enhanced one-dimensional chaotic maps,

i.e. enhanced logistic map, enhanced chebyshev map and enhanced sine map.

The chaotic maps are used to generate the chaotic sequences. The confusion
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and diffusion process are achieved through the combination of a vector

comprising key-pixel pairs and a 2× 2 Hill matrix, as well as the addition of a

pseudo-random translation vector. However, a comprehensive cryptanalysis

conducted by Wen, Lin, Yang and Chen (2024) reveals inherent vulnerabilities

in the scheme proposed by Essaid et al., making it susceptible to both

chosen-plaintext attack and chosen-ciphertext attack. In a chosen-plaintext

attack, the adversary first selects a plaintext image with all pixel values set to

zero and obtains the corresponding ciphertext. Through algebraic analysis, they

derive an equivalent keystream to compromise the scheme. Next, a plaintext

image with all pixel values set to one is chosen, and the resulting ciphertext is

used to extract parameters related to the Hill Cipher variant. By combining the

findings from these two steps, the original plaintext image can be recovered

from any given ciphertext image. Similarly, the scheme is also vulnerable to

chosen-ciphertext attacks, which can bypass its security due to these

fundamental design flaws. Furthermore, the lack of permutation in the scheme

diminishes the algorithm’s confusion effect, making it weak and susceptible to

attacks.

2.2.4 Diffusion-permutation algorithm

The diffusion-permutation algorithm is constructed using Equations (2.1) and

(2.2) as

b(i) = p(i)⊞ f (b(i−1))⊞g(i),

c(w(i)) = b(i),
(2.3)

where ⊞ denotes an arithmetic operation, G = {g(i)} is the diffusion mask made

up by chaotic sequences, f (·) is a nonlinear function, and p(i), b(i) and c(i)
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represent plain pixel, diffused plain pixel, and cipher pixel respectively.

According to Wang et al. (2016), diffusion-permutation algorithm is a poorer

design as compared to permutation-diffusion due to low key sensitivity. There

were two chaotic based image encryption schemes designed based on diffusion-

permutation algorithm and were cryptanalyzed by using differential attack.

An image encryption based on a compound chaotic sequence was proposed

by Tong and Cui (2008). The compound pseudo-random number sequence

generated by two correlated chaotic maps was used to perform XOR

substitution of the pixel values. Two chaotic maps were used to perform circular

shift position permutations of rows and columns. However, Li et al. (2009)

pointed out that there are some defects found in the encryption scheme, making

it vulnerable to the differential attack. The weaknesses include insensitivity of

the scheme with respect to the changes of plaintexts, existence of weak and

equivalent keys, and insufficient randomness of the compound chaotic

sequence. Weak keys are referring to some fixed points of the chaotic maps that

will affect the randomness of the chaotic sequences, while equivalent keys are

referring to some different keys that will result in the same cipher-image, for

any given plain-image. Differential chosen-plaintext attack was implemented

together with divide-and-conquer (DAC) attack. DAC attack is a method to

break the encryption algorithms into two or more smaller components, until

these components can be solved easily and directly. In (Tong and Cui, 2008),

only three plain-image were required to solve for the row and column circular

shift permutations, thereafter the XOR substitution was merely a simple

XOR-based stream cipher which can be solved easily.

Dhall et al. (2018) cryptanalyzed a four-round image encryption schemes

involving hybrid 1D chaotic systems that made up by linearly combination of

logistic map, tent map and sine map (Zhou, Bao and Chen, 2014).

Multidimensional chaotic system can improve the security level of the cipher,

but the downsides are resulting in the increase of difficulty level of hardware or
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software implementations and high computation complexity. To overcome this

drawback, Zhou, Bao and Chen proposed a new chaotic system that could

enhance the chaotic behavior of the chaotic map and also increase the chaotic

ranges for the seed maps. Three hybrid chaotic systems suggested by them are

Logistic-Tent system, Logistic-Sine system and Tent-Sine system. The

four-round encryption scheme involves random pixel insertion, row separation,

1D substitution using Logistic-Tent system, row combination and image

rotation. There are many weaknesses found in this encryption scheme by Dhall

et al. They performed differential cryptanalysis on four-round encryption

scheme without the knowledge of the key. They pointed out that the number of

rounds of the encryption scheme was fixed and too small. The permutation step

or rotation of the cipher images by 90° counter-clockwise was static and

key-independent. There were 4M random pixels required to be inserted into M

rows of image for each round. Even though the one-time usage of random

pixels could provide certain level of security to the cipher, the huge amount of

information to be communicated between the sender and receiver was

practically infeasible in the real life application. The encryption scheme totally

depended on the chaotic behavior of the hybrid chaotic systems and omitted the

importance of confusion and diffusion properties in the encryption. To improve

this scheme, Dhall et al. suggested to adopt key-based generation of random

pixel instead of one-time used pixels. To enhance the confusion properties, key

and plaintext-dependent permutation stage is suggested and to be performed

before the substitution stage, so that the encryption will follow the

permutation-substitution architecture. The fixed and small number of rounds

can be solved by introducing a key-dependence of number of rounds with some

lower and upper limit. To improve the diffusion properties, instead of having

the row-independent substitution process, inter-row feedback can be imposed in

1D-substitution. With these improvements, the desired confusion and diffusion

properties of a secure encryption scheme can be satisfied.
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In 2016, Xu et al. presented a bit-level image encryption algorithm called

BCIEA, based on chaotic maps, which they claimed was secure due to

statistical analysis. BCIEA utilizes diffusion-permutation mechanisms, with its

security largely depending on the diffusion process that uses cyclic right shifts

and bitwise XOR operations. However, Wen, Lin and Feng (2024) later

discovered critical security flaws in BCIEA. They found that the chaotic

sequences used in BCIEA could act as an equivalent key, weakening its security.

Furthermore, the confusion mechanism exhibited regular statistical patterns,

making it vulnerable to attacks, particularly an all-zero ciphertext attack. Wen,

Lin and Feng also noted that the description of BCIEA was not detailed enough

for accurate decryption. As a result, they proposed a chosen-ciphertext attack,

which first reduces BCIEA to a diffusion-only algorithm and then uses cipher

images with matching sum values to break the confusion mechanism.

2.2.5 Permutation-diffusion algorithm

The permutation-diffusion algorithm is reverse order of diffusion-permutation

algorithm. It is represented mathematically by

d(w(i)) = p(i),

c(i) = d(i)⊞ f (c(i−1))⊞g(i),
(2.4)

where ⊞ denotes an arithmetic operation, G = {g(i)} is the diffusion mask made

up by chaotic sequences, f (·) is a nonlinear function, and p(i), d(i) and c(i)

represent plain pixel, permutated plain pixel, and cipher pixel respectively.

Most of the chaotic based image encryption algorithms are based on

permutation-diffusion algorithm. It is also known as Fridrich’s algorithm

because it was firstly proposed by Fridrich (1998). The permutation diffusion
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operations are presented in the following equation. This is the most typical

structure that fulfils confusion and diffusion and it had been widely used by

other researchers in their ciphers. However, the permutation function of this

kind of the encryption algorithm is independent of plaintext and the diffusion

function, therefore it might expose to chosen plaintext attack and chosen

ciphertext attack. The one-round encryption scheme based on this design is

insecure and can be attacked by differential attacks (Fridrich, 1998; Solak et al.,

2010; Fu et al., 2013; Boriga et al., 2014). Fridrich’s algorithm with

multi-round was attacked by Solak et al. (2010) using the chosen ciphertext

attack. However, the attack by Solak et al. is getting harder with the increase of

the number of rounds. Some minor defects of the attack proposed by Solak was

detected and the attack was further optimized by Xie et al. (2017).

Behnia et al. (2008) proposed a chaotic cryptographic scheme based on two

composite polynomial chaotic maps. These two composition maps are used to

perform the permutation and substitution processes of the encryption scheme.

Li et al. (2010) found that this encryption scheme was vulnerable to the

differential attack. The attack involves three steps, breaking confusions I and II,

and breaking permutation. The confusions I and II were solved by using the

differential cipher-image and also the equivalent key. The remaining

permutation process was solved by reconstructing the permutation matrix with

O(logL(MN)) known or chosen plaintexts, where L is the number of different

elements in the plaintexts. Some other weaknesses are insufficient randomness

of pseudo-randomness number sequences and insensitivity of ciphertext to the

change of plaintext.

Zhang et al. (2007) proposed an image encryption scheme using alternate

structure (IEAS) based on generalized cat map and one-way coupled map lattice

(OCML) in 2007. Zhang et al. (2012) found that the proposed encryption

scheme was vulnerable to differential attack. The equivalent secret key could be

recovered when the integer parameter is even. Differential cryptanalysis was
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performed in order to reveal the equivalent secret key of the encryption

algorithm by studying the impact of differential plain-image on the differential

cipher-image. Some other defects were found in the encryption scheme, i.e.,

small key space and insensitivity of ciphertext to the change of plaintext due to

the implementation of linear operations, such as S-box in the encryption.

Yap et al. (2015) applied impossible differential attack and DAC attack on

the image alternate encryption algorithm based on chaotic map which was

proposed by Wang and Guo (2014). Yap et al. revisited the key space of Wang

and Guo encryption scheme and found that the time complexity for a

brute-force attack is 2150.053 which is smaller than 2159.453, the key space

claimed by Wang and Guo. This shows that the encryption scheme is insecure.

Impossible differential attack was applied on 9-round encryption scheme. This

cryptanalysis was employing the miss-in-the-middle approach (Biham et al.,

1999). Since the number of round, T = 9, then there was an 8-round impossible

differential with the i-round and j-round differentials with probability of 1, for

i+ j = 8, where the intermediate differences of these two differential were an

contradiction. In other words, the probability of i-round differential resulting in

j-round differential is zero. Yap et al. also applied a DAC attack on the

encryption scheme by using a plain black image. These two methods

demonstrated that the image encryption scheme proposed by Wang and Guo

was insecure.

Fu et al. (2013) proposed a medical image protection scheme based on

chaotic systems. They claimed that bit-level permutation based on discrete cat

map has a good confusion properties and able to attain the security level.

However, Zhang et al. (2015) later cryptanalyzed the one-round encryption of

the proposed scheme. They demonstrate that the bit-level permutation does not

practically add the additional strength to the cryptosystem. Zhang et al. also

suggested permutation-substitution-permutation architecture could improve the

current permutation-substitution structure. The suggestion was later criticized
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by Chen and Wang (2015) because the permutation-substitution-permutation

architecture is insufficient to resist differential attack. Instead of cryptanalyzing

on one-round encryption, Chen and Wang performed the differential

cryptanalysis on multi-round original scheme and proved that the substitution

keystream has no impact on the differential cipher-image and it depends only on

the permutation step. They also proposed a new technique called double

differential cryptanalysis comparison (DDCC) to attack three or more rounds of

encryption.

Boriga et al. (2014) proposed an image encryption scheme based on a

two-dimensional hyper-chaotic map that derived from the equations of

serpentine curve. The encryption algorithm follows a bi-modular architecture

which consists of diffusion and confusion processes and depends on the two

serpentine maps. The first serpentine map is adopted to generate random

permutation vector and this vector is then used to shuffle the pixels of plain

image. The second serpentine map is used to produce two keystreams and the

keystreams will be used for the confusion process which alters the pixel values

after permutation to reduce the correlation between the plain image and cipher

image. A differential attack was performed on this encryption schemes by Wen

et al. (2017). selected two special plain-images, P1 and P2, in which each pixel

of the images was made up by the same value, but the pixel values for P1 and P2

are different. This is to eliminate the permutation effect in the algorithm and the

encryption became diffusion only algorithm. The diffusion keystreams were

revealed by XORing the two cipher-images and the image encryption scheme

was broken.

Zhou et al. (2015) proposed an image encryption algorithm based on skew

tent map and Line map which adopted a permutation-substitution architecture.

The skew tent map was used to generate three chaotic sequences which were

used as the secret keys for the permutation and diffusion processes. The binary

plain image was permutated using Line map. Chen et al. (2017) applied
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differential cryptanalysis for one-round encryption with only M×N −1 chosen

plain images. For two-round encryption, Chen et al. applied forward differential

and backward differential, or known as two-way differential comparison

method in order to obtain permutation matrices for each round. Chen et al.

found that the differential cipher-image are independent of the diffusion keys

which would substantially reduce the key space of the cryptosystem. The

differential cipher-image also depends on a series of linear function of the

differential plain-image. If one of the plain images was chosen to be a plain

black image with all zero pixels, then the differential cipher-image solely

depends on the other plain image and the permutation key. The cryptosystem

was broken once the permutation key was revealed. However, permutation

matrices for more than 2 rounds are difficult to be obtained by using these two

methods. Since the differential cipher-image was formed by linear

transformation of the differential plain-image, therefore Chen et al. used

codebook attack to break the multi-round encryption algorithm. Codebook

attack is a cryptanalytic method that the attacker attempts to construct a

“codebook” which is a listing of ciphertexts that correspond to the plaintexts.

Chen et al. pointed out three important rules to have a secure

permutation-diffusion encryption algorithm, i.e. having a self-synchronous

key-stream, permutation process related to plain image, and a nonlinear and

complicated diffusion rules.

Hu et al. (2020) proposed a color image encryption algorithm that utilizes a

cloud model Fibonacci chaotic system combined with matrix convolution to

protect image data. The algorithm began by merging the RGB channels of the

original color image and used the generalized Fibonacci sequence to scramble

the pixel coordinates. Next, pixel values were substituted through matrix

convolution. Finally, forward-backward XOR diffusion was applied between

adjacent pixels, and the encrypted image was generated by splitting and

reintegrating the three channels.
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Liu and Liu (2020) proposed a color image encryption algorithm based on

DNA coding and a double chaos system. First, they used the Arnold algorithm

to scramble the three color image components, with the number of iterations

determined by the average value of these components, enhancing the

scrambling effect. Next, they introduced a double chaos system composed of

Lorenz chaotic mapping with variable parameters and fourth-order Rossler

hyperchaotic mapping to generate three sets of chaotic sequences for diffusion.

This double chaos system compensates for the pseudo-randomness of each

individual chaotic map, making the sequences more unpredictable. They then

transformed both the chaotic component images and chaotic sequences into

DNA sequences based on eight DNA coding rules, where the rules are

determined by either plaintext information or the generated chaotic sequences.

Addition, subtraction, and XOR operations were applied to these DNA

sequences. This DNA computation process enables bit-level diffusion for the

color images and reduces the overall computational cost.

Recently, Dawahdeh et al. (2018) proposed an encryption scheme that

combines elliptic curve cryptography (ECC) and the Hill cipher technique. The

scheme’s confusion and diffusion architecture is achieved through a 3D Arnold

map, ECC, and bit-wise XOR operations. The core concept of this scheme is to

transform the Hill cipher from symmetric to asymmetric by using

ECC-generated parameters to create the secret key. However, the scheme

contains a critical vulnerability related to its secret key, making it susceptible to

brute force attacks. With a key space of only 232, the scheme can be easily

compromised using brute force methods, as demonstrated by Lone et al. (2022).

Alexan et al. (2023) proposed a color image encryption algorithm that

combines the KAA map with multiple chaotic maps. The algorithm leverages

Shannon’s principles of security, employing bit-level confusion and diffusion

for encryption. Each channel’s pixels are shuffled using a sequence generated

from the KAA map, while diffusion is achieved through bitwise XOR
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operations involving two chaotic sequences. The first chaotic sequence is

produced by the 2D Sine Logistic Map and the Linear Congruential Generator,

while the second is generated using the Bernoulli and Tent chaotic maps.

However, it is noted that this simple diffusion process may be vulnerable to

plaintext-related attacks.

Zhou and Yu (2024) conducted a comprehensive security analysis of an

improved chaos-based image encryption algorithm. The initial algorithm,

proposed by Li et al. (2018), involves a permutation process based on the sum

of plaintext pixel values and a diffusion process reliant on nine specific pixel

values within the permuted image. However, Liu et al. (2019) identified two

significant vulnerabilities in the original algorithm: (1) the gray values of the

nine specific pixels remain unchanged during the diffusion process, and (2) the

permutation process is reversible.

Exploiting these weaknesses, Liu et al. demonstrated that the permuted

image could be reconstructed by creating a special plaintext image where the

nine specific pixel positions in the permuted image match those of the cipher

image. By using the reconstructed permuted image as plaintext, the diffusion

process could be attacked to retrieve the permuted image. Since the permutation

process is reversible, the original plaintext image could then be recovered

entirely. In response, Liu et al. proposed improvements to address these issues,

including incorporating a separate permutation step for the nine specific pixels

and modifying the original permutation method.

Despite these enhancements, Zhou and Yu revealed that the improved

algorithm still contains critical vulnerabilities. Firstly, the improved

permutation process introduces equivalent keys, enabling the construction of

special plaintexts with identical pixel value sums to those of the original

plaintext. This flaw allows the equivalent permutation sequence to be

compromised via a chosen-plaintext attack. Secondly, the additional

permutation for the specific pixels only permutes these pixels twice in

23



succession, which constitutes a permutation-only encryption. This approach

fails to effectively obscure the correlation between adjacent pixels, leaving the

encryption scheme insecure.

Recently, Patro et al. (2020) proposed a multiple grayscale image encryption

scheme based on cross-coupled chaotic maps, claiming that it could resist

known plaintext and chosen-plaintext attacks. The method encrypted multiple

images by scrambling them row-wise and column-wise using a permutation

table generated by a cross-coupled Piecewise Linear Chaotic Map. Two keys,

key1 and key2, were used to encrypt the first row or column, followed by a

feed-forward XOR operation to generate the cipher image. However, due to its

reliance on feed-forward data, all parts of the scrambled image (except the first

row and column) could be accurately recovered through a ciphertext-only

attack, demonstrating the scheme’s insecurity (Singh et al., 2024). Additionally,

the high horizontal and vertical correlation inherent in standard images

facilitated the effective reversal of the scrambling process. By iteratively

matching rows or columns in the scrambled image based on pixel value

similarity, the original image structure could be reconstructed without requiring

the secret keys. Although the recovered image might not precisely match the

original arrangement, the overall information of the multiple images could still

be obtained, and reorganization of correlated blocks could produce a

near-perfect match. These findings revealed critical vulnerabilities in the Patro

et al. scheme, emphasizing the need for more robust encryption designs.

2.3 Summary

From the literature review, we found out that there are some common

weaknesses in the chaotic based image encryption schemes and causing the
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encryption schemes vulnerable to the cryptanalytic attack. The encryption

operation involves the following weaknesses should be avoided in the design of

a secure chaotic based image encryption scheme. The weaknesses and the

suggested improvement are listed as follows.

1. Low sensitivity to the changes of plain-image

This is the major problem happening in the current image encryption

schemes (Ye and Zhou, 2014; Yap et al., 2016; Tong and Cui, 2008; Li et al.,

2009; Behnia et al., 2008; Li et al., 2010; Zhang et al., 2007, 2012; Zhou

et al., 2015; Chen and Wang, 2015; Patro et al., 2020; Singh et al., 2024). An

ideal encryption algorithm should allow a bit of change in the plain-image

leading to a large change in the cipher-image. However, linear

transformation implemented in the encryption process, such as S-box and

XOR operations violate the design rules of nonlinearity of the cryptography.

To overcome this problem, nonlinear and complicated operations should be

considered in the design of the algorithm (Chen and Wang, 2015).

A pixel of plaintext can only affect the higher pixel of the corresponding

ciphertext and cannot influence other pixels of ciphertexts uniformly. The

plaintext-dependent permutation should be implemented in encryption. To

link the connection to other row of images, the substitution operation should

apply inter-row feedback instead of performing substitution on rows

independent of each other (Dhall et al., 2018; Zhou, Bao and Chen, 2014).

Besides, problem of independent of keystream from plain-image can be

solved by applying the self-synchronous keystream.

2. Existence of equivalent key and weak key

Equivalent key causes same cipher-image to be generated using a particular

plain-image under the encryption of some different keys (Tong and Cui,

2008; Li et al., 2009; Zhang et al., 2007, 2012; Xu et al., 2016; Wen, Lin and

Feng, 2024; Essaid et al., 2019; Wen, Lin, Yang and Chen, 2024; Li et al.,

2018; Liu et al., 2019; Zhou and Yu, 2024). This could reduce the key space
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and allow the attacker to access the information of the plain-image easily

(Singh et al., 2024). Suppose the differential cipher-image is dependent on a

series of functions and the differential plain image. If a special image, P1 is

chosen (e.g. all zero pixels) and with the information of equivalent key,

another image P2 can be recovered by inverting the function. On the other

hand, weak key causes the encryption part fails at the certain fixed points of

chaotic maps. Therefore, it is important to identify the equivalent and weak

keys of the chaotic systems.

3. Differential cipher-image is not related to keystream sequence

The keystream sequence should not be considered in the cryptanalysis as it

could greatly reduce the key space (Fu et al., 2013; Zhang et al., 2015; Chen

and Wang, 2015; Zhou et al., 2015; Chen and Wang, 2015). The

key-dependent permutation and substitution processes should be

implemented.

4. Insufficient randomness of pseudo-random number sequences

The chaotic system was not a good random number generator based on the

random tests (Tong and Cui, 2008; Li et al., 2009; Behnia et al., 2008; Li et al.,

2010). Random tests should be performed on chaotic systems to make sure

the selected chaotic system can achieve the deterministic pseudo-randomness

of the cryptography.

5. Number of rounds of the encryption schemes is fixed and small

The diffusion and confusion processes could be decrypted easily. Increasing

the number of encryption rounds typically strengthens the confusion,

diffusion, and avalanche effects in encryption algorithms, thereby enhancing

their resilience against cryptographic attacks (Wen, Chen, Yang, Zheng, Wu,

Lin, Jian, Lin, Ma, Liu et al., 2024). To overcome this problem, Dhall et al.

suggested to implement an alternate forward and backward image encryption

algorithms in the substitution stage. Key dependence number of rounds
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could also be implemented based on the availability of the resources and

security requirements.

In this chapter, we have examined and analyzed existing cryptanalyses related

to chaotic-based image encryption. The current security evaluation methods,

which primarily rely on quantitative analyses, are inadequate in demonstrating

the strength of encryption algorithms against various cryptanalytic attacks.

Common weaknesses in the chaotic-based image encryption schemes have been

identified and discussed. When constructing encryption algorithms, it is crucial

to avoid the poorer designs highlighted in this chapter. To enhance the security

of chaotic-based image encryption against cryptanalytic attacks, the following

steps will be taken in subsequent chapters:

• Investigate further cryptanalytic attacks that may threaten the security of

chaotic-based image encryption.

• Design a secure and efficient chaotic-based image encryption scheme that

addresses the identified vulnerabilities.
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CHAPTER 3

CRYPTANALYSIS OF GENETIC ALGORITHM-BASED ENCRYPTION

SCHEME

This chapter focuses on the cryptanalysis of an image encryption scheme

developed by Biswas et al. (2015), which is based on genetic algorithms. The

main objective is to explore how the design of chaos-based image encryption

schemes affects their security. Through a critical analysis of this design, the

chapter aims to identify the weaknesses in the existing method and provide

guidelines for creating more robust encryption techniques.

Genetic algorithms, which mimic the process of natural selection to

optimize solutions, have been applied in image encryption due to their potential

to enhance diffusion and confusion properties. However, our study of the

Biswas et al.. scheme reveals significant vulnerabilities. Through a known

plaintext attack, we demonstrate that the scheme is low sensitivity to changes in

the plain image, which violates the essential cryptographic design rule of

nonlinearity. Additionally, the scheme’s diffusion mechanism is found to be

inadequate, rendering it vulnerable to cryptanalysis.

The findings presented in this chapter emphasize the necessity of integrating

more efficient diffusion functions to improve the encryption process. By

identifying and addressing the existing weaknesses, this chapter establishes a

foundation for proposing an enhanced image encryption scheme that utilizes

genetic algorithms while adhering to strong cryptographic principles. The

insights gained here not only contribute to the research objective of analyzing

current encryption designs but also serve as a stepping stone for developing

more secure encryption schemes in the following chapters.
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3.1 Introduction

One of the popular image encryption methods is based on genetic algorithms

which was proposed by Holland (1975, 1992). This is a method that mimics

the natural evolution and selection. Genetic algorithms involve three operations:

selection, crossover and mutation. Selection is a process of selecting a portion

of the existing population in order to reproduce a new generation. Crossover, or

also known as recombination is a process of combining the genetic information

of two parents to reproduce a new offspring. Mutation is a process involving a

sudden change happens at the genomic level. In image encryption, the genetic

information are replaced by the pixel levels of an image.

The evolutionary principles of genetic algorithm can also be applied in

searching and optimization. Each solution will be assigned a fitness value. It

will be done iteratively by applying these operations until the termination

criterion is met. The old population will be replaced by the new population with

the optimized fitness value. Therefore, genetic algorithms were used as the

optimization method to find the best solution of cipher-image (Abdullah et al.,

2012; Enayatifar et al., 2013, 2014) with the entropy as the fitness function. For

this method, a specified number of cipher-images are generated using chaotic

map. Genetic algorithms are used to modify the cipher-images in order to

identify the best cipher image with highest entropy and lowest correlation

coefficient. However, this method involves operations with high time

complexities. To overcome the weakness, Nematzadeh et al. (2018) modified

the genetic algorithm by including a experimental stop criterion.

Besides of the application of optimization, hybrid model of a chaotic function

and genetic algorithm has been widely applied in image encryption algorithms.

The crossover and mutation are used as the confusion and diffusion processes,

respectively. Pseudorandom bit sequence that generated by chaotic function can
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be used as the parent bit strings of the crossover process or used in determining

the crossover point of the parent bit strings. Wang and Xu (2014) proposed an

image encryption scheme based on genetic algorithm and intertwining logistic

map. Monte Carlo method is used to choose two parent binary strings. The

simple operation of the genetic algorithms could avoid the complexity of using

mathematical transformation. Biswas et al. (2015) proposed an image encryption

based on N-logistic tent map and genetic algorithms for wireless sensor network.

They used mutation and two-point crossover in the encryption algorithms. Das

et al. (2018) proposed image encryption scheme based on Arnold cat map and

genetic algorithms.

Even though the genetic algorithm-based image encryption schemes

proposed in (Biswas et al., 2015; Das et al., 2018; Wang and Xu, 2014) claimed

that their schemes can resist various types of attack and provide sufficient

security, we found that the simple operation of genetic algorithm may be

vulnerable to known plaintext attack (Biham and Kocher, 1994). To prove the

weakness, we demonstrate the cryptanalysis on the Biswas et al. scheme that

applied the two-point crossover operator . From the cryptographic perspective,

a scheme is claimed to be vulnerable to a cryptanalytic attack if its time

complexity is less than 2|K| encryptions, where |K| denotes the length of the

secret key K in bits (Yap et al., 2016). We dispute the security claims made by

Biswas et al. by showing their scheme is not even secure against known

plaintext attack.

Organization: The remainder of this chapter is organised as follows. In the

next section, we describe the genetic algorithm and prove that the mutation and

crossover are one-to-one operations. We then discuss the image encryption

scheme proposed by Biswas et al. in Subsection 3.2.6. In Section 3.3, we

present recovery attacks on the keystream and the secret keys against Biswas et

al. scheme. Section 3.4 concludes the chapter.
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3.2 Preliminaries

Genetic algorithm is an evolutionary algorithm involving three operations, i.e.

selection, crossover and mutation. In this section, we explain the descriptions

for each stage in details.

3.2.1 Selection

Selection is a process of choosing two parents from population for crossover

(Sivanandam and Deepa, 2008). Random selection is used in determining the

parent bit string. However, in Biswas et al. scheme, the parent bit strings are

selected based on the weight of sub-block that is made up by the pseudorandom

bit sequence.

3.2.2 Mutation

Mutation M is a process that is normally conducted after crossover (Sivanandam

and Deepa, 2008). However, there is an exceptional case, whereby the mutation

is used as a substitution function that conducted before the crossover operation.

This process is important in disturbing genetic information of the bit strings. M

is commonly known as a negation operator that changes one or multiple bits in a

given bit string.

Let x = (x1,x2, . . . ,xn)∈ Fn
2 be a n-bit string. Let k be an arbitrary integer, for

0≤ k ≤ n. For demonstration, we define the mutation operation as a function that

31



takes two inputs, x and k, and produces an output y = M(x,k) = (y1,y2, . . . ,yn)∈

Fn
2. The mutation operation inverts the bits from the kth- to nth-bit in x, as follows.

◦ If k = 0, then y = x;

◦ Else, yi =

 xi, for 1 ≤ i < k−1,

x̄i, for k ≤ i ≤ n,

where x̄i = 1 − xi. Refer to Figure 3.1 for the graphical illustration of M

operation.

x1 x2 . . . xk xk+1 . . . xn

x

kth bit

xk−1

x1 x2 . . . x̄k x̄k+1 . . . x̄n

y

xk−1

M

nth bit

Figure 3.1: Graphical illustration of Mutation M operation

3.2.3 Crossover

Crossover operation CO is a recombining function that creates the child bit

strings by exchanging the selected part of their corresponding parent bit stings.

There are various types of crossover operation such as single-point, two-point

and multi-point crossover. Single-point crossover is a function in which one

crossover point is selected and the portion after the crossover points are

swapped between two parent bit strings (Kumar and Nirmala, 2012). This

method was used in (Das et al., 2018; Hassan and Abuhaiba, 2011; Wang and

Xu, 2014).
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Apart from single-point crossover, two-point and multi-point crossovers are

the generalization of single point crossover, where two or multiple crossover

points are selected and the contents between these points are exchanged between

two parent bit strings Sivanandam and Deepa (2008). This method was used in

the permutation process to change the bit positions (Biswas et al., 2015; Guesmi

et al., 2016; Premkumar and Anand, 2018; Ravichandran et al., 2016).

To make our later illustration clearer, we demonstrate one-point crossover

operator, in which one crossover point is selected and the contents after the

point are exchanged between two parent bit strings. The results obtained can be

generalized and applied to the two-point and multi-point crossovers. Let

A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bn) be two n-bit strings. Let l be an

arbitrary integer, for 0 ≤ l ≤ n. We define the crossover operation to be a

function that takes A and B to be two parent bit strings and produces two child

bit strings A′ = (a′1,a
′
2, . . . ,a

′
n) and B′ = (b′1,b

′
2, . . . ,b

′
n) based on the crossover

point l, i.e (A′,B′) = CO(A,B, l). The crossover operation is described as

follows.

◦ If l = 0, then (A′,B′) = (A,B).

◦ Else,

a′i =

 ai, for 1 ≤ i < l;

bi, for l ≤ i ≤ n,
and

b′i =

 bi, for 1 ≤ i < l;

ai, for l ≤ i ≤ n.

Refer to Figure 3.2 for graphical illustration of single-point Crossover CO

operation.

The next two propositions show that the genetic algorithm deterministic

algorithms.

Proposition 3.2.1: The Mutation M is a one-to-one operation.

Proof Recall M that described in Subsection 3.2.2. Let
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a1 a2 . . . al−1 al al+1 . . . anA

B b1 b2 . . . bl−1 bl bl+1 . . . bn

lth bit

CO

a1 a2 . . . al−1A′

B′ b1 b2 . . . bl−1

bl bl+1 . . . bn

al al+1 . . . an

nth bit

Figure 3.2: Graphical illustration of single-point crossover CO operation

v1 = (v1(1),v1(2), . . . ,v1(n)) and v2 = (v2(1),v2(2), . . . ,v2(n)) be two n-bit strings.

For j = 1,2, let v′j = M(v j,k) be the output of M using the same mutation key k.

To prove M is one-to-one, we need to show the following implication is true.

If v′1 = v′2, then v1 = v2,

where v1 and v2 are bit strings of length n. Consider the contrapositive form of

this implication:

If v1 ̸= v2, then v′1 ̸= v′2.

Our approach is to prove the contrapositive form by using the method of

contradiction.

Suppose v1 ̸= v2. Assume v′1 = v′2. Then, we have

(i) For 1 ≤ i < k, let v′1(i) = v1(i) and v′2(i) = v2(i).

(ii) For k ≤ i ≤ n, let v′1(i) = v̄1(i) and v′2(i) = v̄2(i).

For 1 ≤ i < k, we have v1(i) = v2(i) by comparing v′1(i) and v′2(i) in Part (i). For

k ≤ i ≤ n, we flip every v′1(i) and v′2(i) which causing the v1(i) = v2(i) in Part

(ii). Therefore, we have v1 = v2, which is a contradiction. This shows that our

assumption is wrong. Thus, v′1 ̸= v′2. Therefore, M is a one-to-one operation. □
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Proposition 3.2.2: The single-point Crossover CO a is one-to-one operation.

Proof Recall CO of Subsection 3.2.3. Consider two pairs of parents bit strings

(A1,B1) and (A2,B2) with the same crossover point at l. For j = 1,2, let

(A′
j,B

′
j) = CO(A j,B j, l) be the output of CO using a single crossover point of l.

To prove CO is one-to-one, we need to show the following implication is

true: If (A′
1,B

′
1) = (A′

2,B
′
2), then A1 = A2 and B1 = B2. Consider the

contrapositive form of this implication:

If A1 ̸= A2 or B1 ̸= B2, then (A′
1,B

′
1) ̸= (A′

2,B
′
2).

Similar to Proposition 3.2.1, we prove the contrapositive form of this implication

by using contradiction.

Suppose A1 ̸= A2 or B1 ̸= B2. Assume (A′
1,B

′
1) = (A′

2,B
′
2). Let

A1 = (a1(1),a1(2), . . . ,a1(n)) and B1 = (b1(1),b1(2), . . . ,b1(n)). Also, let

A2 = (a2(1), a2(2), . . . ,a2(n)) and B2 = (b2(1),b2(2), . . . ,b2(n)). Then, we have

(i) For j = 1,2 and 1 ≤ i < l, let a′j(i) = a j(i) and b′j(i) = b j(i).

(ii) For j = 1,2 and l ≤ i ≤ n, let a′j(i) = b j(i) and b′j(i) = a j(i).

So, we obtain a1(i) = a2(i) and b1(i) = b2(i), for l ≤ i ≤ n, forcing A1 = A2 and

B1 = B2 which is a contradiction. Hence, our assumption is wrong. Therefore,

(A′
1,B

′
1) ̸= (A′

2,B
′
2). So, CO is a one-to-one operation. □

Corollary 3.2.1: Let M = {M(x,k) | x ∈ Fn
2,0 ≤ k ≤ n} be a set that consists

of the output of M with the inputs of n-bit string x and mutation key k. Then,

|M |= n+1.

Corollary 3.2.2: Let L = {CO(A,B, l) | A,B ∈ Fn
2,0 ≤ l ≤ n} be a set that

consists of the output of CO of two parent bit strings A and B with the single

crossover point l. Then, |L |= n+1.

To show the weaknesses of genetic algorithms, we applies the cryptanalysis

on Biswas et al. image encryption scheme in the next section.
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3.2.4 Key establishment phase

In this phase, a large key pool is generated by using the elliptic curve over prime

field p which is defined by

y2 mod p = x3 +αx+β mod p, (3.1)

where α and β are the coefficients and x,y ∈ Fp. A number of secret keys where

each secret key, denoted as ki = (xi,0,yi,0) for i > 0, is shared between two sensor

nodes. Each key is referred to as an elliptic curve point which is generated by

using Equation (3.1). All of these elliptic curve points form a key pool. When

a node wishes to transmit data to another node, it randomly selects a point from

its key pool and generates a hash digest of such a point. This hash digest will

then be transmitted to the destination node. Upon receiving the hash code, the

destination node can retrieve the selected point by matching the received hash

digest with the hash digest generated for each point of its shared key pool.

3.2.5 Generation of pseudorandom bit sequence

An N-logistic tent map (Fang et al., 2008), a chaotic map which deals with

integer parameters, is used to generate pseudorandom bit sequences. The

control parameters (i.e., µ,β ,m and N) are pre-distributed securely among all

sensor nodes in the wireless sensor network whereas the initial conditions (i.e.,

xi,0,yi,0) are the elliptic curve points selected during the key establishment

phase as explained in subsection 3.2.4. More precisely, the pseudorandom bit
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sequences (i.e., x sequence and y sequence) are generated by

xi,d+1 = µxi,d
(
N −

xi,d

m

)
/N −

yi,d+1

2
, (3.2)

yi,d+1 = β (N −|N − yi,d|), (3.3)

where x = {xi, j}∞
j=0 ∈ (0,m×N), y= {yi, j}∞

j=0 ∈ (0,2×N), µ ∈ [0,4], β ∈ [1,2],

N = [1,2128], m∈ [1,264] and d is the number of chaotic map iterations. Note that

Biswas et al. claimed that the key space of their proposed scheme is around 2448,

where x,y,µ,β ,N and m are integers. More precisely, x,y and N are with 128-bit

length and m is with 64-bit length. Meanwhile, µ and β can be ignored due to

smaller key space after being fixed as integers only. As Biswas et al. treated

x and y as integers only, thus we assume that the x and y sequences consist of

integers value only.

From now onward, we use M to represent mutation operation and XO to

represent two-point crossover operation. Let the subscript j be an integer modulo

of 16, i.e. j mod 16. Since we only consider 1 ≤ j ≤ 16, if j = 0(mod 16), then

without loss of generality, we replace j = 0 with j = 16.

3.2.6 Encryption process

The encryption process proposed by Biswas et al. (shown in Figure 3.3) consists

of three main operations, i.e. exclusively-or XOR (⊕), M and XO (Biswas et al.,

2015). In Subsection 3.2.5, pseudorandom bit sequence is generated based on

the point chosen randomly in each session. The sequence is divided into 256-bit

blocks denoted as KSi for i > 0. Each 256-bit block is needed to encrypt every

128-bit plaintext P to a 128-bit ciphertext Cip. The overall process is described

37



M

⊕

KS1
i

V 1

V 2

KS2
i

KSi

XO8

P

Cip

Step 1

Step 2

Step 3

Step 4

4 5 6 7 8 9 10 11 12 13 14 15321 16

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

v′1 v′2 v′3 v′4 v′5 v′6 v′7 v′8 v′9 v′10 v′11 v′12 v′13 v′14 v′15 v′16

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Figure 3.3: Encryption process proposed by Biswas et al.

as follows:

1. Divide KSi into two 128-bit sub-blocks, i.e. KSi = KS1
i ||KS2

i .

2. Compute V 1 = KS1
i ⊕P.

3. Generate V 2 using M as follows:

(a) Divide V 1 into 16 bytes, i.e. V 1 = v1||v2|| . . . ||v16, where v j denotes the

jth-byte of V 1, for 1 ≤ j ≤ 16.

(b) Similarly, divide KS2
i into 16 bytes, i.e. KS2

i = KS2
i,1||KS2

i,2|| . . . ||KS2
i,16,

where KS2
i, j denotes the jth-byte of KS2

i for 1 ≤ j ≤ 16.

(c) Compute v′j = M(v j,σ j), where σ j = wt(KS2
i, j) for 1 ≤ j ≤ 16.

(d) Obtain V 2 by concatenating v′j for 1 ≤ j ≤ 16, i.e. V 2 = v′1||v′2|| . . . ||v′16.

4. Generate ciphertext Cip using XO as follows.

(a) Let j = 1, generate two parent 16-bit strings Vj = v′j|| v′j+1 and Vj+2 =

v′j+2||v′j+3.

(b) Compute τ j = σ j|| σ j+1 and τ j+2 = σ j+2|| σ j+3, where σ j denotes the

weight of KS2
i, j.
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(a) If τj > τj+2,

τ thj1st

(b) If τj+2 ≥ τj,

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A′

B′

A

B

A′

B′

(17− τj+2)
th bit 16th bit

bit bit

τ thj1st bit bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(17− τj+2)
th bit 16th bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

b1 b2 b3 b4 b5 b6

a1 a2 a3 a4 a5 a6

b7 a8 a9 a10 a11 a12 a13 a14 a15

a7 b8 b9 b10 b11 b12 b13 b14 b15

a16

b16

16

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

b1 b2 b3 b4 b5 b6 b7 b8

a1 a2 a3 a4 a5 a6 a7 a8

b9 b10 b11 b12 b13 b14 b15 b16

b9 b10 b11 b12 b13 b14 b15 b16

b1 b2 b3 b4 b5 b6 b7 b8 a9 a10 a11 a12 a13 a14 a15 a16

Figure 3.4: Graphical Illustration of Two-Point Crossover Operation

(c) Compute XO(Vj,Vj+2,τ j, τ j+2) to generate two child bit strings V ′
j and

V ′
j+2. Figure 3.4(a) shows a graphical illustration of τ j = 7 when τ j >

τ j+2 while Figure 3.4(b) shows τ j+2 = 8 when τ j+2 ≥ τ j.

(d) Obtain V 2 by concatenating V ′
j and V ′

j+2, i.e. V 2 =V ′
j ||V ′

j+2.

(e) Repeat Step 4(a)-(d) for j = 3,5,7,9,11,13 and 15. Hence, the XO

function is repeated for eight times.

5. Obtain Cip =V 2.

The decryption process is simply the inverse of the encryption process.
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3.3 On the security of the encryption process

Instead of recovering the secret key, ki, we aim to recover the 256-bit block

of pseudorandom bit sequence, KSi, for i > 0, provided both plaintext and its

corresponding ciphertext are given. In this section, we state some results which

will be used in the key recovery attack on Biswas et al. scheme later.

In Biswas et al. scheme, the mutation key k and crossover point l are based

on the weight of the second sub-block of KSi, i.e. KS2
i . Therefore, Proposition

3.2.1 discussed in Section 3.2 is applied here by replacing k with wt(KS2
i, j) for

i > 0 and 1 ≤ j ≤ 16. While Proposition 3.2.2 is amended as follows.

Proposition 3.3.1: The two-point crossover XO is a one-to-one operation.

Proof Recall a two-point crossover can be illustrated as follows: Suppose the

two parent bit strings are A = v′j|| v′j+1 and B = v′j+2||v′j+3. Suppose their

corresponding bit strings in KS2
i are C = KS2

i, j||KS2
i, j+1 and D = KS2

i, j+2||

KS2
i, j+3. The weight of C and D are denoted as τC and τD, respectively. Then,

we compute the child bit strings (A′,B′) = XO(A,B,τC,τD).

To prove XO is one-to-one, we consider two pairs of parents bit strings

(A1,B1) and (A2,B2), where their corresponding bit strings in KS2
i are (C1,D1)

and (C2,D2), respectively. Suppose both wt(C1) and wt(C2) equal to τC while

both wt(D1) and wt(D2) equal to τD. We need to show the following

implication is true: If (A′
1,B

′
1) = (A′

2,B
′
2), then A1 = A2 and B1 = B2. To do so,

we consider the contrapositive form of this implication:

If A1 ̸= A2 or B1 ̸= B2, then (A′
1,B

′
1) ̸= (A′

2,B
′
2). Similar to Proposition 3.2.2,

our approach is to prove the contrapositive form by using contradiction.

Suppose A1 ̸= A2 or B1 ̸= B2. Assume (A′
1,B

′
1) = (A′

2,B
′
2). For j = 1,2, let

A j = (a j(1),a j(2), . . . ,a j(16)) and B j = (b j(1),b j(2), . . . ,b j(16)). If τC > τD, then

(A′
1,B

′
1) and (A′

2,B
′
2) are given by the following conditions. For j = 1,2,

40



(i) let a′j(i) = b j(i) and b′j(i) = a j(i), for 1 ≤ i ≤ τC;

(ii) let a′j(i) = a j(i) and b′j(i) = b j(i), for τC < i ≤ 16.

Otherwise, if τD ≥ τC, then (A′
1,B

′
1) and (A′

2,B
′
2) are given by the following

conditions. For j = 1,2,

(iii) let a′j(i) = a j(i) and b′j(i) = b j(i), for 1 ≤ i ≤ 16− τD;

(iv) let a′j(i) = b j(i) and b′j(i) = a j(i), for 16− τD < i ≤ 16.

Since wt(C1) = wt(C2) and wt(D1) = wt(D2), therefore the crossover points are

the same. So, in Part (i), we obtain a1(i) = a2(i) and b1(i) = b2(i), for 1 ≤ i ≤ τC.

In Part (iv), we obtain a1(i) = a2(i) and b1(i) = b2(i), for 16− τD < i ≤ 16. This

forces A1 = A2 and B1 = B2, which is a contradiction. Hence, our assumption is

wrong. Therefore, (A′
1,B

′
1) ̸= (A′

2,B
′
2). So, XO is a one-to-one operation. □

Proposition 3.3.2: Suppose M is defined in Corollary 3.2.1. For 1 ≤ j ≤ n,

consider M takes v j in V 1 as the inputs and mutation key is based on σ j =

wt(KS2
i, j) . Then, |M = {M(v j,σ j) | v j ∈ F8

2,0 ≤ σ j ≤ 8,1 ≤ j ≤ n}|= 9n.

Proposition 3.3.3: For j = 2l − 1 and 1 ≤ l ≤ 8, let Vj = v′j||v′j+1 and τ j =

σ j +σ j+1. Suppose N is a set that consists of the outputs of XO of two parent

bit strings (Vj,Vj+2) with the crossover points, (τ j,τ j+2), for j = 2l−1 and 1 ≤

l ≤ 8, i.e. N = {XO(Vj,Vj+2,τ j,τ j+2) | Vj,Vj+2 ∈ F16
2 ,0 ≤ τ j,τ j+2 ≤ 16, j =

2l −1,1 ≤ l ≤ 8}. Then, |N |= 17l .

Proposition 3.3.4: For the worst case scenario, |wt(KS2
i )|= 234.14.

Proof Recall XO that described in Subsection 3.2.6. For j = 1,3,5, . . .15, let

θ j = |τ j| and θ j+2 = |τ j+2| which can be obtained as follows.

1. If τ j > τ j+2, then

• if τ j ≤ 8, then θ j = τ j +1 and θ j+2 =
θ jτ j

2 ;
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• if τ j > 8, then θ j = 17− τ j and θ j+2 = 81− θ j(1+θ j)
2 .

2. If τ j+2 ≥ τ j, then

• if τ j+2 ≤ 8, then θ j+2 = τ j+2 +1 and θ j =
θ j+2(2+τ j+2)

2 ;

• if τ j+2 > 8, then θ j+2 = 17− τ j+2 and θ j = 81− θ j+2(θ j+2−1)
2 .

When τ j > τ j+2, θ j can be calculated by taking all the candidates of σ j and

σ j+1 because τ j = σ j +σ j+1. If τ j ≤ 8, then |(σ j,σ j+1)| = τ j +1. Let’s say, if

τ j = 2, then (σ j,σ j+1) ∈ {(1,1),(2,0),(0,2)}. If τ j > 8, then

|(σ j,σ j+1)| = 17 − τ j. For instance, if τ j = 9, then

(σ j,σ j+1) ∈ {(1,8),(2,7),(3,6),(4,5),(5,4), (6,3),(7,2),(8,1)}. On the other

hand, to find θ j+2, we sum up all the candidates of (σ j,σ j+1) from τ j = 0 until

τ j −1. Similar explanation applies to the case when τ j+2 ≥ τ j.

The worst case scenario of θ j and θ j+2 is when τ j and τ j+2 are a and 10 for

two 16-bit strings in KS2
i , alternately, where a is a non-negative integer less than

10. There are exactly (17−10)×
(
81− 7(8)

2

)
= 7×53 = 371 values for θ j and

θ j+2 in this case. Since the weight of two 16-bit strings in KS2
i is known to be

371, therefore the weight of 128-bit KS2
i is 3714 ≈ 234.14. □

3.3.1 A divide-and-conquer attack

In the traditional security setting of block cipher, same secret key is used in

every session to generate same pseudorandom bit sequences. We present a key

recovery attack against Biswas et al. scheme under the traditional security setting

of block cipher by using divide-and-conquer attack. The attacker is assumed to

have the plaintext pairs (Pi,Cipi), where Cipi is the corresponding encrypted

image of a grayscale image Pi for i ≥ 1. For ease of understanding, we assume

each Pi and each Cipi are with the length of 128 bits. Based on Propositions
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3.3.2-3.3.4, the keystream recovery attack against Biswas et al. scheme can be

launched as follows.

1 Consider KS2
1 = KS2

1,1||KS2
1,2|| . . . ||KS2

1,16 with weights τ j = σ j+ σ j+1,

where σ j = wt(KS2
1, j) for j = 1,3, . . . ,15. Since the crossover operation is

performed using four consecutive bytes, therefore guess the possible values

of τ13, τ15 and τ1. Based on Proposition 3.3.3, there are 173 = 4913 possible

values for these three weights.

2 For each guess of 4913 possible values of the aforementioned three weights,

perform as follows:

(a) Let P1 = p1||p2|| . . . ||p16 and Cip1 = c1||c2|| . . . ||c16.

(b) Let A = c15||c16.

(c) Let B = c13||c14.

(d) Let C = c1||c2.

(e) Let D = τ15.

(f) Let E = τ13.

(g) Let F = τ1.

(h) Compute (A′,C′) = XO−1(A,C,D,F), where XO−1 is the inverse

function of XO.

(i) Compute (B′,A′′) = XO−1(B,A′,E,D).

(j) As A′′ = v′15||v′16, we perform inverse of mutation on v′15 and v′16 based

on the the weight of σ15 and σ16. Therefore, guess the possible values

of σ15 and σ16. Based on the guessed τ15, we compute σ15 and σ16. For

the worst case scenario, there are 92 = 81 possible values for these two

weights based on Proposition 3.3.2. For each guess of the possible

values of the aforementioned two weights, compute

KS1
1, j = M−1(v′k j,σ j)⊕ p j, for j = 15,16 where M−1 is the inverse

function of M.
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(k) Repeat Steps 2a to 2j by using other plaintext-ciphertext pairs, i.e.

(Pi,Cipi) for 2 ≤ i ≤ n, where the value of n will be discussed in the

experiment result in this section later. Store the following data if similar

values for KS1
1,15 and KS1

1,16 for all used plaintext-ciphertext pairs.

• Possible weights of σ15 and σ16;

• Possible values for KS1
1,15 and KS1

1,16;

• Store the possible B′ and C′ and the weights of their corresponding

bytes in KS2
1, i.e. E and F .

(l) Repeat Steps 2j and 2k for the other guesses of possible values of the

σ15 and σ16.

(m) Repeat Step 2 for the other guesses of 4913 possible values of the

aforementioned τ1,τ13 and τ15.

3 Let j = 13. Guess the possible values of τ j. Based on Proposition 3.3.3, there

are 17 possible values for this weight.

4 For each guess of 17 possible values of τ j and also each possible values of

(B′,E) stored in Step 2, perform as follows:

(a) Let G = c( j−2)||c( j−1).

(b) Let H = τ j−2.

(c) Compute (G′,B′′) = XO−1(G,B′,H,E).

(d) As B′′ = v′j||v′( j+1), we perform inverse of mutation on v′j and v′( j+1)

based on σ j and σ j+1. Based on the guessed τ j, we compute σ j and

σ j+1. For the worst case scenario, there are 92 = 81 possible values for

these two weights based on Proposition 3.3.2. For each guess of the

possible values of the aforementioned two weights, compute KS1
1,k =

M−1(v′k,σk)⊕ pk, for k = j, j+1.

(e) Repeat Steps 4a to 4d by using other plaintext-ciphertext pairs, i.e.

(Pi,Cipi) for 2 ≤ i ≤ n. Store the following data if similar values for
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KS1
1, j and KS1

1, j+1 for all used plaintext-ciphertext pairs.

• Possible weights of σ j and σ( j+1);

• Possible values for KS1
1, j and KS1

1,( j+1);

• Store the possible G′ and the weight of its corresponding bytes in

KS2
1, i.e. H.

(f) Repeat Steps 4d and 4e for other guesses of the possible values of the σ j

and σ j+1.

(g) Repeat Step 4 for the other guesses of 17 possible values of the

aforementioned τ j and other possible values of (B′,E). Store the

following data if similar values for KS1
1, j and KS1

1,( j+1) for all used

plaintext-ciphertext pairs:

(h) Repeat Step 4 for other guesses of 17 possible values of the

aforementioned weight and other possible values of (B′,E).

(i) Replace B′ and E in Step 4 by G′ and H respectively.

5 Repeat Steps 3 and 4 for j = 11,9,7 and 5.

6 Consider (C′,F) and (B′,E) that stored in Steps 2 and Step 5 respectively,

where F = τ1 and E = τ3. For each possible values of (C′,F) and (B′,E),

perform as follows:

(a) Compute (C′′,B′′) = XO−1(C′,B′,F,E), where C′′ = v′1||v′2 and B′′ =

v′′3||v′4.

(b) As C′′ = v′1||v′2 B′′ = v′3||v′4, we perform inverse of mutation on v′j based

on σ j, for j = 1,2,3,4. Based on the guessed τ1 and τ3 , we compute

σ j for j = 1,2,3,4. For the worst case scenario, there are 94 = 6561

possible values for these four weights based on Proposition 3.3.2. For

each guess of the possible values of the aforementioned two weights,

compute KS1
1, j = M−1(v′j,σ j)⊕ p j, for j = 1,2,3,4.

45



(c) Repeat Steps 6a and 6b by using other plaintext-ciphertext pairs, i.e.

(Pi,Cipi) for 2 ≤ i ≤ n. Store the following data if similar values of

KS1
1, j, for j = 1,2,3, and 4 for all used plaintext-ciphertext pairs:

• Possible weights of σ1,σ2,σ3, and σ4;

• Possible KS1
1, j, for j = 1,2,3,4.

(d) Repeat Steps 6b and 6c for other guesses of the possible values of the σ j

for j = 1,2,3,4.

(e) Repeat Step 6 for the remaining values of (C′,F) and (B′,E) stored in

Step 2 and Step 5 respectively.

Experiment result: Recovering KS1
1.

Based on Proposition 3.3.3, τ j = σ j + σ j+1 is determined for

j = 1,3,5,7,9,11,13 and 15, there are 178 ≈ 232.70 possible values for the

weight of KS2
1, j as KS2

i is made up by eight 16-bit strings. From 178 possible

values, we deduce the possible σ j for 1 ≤ j ≤ 16 based on Proposition 3.3.4 and

there are 7×53 = 371 possible outcomes for σ j and σ j+1. Then, each possible

values of σ j will be used to determine KS1
i, j for 1 ≤ j ≤ 16 by following Steps

1-6.

We run the computer simulations 50 times by using MATLAB R2017a

environment to verify our results. Let the weight of each byte in KS2
1 be

σ j = wt(u j) ∈ {0,1,2, . . . ,8}, for 1 ≤ j ≤ 16. Let τ = σ j +σ j+1. Let n be the

number of plaintext-ciphertext pair. The total number of possible candidates for

KS1
1 is equivalent to the possible values of (σ j,σ j+1). The worst case scenario

for the weights of KS2
i is (σ1,σ2, . . . ,σ16) = (0,10,0,10,0,10,0,10,0,10,

0,10,0,10,0,10). We obtained 234.14 pairs (KS1
1,KS2

1) by using n = 5

plaintext-ciphertext pairs which is tallied with the number of possible

candidates for KS2
1 in Proposition 3.3.4.

To calculate the time complexity of XO−1 operation for the experiment, we

follow Proposition 3.3.3, i.e. |N | = 17l , where l is the number of 16-bit of the

input bit strings. Steps 2h and 2i use two XO−1 operations to determine τ1,τ13
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and τ15. Therefore, for n plaintext-ciphertext pairs, n×2×173 XO−1 operations

are required in these steps. Step 4c is used to find τ j for j = 13,11,8,7, and

5, so it requires n× 5× 17 XO−1 operations. Lastly, Step 6a requires n XO−1

operation to identify τ1 and τ3. The total time complexity of XO−1 operations is

n(2×173 +5×17+1)≈ 213.27n for one encryption.

On the other hand, we follow Proposition 3.3.2 to calculate the time

complexity of M−1 operation, i.e. |M |= 9m, where m is the number of bytes of

the input bit strings. For n plaintext-ciphertext pairs, Step 2j requires n× 92

M−1 operations to determine σ15 and σ16. Meanwhile, Step 4d requires

n×5×92 M−1 operations respectively to determine the σ j, for j = 13,11,8,7,

and 5. While Step 6b requires n × 94 M−1 operations to recover σ j, for

j = 1,2,3,4. The total time complexity of M−1 operations is

n(92 +5×92 +94)≈ 212.78n for one encryption.

Based on the experiment, we require five plaintext-ciphertext pairs to

recover the KS1
1 on average. By considering n = 5, the total time complexity of

the proposed attack is 5 × 213.27 ≈ 215.59 XO−1 and 5 × 212.78 ≈ 215.10 M−1

operations. As one encryption requires 8 XO and 16 M operations only, thus the

proposed attack has the time complexity around 215.59/23 ≈ 212.59 encryptions.

3.3.2 Recovering the correct secret key

Recall from Section 3.2.5, we know that pseudorandom bit sequence KSi is

formed by x and y sequences generated by using Equations (3.2) and (3.3).

Since KSi = KS1
i ||KS2

i , then we let KS1
i = xi,d+1 and KS2

i = yi,d+1, where

(xi,0,yi,0) is the secret key and d is the number of chaotic map iterations to

avoid harmful transient effect. We here assume that x and y sequences are

integers. Given the parameters µ,β ,N,m,xi,t , and yi,t , one can generate xi,t+ j
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and yi,t+ j for any integers i, t, and j.

For ease of understanding, we denote KS1
1 = x1,1,KS2

1 = y1,1,KS3
1 = x1,2,

and KS4
1 = y1,2, where d is ignored as it is used to avoid harmful transient effect

and will not affect the validity of our proposed attack. We perform the

following known plaintext-ciphertext attack procedure to recover the remaining

secret parameters as follows:

1. From µ ∈ [0,4], β ∈ [1,2], N = [1,2128], m∈ [1,264], guess a value for µ,β ,N,

and m.

2. Based on Proposition 3.3.4, for each guess of (µ,β ,N,m) and each pair out

of 234.14 pairs1 of (KS1
1,KS2

1), compute the values of (KS3
1,KS4

1) based on

Equations (3.2) and (3.3).

3. Let (P1,Cip1) and (P2,Cip2) be two different plaintext-ciphertext pairs,

where Pi = p1||p2|| . . . ||p16 and Cipi = c1||c2|| . . . ||c16, for i = 1 and 2.

Consider KS2
1 = KS2

1,1||KS2
1,2|| . . . ||KS2

1,16. Let σ j be the weight of KS2
1, j.

Then, perform the following:

(a) For P1, compute v′j = M((KS3
1, j ⊕ p j),σ j), for 1 ≤ j ≤ 16, where KS3

1, j

denotes the jth-byte of KS3
1.

(b) For j = 1, generate Cip1 as follows:

i. Generate two parent 16-bit strings A = v′j||v′j+1 and B = v′j+2|| v′j+3

ii. Compute two 16-bit strings τ j = wt(KS4
1, j)+ wt(KS4

1, j+1) and τ j+2 =

wt(KS4
1, j+2+ wt(KS4

1, j+3), where KS4
1, j denotes the jth-byte of KS4

1.

iii. Compute (A′,B′) =XO(A,B,τ j,τ j+2) to generate two child bit strings

A′ and B′.

iv. Obtain V 2 by concatenating A′ and B′, i.e. V 2 = A′||B′.

v. Repeat Steps 3b(i) to b(iv) for j = 3,5,7,9,11,13, and 15.

vi. Obtain Cip′i =V 2.
1We assume worse case scenario to obtain the worse case time complexity of the proposed

attack
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(c) Repeat Steps 3(a) to (b) for (P2,Cip2).

4. If Cip′1 =Cip1 and Cip′2 =Cip2, then the guessed values for µ,β ,N,m,KS1
1,

and KS2
1 are correct. If not, then the guessed values are wrong and repeat

Steps 1 to 4 until we find the correct guess.

Analysis. For Step 2, the total possible value of (KS3
1,KS4

1) is

4× 2× 2128 × 264 × (234.14)2 ≈ 2263.28. For each guess of (KS3
1,KS4

1), Step 3a

requires 16 M operations and Step 3b requires 8 XO operations. Overall, the

total time complexity of the proposed attack is 2263.28 × 16 ≈ 2267.28 M

operations and 2263.28 × 8 ≈ 2266.28 XO operations. On average, to reduce

2263.28 possible values of secret key to one, two plaintext-ciphertext pairs (i.e.

256-bit consistency check) are needed. As one encryption requires 8 XO and 16

M, hence the time complexity needed to recover secret key ki is around

(2267.28 ×2)/24 ≈ 2264.28 encryptions.

Therefore, the time complexity needed to launch such known plaintext

attack under traditional security setting of block cipher is around

212.59 +2264.28 ≈ 2264.28 which is much lesser than 2448 as claimed by Biswas et

al. Therefore, this scheme is vulnerable to the known plaintext attack.

3.3.3 Key recovery attack under defined security setting

In Biswas et al. proposed scheme, different secret keys ki, for i > 0, are

randomly selected for every session from a same key pool to generate chaotic

pseudorandom bit sequences. In each sensor node, a number of secret keys are

generated by using elliptic curve operations and then a key pool is formed by

these elliptic curve points. If the key pool size is large, then the probability of

selecting same secret key is negligible. However, to encrypt an image with the

size greater than 128 bits, the pseudorandom bit sequences that generated by the
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secret key from the same session will continue to be used to encrypt the image.

The attack performed in Section 3.3.1 is enough to reveal the secret parameters

of the N-logistic tent map, i.e. µ,β ,N and m. The encryption scheme is then

broken. Therefore, the cryptosystem is vulnerable to the known plaintext attack

by using the keystream generated for one session.

3.4 Summary

This chapter showed that known plaintext attack (which involved

divide-and-conquer attack) can be launched against the image encryption

scheme designed based on the genetic algorithms. A demonstration of attack is

performed on the Biswas et al. and the time complexity required to recover the

secret keys is 2264.28 encryptions. Even though the time complexity is still high,

the proposed attack is still faster than brute force attack for 2183.72 times. The

proposed attack showed that the security of an image encryption scheme

designed based on genetic algorithms remains unknown and requires further

in-depth analysis. The proposed attack and its analysis can be utilized and

extended to other image encryption schemes designed based on genetic

algorithms.
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CHAPTER 4

CRYPTANALYSIS OF AN IMAGE ENCRYPTION SCHEME BASED

ON TWO-POINT DIFFUSION STRATEGY AND HENON MAP

This chapter provides a cryptanalysis of an image encryption scheme proposed

by Ping et al. (2018), which utilizes a two-point diffusion strategy and the

classical Henon map to generate chaotic sequences. The discrete Henon map is

employed as the encryption operation. The aim of this chapter is to further

investigate the vulnerabilities present in existing encryption methods.

The Ping et al. scheme presents an interesting encryption architecture that

integrates permutation and diffusion into a single process, utilizing the Henon

map as the primary method for generating the keystream. However, our

cryptanalysis, performed through a chosen plaintext attack, reveals significant

vulnerabilities in this approach. The scheme’s reliance on the Henon map for

both permutation and diffusion leads to a sequential encryption process that

lacks effective diffusion. This dependency compromises the security of the

encryption, as it fails to achieve the necessary level of randomness and

resilience against cryptographic attacks.

The findings in this chapter emphasize the need for more robust chaotic

maps and better-designed permutation-diffusion strategies to mitigate these

vulnerabilities. Building on this analysis, the subsequent chapter will focus on

addressing the dynamical degradation of the Henon map and developing

improved techniques to enhance its chaotic behavior for more secure encryption

methods.
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4.1 Introduction

To improve the security of image encryption, proposals utilizing more than one

chaotic maps or chaotic maps with higher dimensions were introduced to

increase the key space. Two serpentine maps were used by Boriga et al. (2014).

One of the serpentine maps was used to generate a random permutation vector

which is applied in the permutation process, while another serpentine map was

used to generate two keystreams that involve in the diffusion process. Along the

same direction, Zhou et al. (2015) applied permutation-diffusion structure in the

encryption scheme with the involvement of two chaotic maps: 1) Chaotic

sequences generated by skew tent map were used as the secret keys in

permutation and diffusion processes and 2) Line map was used to shuffle the

pixels of plain-image. Wu et al. (2018b) proposed a new chaotic map, called

two-dimensional Henon-Sine map which improves the chaotic behaviours of

the underlying chaotic maps. To have high complexity and add more

randomness, Julia set fractals and three-dimensional chaotic Lorenz map were

applied in the shuffling process of the encryption algorithm (Masood et al.,

2020). However, these image encryption schemes are found vulnerable against

differential cryptanalysis and chosen plaintext attacks (Wen et al., 2017; Chen

et al., 2017, 2020; Munir et al., 2021). Their common mistakes are the

differential cipher-images are independent of the diffusion keys but dependent

on a series of linear functions of the differential plain-image. So, the

permutation effect in the encryption algorithm can be eliminated and the

equivalent encryption elements can be found easily.

Even though some chaotic maps demonstrate a good dynamical properties

in continuous domain, but the problem of dynamical degradation of chaotic

maps in digital domain is inevitable. The performance of chaotic maps

jeopardized dramatically when implemented on a limited precision device (for

52



example, digital computer) because the phase space of the chaotic map will be

constrained to a finite state phase. It causes the chaotic map to have short cycle

length, low complexity and poor randomness. State-mapping network is a

graphical method to study the periodicities of a digital map in a quick and

accurate way. The dynamical properties of logistic map, tent map, generalized

Arnold’s Cat map have been studied using the state-mapping network in (Fan

and Ding, 2019; Li, Feng, Li, Kurths and Chen, 2019; Li et al., 2021).

Permutation-diffusion architecture is a popular approach used to design a

secure image encryption scheme. However, there exist concerns in terms of

computational efficiency and security. Many image encryption schemes treat

the permutation and diffusion as two stages, therefore the image is processed

twice for every round of encryption. Ping et al. (2018) pointed out that the

diffusion process is time-consuming and the process cannot be parallelized,

therefore it is not applicable in real life. A novel image encryption scheme that

is highly optimized for massively parallel architecture was then proposed based

on lightweight chaotic maps and simple logical and arithmetic operation by Lee

et al. (2018). Ping et al. proposed an image encryption scheme based on two

two-dimensional chaotic maps, i.e. a classical Henon map was used to generate

a keystream while a discrete Henon map was applied in the encryption

algorithm. Instead of having two independent permutation and diffusion

processes, they proposed an improved permutation-diffusion process which

allows the permutation and diffusion process to intermingle with each other.

After calculating the new position of two pixels, the pixel values of these two

pixels are changed instead of calculating the position of the next pixel. A

two-point diffusion strategy was proposed by Ping et al. to further improve the

efficiency of the scheme. This strategy can process two pixels simultaneously,

which mean the change of one pixel value will affect its subsequent two pixels.

They claimed that this strategy can speed up the spreading process in diffusion

and can resist the chosen-plaintext or known plaintext attack because the

53



keystream generation is dependent on the plain images. The key space size is of

approximately 2356 which can effectively prevent the brute-force attack.

This chapter investigates the two-point diffusion strategy proposed by Ping

et al.. Our main contributions can be summarized as follows. Firstly, we show

that the scheme is insecure against the chosen plaintext attack even though the

key is dependent on the plain image. The equivalent key is revealed by using

chosen plaintext attack. Moreover, the attack complexity of the encryption

scheme is lower than that of the exhaustive attack. Lastly, the efficiency of

two-point strategy has been discussed. We show that the encryption structure is

not suitable for parallel computing and suggestion has been given.

Organization: The remainder of this chapter is organised as follows. Section

4.2 describes the encryption algorithms proposed by Ping et al. Section 4.3

demonstrate the detailed cryptanalysis and attacks. In Section 4.4, the efficiency

analysis and suggestions are given. The last section concludes the chapter.

4.2 Encryption scheme

The plain image considered in Ping et al.’s scheme is a gray-scale square image

with m = N ×N pixels, where N indicates the number of rows or columns of

image and m is an even number. Thus, the plain image can be denoted as a

square matrix in the domain of Z256, i.e., P = [p(i, j)]N−1,N−1
i=0, j=0 .

A two-dimensional classical Henon map is used to generate subkeys and a

discrete Henon map is used in permutation-diffusion encryption architecture.

The definition of these chaotic maps are given as follows.
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⋄ Classical Henon map

 xd+1 = 1−ax2
d + yd;

yd+1 = bxd,
(4.1)

where a = 1.4 and b = 0.3 are the control parameters and d is the d-th

iteration of the chaotic map. Lastly, x0 and y0 are the initial values of the

chaotic map.

⋄ Discrete Henon map

 xd+1 = 1− s1x2
d + yd (mod N);

yd+1 = xd + s2 (mod N),
(4.2)

where s1,s2 ∈ {1, . . . ,2128} are the control parameters.

The image encryption algorithm can be divided into two main algorithms,

keystream generation and encryption.

4.2.1 Keystream generation

• Secret keys/initial values: x0,y0 ∈ (0,1) with 10−15 decimal precision and

s1,s2 ∈ {1, . . . ,2128}, the control parameters of discrete Henon map given in

Equation (4.2).

• Keystream generation consists of the following steps:

1. Compute

sum1 = ∑
i

∑
j

p(i, j) (mod 256) (4.3)

and

sum2 = ∑
i

∑
j

p(i, j)2 (mod 256). (4.4)
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2. Compute the following equations.

If s1 ≤ s2,

σ1 =
(sum1+1)×(sum2+1)

2572 × s1
s2
, σ2 =

(sum1+2)×(sum2+2)
2582 × s1

s2
;

If s1 > s2,

σ1 =
(sum1+1)×(sum2+1)

2572 × s2
s1
, σ2 =

(sum1+2)×(sum2+2)
2582 × s2

s1
.

(4.5)

3. Compute

x′0 = x0 ± [σ1 ×105 −floor(σ1 ×105)]×10−5, (4.6)

y′0 = y0 ± [σ2 ×105 −floor(σ2 ×105)]×10−5. (4.7)

Note that the plus-minus symbol (±) represents a function that applies

addition operation (+) if the x′0 is in the range of (0,1), otherwise

subtraction operation (−) will be applied.

4. Compute xd+k and yd+k, for k = 1, . . . ,3m/2 by iterating Equation (4.1)

with the initial values of (x′0,y
′
0), where d is the number of chaotic map

iterations to avoid harmful transient effect.

5. Compute the first keystream KS(1) =
{

ks(1)k | ks(1)k =

floor(|xd+k|×1015 (mod 256),k = 1, . . . ,3m/2)
}

.

6. Compute the second keystream KS(2) =
{

ks(2)k | ks(2)k =

floor(|yd+k|×1015 (mod 256),k = 1, . . . ,3m/2)
}

.

4.2.2 Encryption

Unlike the traditional permutation-diffusion architecture, Ping et al. proposed

an image encryption allowing the permutation and substitution processed to be

done after one another for every two pixels. The author called this method as
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two-point diffusion strategy. As demonstration, the process flow of the two-point

diffusion process for a 2×2 image is shown in Figures 4.1 and 4.2. Process (1a)

and (1b) indicated in Figures 4.1 and 4.2 shows the permutation process on how

the pixels being changed to a new position. On the other hand, process (2a) and

(2b) indicated in Figures 4.1 and 4.2 shows the diffusion process on how the

pixel values being changed by the plain pixels and previous cipher values.

As shown in Figure 4.1, the first two pixels p(0,0) and p(0,1) are moved to

the location (0′,0′) and (0”,0”) via process (1a) and (1b). After that, diffusion is

done by altering the pixel values and generate two outputs c(r)(0,0) and c(r)(0,1)

through process (2a) and (2b). The cipher pixel c(r)(0,0) relies on the permutated

pixels p(0′,0′) and p(0”,0”), whereas c(r)(0,1) relies on p(0′,0′) only. Referring

to process (3) in Figure 4.1, let c(r)(0,0) and c(r)(0,1) be c(0∗,0∗) and c(0∗,1∗),

respectively, and they will be used in the encryption for the next two pixels.

p(0, 0) p(0, 1) p(0′, 0′)

p(0′′, 0′′)

c(r)(0, 0)

c(0∗, 0∗)

c(0∗, 1∗)

Permutation Diffusion

c(r)(0, 1)

1a

1b

2b

2a

3

3

Figure 4.1: One-round encryption for p(0,0) and p(0,1)

Same for the next two pixels p(1,0) and p(1,1) in Figure 4.2, they move to

new positions (1′,0′) and (1”,0”) through process (1a) and (1b). As shown in

process (2a), the diffusion process to generate c(r)(1,0) involves the permutated

pixel p(1′,0′) and p(1”,0”) that indicated by red solid lines, and the previous

cipher pixels c(0∗,0∗) and c(0∗,1∗) that indicated by red dotted lines. For

process (2b), c(r)(1,1) relies on p(1′,0′) that indicated by blue solid line, and

the previous cipher pixel c(0∗,0∗) that indicated by blue dotted line. Then, we

will let c(r)(1,0) and c(r)(1,1) be c(0∗,0∗) and c(0∗,1∗) which are to be used in
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the next round.

p(0, 0) p(0, 1) p(0′, 0′)

p(0′′, 0′′)
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Figure 4.2: One-round encryption for p(1,0) and p(1,1)

The overall 3-round image encryption algorithm suggested by Ping et al.

is illustrated graphically in Figure 4.3. The keystream generation process have

been discussed in 4.2.1. The detailed process of the whole image encryption

algorithm is given in Algorithm 1.

p(i, j)
Permutation Diffusion

p(i, j + 1)

Permutation key
s1, s2

Diffusion key
KS(1), KS(2)

c(r)(i, j)

c(r)(i, j + 1)

p(i′, j′)

p(i′′, j′′)

3× m
2 − 1 roundsRepeat for another

ImageP

Keystream
Generation

Figure 4.3: The overview of Ping et al. image encryption scheme

4.3 Investigating the security of two-point diffusion strategy

Ping et al. claimed that the encryption algorithm is secure against chosen

plaintext attack. However, the authors ignored the existence of equivalent key in
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Algorithm 1: Image encryption
Input: Plain image P and control parameters of the discrete Henon map

s1,s2

Output: Cipher image C(3)
m

1 Obtain the keystreams ks(1)1 , . . . ,ks(1)m/2 and ks(2)1 , . . . ,ks(2)m/2 based on the
key stream generation algorithm;

2 c(0∗,0∗) = 0, c(0∗,1∗) = 0, k = 1;
3 for r = 1 : 3 do
4 for i = 0 : N −1 do
5 for j = 0 : +2 : N −1 do
6 Calculate the new positions (i′, j′) and (i′′, j′′) for the two

pixels p(i, j) and p(i, j+1) as follows:
7 i′ = 1− s1i2 + j (mod N);
8 j′ = i+ s2 (mod N) ; Indicated by 1a of Figure 4.1
9 i′′ = 1− s1i2 +( j+1) (mod N);

10 j′′ = i+ s2 (mod N) ; Indicated by 1b of Figure 4.1
11 Compute cipher pixels c(r)(i, j) and c(r)(i, j+1) using

two-point diffusion operation as follows:
12 c(r)(i, j) = 1− ks(1)k [p(i′, j′)+ c(i∗, j∗)]2 + p(i′′, j′′)+

c(i∗, j+1∗) (mod 256); Indicated by 2a of Figure
4.2

13 c(r)(i, j+1) = p(i′, j′)+ c(i∗, j∗)+ ks(2)k (mod 256) ;
Indicated by 2b of Figure 4.2

14 k = k+1;
15 end
16 end
17 end
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their scheme where the same encryption output can be generated by at least two

different keys. From Subsection 4.2.1, we can see that the generation of

keystream depends on the sum of image pixels and secret keys. Assuming the

secret keys remain the same, there exist more than one plain image producing

the same keystream as long as the sum of pixels for two different images are the

same.

Besides, the encryption algorithm can be expressed by multiple linear and

quadratic equations using modular arithmetic. Therefore, we apply the

algebraic attack to recover the keystream and the equivalent key by substituting

in the known data for some of the variables (i.e. a number of

plaintext-ciphertext pairs). We demonstrate the scheme is insecure by showing

the time complexity to break the scheme is less than 2|K|, where |K| denotes the

size of key space (Yap et al., 2016). In this section, we first present the

cryptanalysis of the Ping et al. scheme by recovering the keystream used in the

encryption scheme, with the knowledge of the chosen plain images and their

cipher images. After that, we use the recovered keystream to reveal the secret

keys ⟨x0,y0,s1,s2⟩.

4.3.1 Rewriting system of equations

For simplicity, the demonstration of the attack is illustrated based on the smallest

square images with the size of 2× 2. For m > 0, the mth plain image Pm =

[pm(i, j)]1,1i=0, j=0 and the r-round output image Cm
(r)= [c(r)m (i, j)]1,1i=0, j=0 are in the

domain of Z256, where Cm
(3) is the cipher image. We first express the encryption

algorithm as a system of equations as follows.
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First round

c(1)m (0,0) =1− ks(1)1 [pm(1,s2)]
2 + pm(0,s2) (4.8)

c(1)m (0,1) =pm(1,s2)+ ks(2)1 . (4.9)

c(1)m (1,0) =1− ks(1)2 [pm(1− s1,1+ s2)+ c(1)m (0,0)]2 + pm(−s1,1+ s2)

+ c(1)m (0,1) (4.10)

c(1)m (1,1) =pm(1− s1,1+ s2)+ c(1)m (0,0)+ ks(2)2 . (4.11)

Second round

c(2)m (0,0) =1− ks(1)3 [c(1)m (1,s2)+ c(1)m (1,0)]2 + c(1)m (0,s2)+ c(1)m (1,1) (4.12)

c(2)m (0,1) =c(1)m (1,s2)+ c(1)m (1,0)+ ks(2)3 . (4.13)

c(2)m (1,0) =1− ks(1)4 [c(1)m (1− s1,1+ s2)+ c(2)m (0,0)]2 + c(1)m (−s1,1+ s2)

+ c(2)m (0,1) (4.14)

c(2)m (1,1) =c(1)m (1− s1,1+ s2)+ c(2)m (0,0)+ ks(2)4 . (4.15)

Third round

c(3)m (0,0) =1− ks(1)5 [c(2)m (1,s2)+ c(2)m (1,0)]2 + c(2)m (0,s2)+ c(2)m (1,1) (4.16)

c(3)m (0,1) =c(2)m (1,s2)+ c(2)m (1,0)+ ks(2)5 . (4.17)

c(3)m (1,0) =1− ks(1)6 [c(2)m (1− s1,1+ s2)+ c(3)m (0,0)]2 + c(2)m (−s1,1+ s2)

+ c(3)m (0,1) (4.18)

c(3)m (1,1) =c(2)m (1− s1,1+ s2)+ c(3)m (0,0)+ ks(2)6 . (4.19)

The cipher pixels at the third round c(3)m (0,0), c(3)m (0,1), c(3)m (1,0) and

c(3)m (1,1) are known under the chosen plaintext attack. All the twelve subkeys

(ks(1)k , ks(2)k ), for 1 ≤ k ≤ 6 are required to be recovered. In the first round, there

are totally 12 unknown variables which are ks(1)1 , ks(2)1 , ks(1)2 and ks(2)2 and

pm(0,s2), pm(1,s2), pm(−s1,1+ s2) and pm(1− s1,1+ s2), c(1)m (0,0), c(1)m (0,1),
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c(1)m (1,0) and c(1)m (1,1). The plain and cipher images are unknown because of

the unknown of s1 and s2.

In the second round, the additional unknown variables are ks(1)3 , ks(2)3 , ks(1)4

and ks(2)4 , c(1)m (0,s2), c(1)m (1,s2), c(1)m (−s1,1+ s2), c(1)m (1− s1,1+ s2), c(2)m (0,0),

c(2)m (0,1), c(2)m (1,0) and c(2)m (1,1). While in the third round, the additional

unknown variables are ks(1)5 , ks(2)5 , ks(1)6 and ks(2)6 , c(2)m (0,s2), c(2)m (1,s2),

c(2)m (−s1,1+ s2), and c(2)m (1− s1,1+ s2).

Hence, there are 32 unknown variables and 4 known variables (c(3)m (0,0),

c(3)m (0,1), c(3)m (1,0) and c(3)m (1,1)) in total. To solve these unknown variables,

there must be at least as many equations as the number of variables. With four

images, we can identify the unknown variables, even though this does not

guarantee a unique solution.

4.3.2 Recovering the keystream

As the plaintext-ciphertext pairs are known by the attacker, thus the plain pixels

pm(i, j) and cipher pixels c(3)m (i, j) are known, for 0 ≤ i, j ≤ 1. Let ∆c(r)(i, j) =

c(r)a (i, j)− c(r)b (i, j), which is the difference between ath and bth images for r-

round output pixels at position (i, j).

Before recovering the keystream, we first determine the permutation keys

(s1,s2) of the encryption scheme. It can be done by considering two plaintext-

ciphertext pairs, i.e. an all black 2×2 plain image P =

0 0

0 0

 and another plain

image Q =

128 0

0 128

, in which their sum1 and sum2 in Equations (4.3) and

(4.4) are zero. Then, compute ∆c(3)(i, j), for 0 ≤ i, j ≤ 1. There are four possible

cases for permutation keys and are listed in Table 4.1.
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Table 4.1: List of possible cases for permutation keys s1 and s2

case s1 s2 ∆c(3)(0,0) ∆c(3)(0,1) ∆c(3)(1,0) ∆c(3)(1,1)
1 0 0 0 0 0 128
2 0 1 128 128 0 128
3 1 0 0 0 0 0
4 1 1 0 128 0 0

After knowing which case the permutation keys belong to, then the

keystream KS(1) = (ks(1)1 ,ks(1)2 , . . . ,ks(1)6 ) and KS(2) = (ks(2)1 ,ks(2)2 , . . . , ks(2)6 )

can be recovered by following the steps below.

1. Consider four 2 × 2 plaintext-ciphertext pairs (P1,C1
(3)), (P2,C2

(3)),

(P3,C3
(3)), and (P4,C4

(3)), where the plain images are shown as follows.

P1 =

z 0

0 0

 ,P2 =

0 z

0 0

 ,P3 =

0 0

z 0

and P4 =

0 0

0 z

 ,

where z ∈ Z256.

2. There are 232 possible candidates for ks(1)5 ,ks(2)5 ,ks(1)6 ,ks(2)6 in Equations

(4.16)- (4.19), respectively. For each guess of 232 possible values of the

aforementioned four keys and 1 ≤ m ≤ 4, compute

c(2)m (1− s1,1+ s2) =c(3)m (1,1)− c(3)m (0,0)− ks(2)6 , (4.20)

c(2)m (−s1,1+ s2) =c(3)m (1,0)− c(3)m (0,1)−1+

ks(1)6 [c(2)m (1− s1,1+ s2)+ c(3)m (0,0)]2, (4.21)

c(2)m (1,s2)+ c(2)m (1,0) = c(3)m (0,1)− ks(2)5 (4.22)

c(2)m (0,s2)+ c(2)m (1,1) = c(3)m (0,0)−1+ ks(1)5 [c(2)m (1,s2)+ c(2)m (1,0)]2.

(4.23)

3. To obtain ks(1)2 , compute ∆c(2)(0,1) for the images with p(0,s2) = z and

p(−s1,1+ s2) = z, respectively, using Equation (4.13) as follows.
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(a) For cases 1 and 3, ∆c(2)(0,1) = 2∆c(1)(1,0) = 2[−ks(1)2 (2z + z2)− z].

Solve ks(1)2 by using ∆c(2)(0,1) determined from Equations (4.21) and

(4.20) for cases 1 and 3, respectively.

(b) For cases 2 and 4, ∆c(2)(0,1) = ∆c(1)(1,1) + ∆c(1)(1,0) =

z + [−ks(1)2 (2z + z2)− z]. Solve ks(1)2 by using ∆c(2)(0,1) determined

from Equations (4.22) and (4.23).

4. Obtain ks(1)1 as follows.

(a) For cases 1 and 3, since c(2)(0,1) for image with p(0,s2) = z is obtained

from Equations (4.21) and (4.20), respectively, substitute the known

c(2)(0,1) and ks(1)2 into Equations (4.10) and (4.13) to obtain

2ks(2)1 + ks(2)3 . Then, solve ks(1)1 by substituting the 2ks(2)1 + ks(2)3 and

ks(1)2 into c(2)m (0,1) for image with p(1,s2) = z in Equation (4.13).

(b) For cases 2 and 4, since c(2)(0,1) for image with p(0,s2) = z is obtained

from Equation (4.22), substitute the known c(2)(0,1) and ks(1)2 into

Equation (4.13) to obtain ks(2)1 + ks(2)2 + ks(2)3 . Then, solve ks(1)1 by

substituting the ks(2)1 + ks(2)2 + ks(2)3 and ks(1)2 into c(2)m (0,1) for image

with p(1,s2) = z in Equation (4.13).

5. From Steps 2 to 4, we have determined C(2)
m . From Equation (4.14), we have

ks(1)4 (c(1)m (1− s1,1+ s2)+ c(2)m (0,0))2 =1+ c(1)m (−s1,1+ s2)+ c(2)m (0,1)

− c(2)m (1,0), (4.24)
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where c(1)(1− s1,1+ s2) for 0 ≤ s1,s2 ≤ 1 are

c(1)m (1− s1,1+ s2)

=



c(1)m (1,1) = pm(1,1)+1− ks(1)1 (pm(1,0))2 + pm(0,0)+ ks(2)2 , for case 1,

c(1)m (1,0) = 1− ks(1)2 (pm(1,0)+ c(1)m (0,0))2 + pm(0,0)+

pm(1,1)+ ks(2)1 , for case 2,

c(1)m (0,1) = pm(1,0)+ ks(2)1 , for case 3,

c(1)m (0,0) = 1− ks(1)1 (pm(1,1))2 + pm(0,1), for case 4.

(4.25)

(a) For the first three cases, form three equations from Equation (4.24) with

different m. Based on the secret key involved in c(1)m (1− s1,1+ s2) of

Equation (4.25), we can solve the three equations simultaneously to

obtain the following secret keys.

i. For case 1, we can obtain ks(1)4 and ks(2)2 . Since c(1)m (−s1,1+ s2) in

Equation (4.24) is c(1)m (0,1) = pm(1,1)+ks(2)1 , therefore ks(2)1 can be

obtained by substituting ks(1)4 and ks(2)2 into Equation (4.24).

ii. For cases 2 and 3, we can obtain ks(1)4 and ks(2)1 .

(b) For case 4, from Equation (4.25), no secret key involves in c(1)m (0,0),

therefore only two equations from (4.24) are needed to determine ks(1)4

and ks(2)1 with different m.

6. From Steps 4 and 5, we can obtain the following secret keys.

(a) For cases 1 and 3, obtain ks(2)3 by substituting ks(2)1 obtained from Step

5(a)i into 2ks(2)1 + ks(2)3 from Step 4a.

(b) For cases 2 and 4, obtain ks(2)2 +ks(2)3 by substituting ks(2)1 obtained from

Step 5(a)ii or Step 5b into ks(2)1 + ks(2)2 + ks(2)3 from Step 4b.

7. Since c(1)m (1− s1,1+ s2) from Equation (4.25) can been recovered based on

the ks(2)1 and ks(2)2 determined in Step 5, therefore we can obtain ks(2)4 by
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substituting c(1)m (1− s1,1+ s2) into Equation (4.15) as follows.

ks(2)4 = c(2)m (1,1)− c(2)m (0,0)− c(1)m (1− s1,1+ s2). (4.26)

8. The remaining subkeys can be obtained by solving Equation (4.12) as

follows.

(a) For case 1, since ks(1)2 , ks(2)1 and ks(2)2 have been determined in Steps

3a and 5(a)i, therefore ks(1)3 can be solved by substituting the values in

(4.12) with any m value. Take m = 1 as example, ks(1)3 can be determined

by solving 4ks(1)3 (1−4ks(1)2 + ks(2)1 )2 = 5− c(2)1 (0,0)+ ks(2)2 .

(b) For case 2, since ks(2)2 is unknown, therefore form three equations from

(4.12) with different m. Substitute ks(1)2 and ks(2)1 that obtained in Steps

3b and 5(a)ii into these three equations. Then, solve the equations

simultaneously to get ks(1)3 and ks(2)2 . Obtain ks(2)3 by substituting ks(2)2

into ks(2)2 + ks(2)3 that obtained in Step 6b.

(c) For case 3, take two equations from Equation (4.12) with different m.

Substitute ks(1)2 and ks(2)1 obtained in Steps 3a and 5(a)ii into the

equations. Obtain ks(1)3 and ks(2)2 by solving these two equations

simultaneously.

(d) For case 4, it is similar to Step 8b. Substitute ks(1)2 and ks(2)1 obtained

from Steps 3b and 5b into three equations formed by using Equation

(4.12) with different m. Solve the equations simultaneously to obtain

ks(1)3 and ks(2)2 . Then, ks(2)2 is substituted into ks(2)2 + ks(2)3 determined in

Step 6b to obtain ks(2)3 .

We demonstrate the algorithm of recovery process for the permutation keys

s1 = 0 and s2 = 0 under case 1, using Pm, for 1 ≤ m ≤ 4 with z = 1 in Algorithm

2.

Analysis. To test the performance of the proposed recovering method,

simulations are conducted using Matlab R2019a, running on a personal
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computer with Intel(R) Core(TM) i5-8250 CPU @ 1.60GHz, 8 GB memory and

a Windows 10 operating system. The keystream generated by using secrets keys

(s1 = 45, s2 = 170, x0 = 0.213377264386424 and y0 = 0.166908249009117),

which are the same as provided in Ping et al. (2018), have been identified for

plaintext-ciphertext pairs with z = 1 and z = 2 in Step 1. The possible values for

keystreams (KS(1), KS(2)) and (KS(3), KS(4)) are 251 and 260, respectively.

To validate the results for worst case scenario, the possible values of the

(ks(1)1 ,ks(1)2 , . . . ,ks(1)6 ) and (ks(2)1 ,ks(2)2 , . . . ,ks(2)6 ) for z= 1 have also been verified

on another 120 different sets of keystreams using Matlab environment.

Let |u| denote the possible value of u. Recall that case 1 is s1 = 0,s2 = 0,

case 2 is s1 = 0,s2 = 1, case 3 is s1 = 1,s2 = 0, and case 4 is s1 = 1,s2 = 1. The

results of possible values are summarized as follows.

i. From Step 2, we have ∏
6
k=5 |ks(1)k | · |ks(2)k |= (256)4 = 232.

ii. From Step 3, for cases 1 and 3, |ks(1)2 |= 2, while for cases 2 and 4, |ks(1)2 |= 1.

iii. From Step 4, the possible value of ks(1)1 can be found as follows.

For case 1, |ks(1)1 | ∈ (8,26);

For case 2, |ks(1)1 | ∈ (1,2);

For case 3, |ks(1)1 | ∈ (8,28);

For case 4, |ks(1)1 | ∈ (1,2).
(4.27)

iv. From Step 5, the possible value for ks(1)4 and ks(2)1 or ks(2)2 are determined

together as follows.

For case 1, |ks(1)4 | ∈ (1,2), |ks(2)2 | ∈ (4,28) and |ks(2)1 | ∈ (1,2); (4.28)

For case 2, |ks(1)4 | · |ks(2)1 | ∈ (4,210); (4.29)

For case 3, |ks(1)4 | ∈ (1,2) and |ks(2)1 | ∈ (4,28); (4.30)

For case 4, |ks(1)4 |= |ks(2)1 |= 1. (4.31)

v. From Steps 6 and 7, the possible values for ks(2)4 and ks(2)3 are shown as

67



follows.

For cases 1 and 3, |ks(2)3 |= |ks(2)4 |= 1; (4.32)

For cases 2 and 4, |ks(2)4 |= 1. (4.33)

vi. From Step 8, the possible values for the remaining keys are obtained as

follows.

For case 1, s1 = 0,s2 = 0, |ks(1)3 | ∈ (1,28); (4.34)

For case 2, s1 = 0,s2 = 1, |ks(1)3 | · |ks(2)2 | ∈ (1,26) and |ks(2)3 |= 1; (4.35)

For case 3, s1 = 1,s2 = 0, |ks(1)3 | ∈ (4,28) and |ks(2)2 |= 1; (4.36)

For case 4, s1 = 1,s2 = 1, |ks(1)3 | · |ks(2)2 | ∈ (1,26) and |ks(2)3 |= 1. (4.37)
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Algorithm 2: Chosen Plaintext Attack
Input: Chosen plaintext-ciphertext pairs (P1 ,C1

(3)), (P2 ,C2
(3)), (P3,C3

(3)), and (P4 ,C4
(3))

Output: Keystreams KS(1) and KS(2)

1 for ks(2)6 = 0 : 255 do

2 for ks(1)6 = 0 : 255 do

3 for ks(2)5 = 0 : 255 do

4 for ks(1)5 = 0 : 255 do

5 for m = 1 : 4 do

6 c(2)m (1,1) = c(3)m (1,1)− c(3)m − ks(2)6 ; // Refer to Eq. (4.20)

7 c(2)m (0,1) = c(3)m (1,0)− c(3)m (0,1)−1+ ks(1)6 [c(2)m (1,1)+ c(3)m (0,0)]2 ; // Refer to Eq. (4.21)

8 c(2)m (1,0) = 1/2(c(3)m (0,1)− ks(2)5 ) ; // Refer to Eq. (4.22)

9 c(2)m (0,0) = c(3)m (0,0)−1+ ks(1)5 [c(2)m (1,0)+ c(2)m (1,0)]2 − c(2)m (1,1). ; // Refer to Eq. (4.23)

10 ks(1)2 = []; ks(2)1 = []

11 ∆c(2)(0,1) = c(2)1 (0,1)− c(2)4 (0,1)

12 for k = 0 : 255 do

13 if ∆c(2)(0,1) == 2[−k(3)2 −1] then

14 ks(1)2 = [ks(1)2 ;k] ; // Refer to Step 3a

15 2ks(2)1 + ks(2)3 = c(2)1 (1,0)−2+2k ; // Refer to Step 4a

16 for l = 0 : 255 do

17 if 2[1− k(1− l)2 ] == c(2)3 (0,1)− (2ks(2)1 + ks(2)3 ) then

18 ks(1)1 = [ks(1)1 ; l]

19 ks(1)4 = []; ks(2)2 = []; ks(2)1 = []; ks(2)4 = [];

20 for s = 0 : 255 do

21 for t = 0 : 255 do

22 if s[2+ t + c(2)1 (0,0)]2 − s[2+ t + c(2)2 (0,0)]2 ==

∆c(2)(0,1)−∆c(2)(1,0) ; // Refer to Eq. (4.24)

23 then

24 ks(1)4 = [ks(1)4 ;s]

25 ks(2)2 = [ks(2)2 ; t]

26 for u = 0 : 255 do

27 u = s[2+ t + c(2)3 (0,0)]2 −1− c(2)3 (0,1)+

c(2)3 (1,0)

28 ks(2)1 = [ks1(2);u] ; // Refer to Step

5(a)i

29 ks(2)3 = c(2)1 (1,0)−2+2k−2ks(2)1 ;

// Refer to Step 6a

30 c(1)1 (1,1) = 2+ t ; // Refer to Eq.

(4.25)

31 v = c(2)1 (1,1)− c(2)1 (0,0)− c(1)1 (1,1);

// Refer to Step 7 Eq. (4.26)

32 ks(1)3 = [];

33 for w = 0 : 255 do

34 if

4w(1−4k+u)2 = 5−c(2)1 (0,0)+ t

then

35 ks(1)3 = [ks(1)3 ;w] ; // Refer

to Step 8a

36 end

37 end

38 end

39 end

40 end

41 end

42 end

43 end

44 end

45 end

46 end

47 end

48 end

49 end

50 end
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From the results above, we found that case 3 is the worst case scenario that

having the highest possible value of secret keys. The total possible value of

(ks(1)1 ,ks(1)2 , . . . ,ks(1)6 ) and (ks(2)1 ,ks(2)2 , . . . ,ks(2)6 ) for this case is 232 × 2× 28 ×

2×28 ×1×28 ×1 = 258.

The time complexity of the recovery process under the worst case scenario

are calculated as follows. To recover permutation keys s1 and s2, it requires

two plaintext-ciphertext pairs. Step 1 involves 4 equations. For Step 2, with

28 possible values of ks(2)6 , Equation (4.20) is required to run for 28 × 4 = 210

times to get c(2)m (1− s1,1+ s2). With 216 possible values for c(2)m (1− s1,1+ s2)

and ks(1)6 , Equation (4.21) is required to run for 216 × 4 = 218 times. Similarly,

both ks(2)5 and ks(1)5 have 28 possible values. Hence, Equation (4.22) runs for

216 ×28 ×4 = 226 times to get c(2)m (1,s2)+ c(2)m (1,0) while Equation (4.23) runs

for 224 ×28 ×4 = 234 times to get c(2)m (0,s2)+ c(2)m (1,1).

With 232 possible values for ks(1)k and ks(2)k for k = 5,6, the remaining secret

keys can be obtained as follows. To obtain ks(1)2 , Step 3 requires to compute

∆c(2)(0,1) for 232 times. Since there are 2 possible values of ks(1)2 under the worst

case, Step 4 computes 232×2×2 = 234 equations to obtain ks(1)1 . Since there are

28 possible value for ks(1)1 , Step 5 requires approximately 233 × 28 × 6 ≈ 238.58

equations to obtain ks(1)4 and ks(2)1 or ks(2)2 . There are 2× 28 × 1 = 29 possible

values for ks(1)4 and ks(2)1 or ks(2)2 . So, Steps 6 and 7 require 241 × 29 × 1 = 250

equations for each step. Finally, Step 8 requires approximately 250 × 6× 1 ≈

252.58 equations to obtain ks(1)3 or ks(2)2 and ks(2)3 .

The whole process involves approximately 22 + 210 + 218 + 226 + 234+

232 + 234 + 238.58 + 250 × 2 + 252.58 ≈ 253 equations in total. Since 3-round

encryption involves 12 equations, so the proposed attack has the time

complexity around 253/12 ≈ 249.41 encryptions to reduce 296 possible values of

(ks(1)1 ,ks(1)2 , . . . ,ks(1)6 ) and (ks(2)1 ,ks(2)2 , . . . ,ks(2)6 ) to 258 possible values under

the worst case scenario for z = 1.

70



4.3.3 Recovering the secret keys

Recall from Subsection 4.3.2, let the four plain images in Step 1 have z = 1.

The recovered keystream are needed to recover updated initial conditions x′0 and

y′0. To recover the correct secret keys ⟨x0,y0,s1,s2⟩, we require another four

chosen plaintext-ciphertext pairs Pm, for 5 ≤ m ≤ 8, to generate another set of

keystreams. Their updated initial conditions calculated from Equations (4.6) and

(4.7) are x′′0 and y′′0 and the subkeys generated by Equation (4.1) are denoted as

ks(3)i and ks(4)i , for 1 ≤ i ≤ 6. For ease of understanding, we let d = 0 in Equation

(4.1) as it is used to avoid harmful transient effect and will not affect the validity

of our proposed attack. We perform the following procedure to recover the secret

parameters.

1. Repeat Steps 1 to 8 in Subsection 4.3.2 to obtain ks(3)i and ks(4)i , for 1 ≤ i ≤ 6,

with z = 2 for the four plain images in Step 1.

2. Guess the value for (x′0,y
′
0) with 1015 computational precision of floating

numbers and perform the following steps.

(a) For i = 1, use the guess value of (x′0,y
′
0) to compute

x′i = 1−a(x′i−1)
2 + y′i−1,

y′i = bx′i−1.

If floor(|x′i| × 1015)(mod 256) = ks(1)i and

floor(|y′i| × 1015)(mod256) = ks(2)i , then store the guess value of

(x′0,y
′
0).

(b) Repeat Step 2a by using the corresponding ks(1)i and ks(2)i , for i > 1 to

reduce the number of possible candidates of (x′0,y
′
0).

3. From Equations (4.6) and (4.7), the updated initial values are different from
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6 decimal places onwards. Repeat Step 2 to get the possible (x′′0,y
′′
0) by using

ks(3)i and ks(4)i , for 1 ≤ i ≤ 6.

4. Compute d1 = |x′′0 − x′0|.

(a) If d1 < 10−6, then Equation (4.6) becomes

x′0 = x0 ±σ ′
1, x′′0 = x0 ±σ

′′
1 . (4.38)

where σ ′
1 =

(1+1)×(1+1)
2572 × s1

s2
and σ ′′

1 = (2+1)×(4+1)
2572 × s1

s2
.

Then, compute s1
s2
= d1

15
2572 −

4
2572

.

(b) Else, we have

x′0 = x0 ± [σ ′
1 ×105 −floor(σ ′

1 ×105)]×10−5, (4.39)

x′′0 = x0 ± [σ ′′
1 ×105 −floor(σ ′′

1 ×105)]×10−5. (4.40)

• Note that the upper bound of σ ′
1 and σ ′′

1 are 4
2572 = 0.000060561

and 15
2572 = 0.000227104, respectively, when s1

s2
= 1.

• The upper bound of [floor(σ ′
1 ×105)]×10−5 = 0.00006.

• The upper bound of [floor(σ ′′
1 ×105)]×10−5 = 0.00022.

• So, the possible value of their difference d2 = [floor(σ ′′
1 × 105)−

floor(σ ′
1 ×105)]×10−5 ∈ {0,0.00001,0.00002, . . . ,0.00016}.

Then, compute s1
s2
= d1+d2

15
2572 −

4
2572

for all the possible d2.

5. Obtain x0 by substituting s1
s2

from Step 4 into Equations (4.38) if or (4.39).

Similarly, obtain y0 by substituting s1
s2

into the following equation.

σ
′
2 =

(1+2)× (1+2)
2582 × s1

s2
, (4.41)

y′0 = y0 ±σ
′
2, if d2 < 10−6; (4.42)

y′0 = y0 ± [σ ′
2 ×105 −floor(σ ′

2 ×105)]×10−5, if d2 ≥ 10−6. (4.43)
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Analysis. Recall the keystream recovery process in Subsection 4.3.2, there are

258 possible values of KS(1) (ks(1)1 ,ks(1)2 , . . . ,ks(1)6 ) and KS(2) = (ks(2)1 ,ks(2)2 ,

. . . ,ks(2)6 ) under the worst case scenario for plain image with z = 1. For each

possible value of KS(1) and KS(2), there are (1015

28 )2 ≈ 283.66 possible candidates

for x′0 and y′0 in Step 2. After repeating Step 2b using ks(1)i and ks(2)i , for

2 ≤ i ≤ 6, the number of candidates for x′0 and y′0 are reducing approximately to

1015×2

28×12 ≈ 23.66. 1 In Step 4, we recover s1
s2

which is the equivalent key for s1 and

s2, meaning that the 2256 possible values of s1 and s2 are reduced to 17 possible

values of s1
s2

. Since this attack requires four additional plaintext-ciphertext pairs,

therefore the time complexity for the whole secret keys processes is

2 × 249.41 × 1015+15+10+10 ≈ 2216.51. According to Yap et al. (2016), an

encryption scheme is insecure if its time complexity is less than 2|K|

encryptions, where |K| denotes the length of the secret key K in bits. We show

that the time complexity of the recovery process is much lower than the length

of the secret key claimed by Ping et al., around 2356. Through the key recovery

process, the possible value of x0, y0 and s1
s2

has been reduced to

258 ×23.66 ×17 ≈ 265.74, then the recovered x0, y0 and s1
s2

can be used to recover

other images of various sizes.

4.4 Investigating the efficiency of two-point diffusion strategy

Ping et al. has pointed out that the two-point diffusion strategy can enhance

diffusion effect if more than one processing unit is used. However, the proposed

method encrypts every two image pixels sequentially and the value of the

current cipher pixel depends on its previous cipher pixels. As shown in Figure

4.4, to diffuse the last pixels 7 and 8, all the previous pixels need to be diffused

1This result is estimated by using x′0 and y′0 with the computational precision of floating point
from 103 to 107.
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first. This is just similar to the traditional diffusion method, whereby each pixel

is influenced by one or more previous pixels. This can greatly jeopardize the

parallelism of algorithm and its efficiency.

1 3 5 7

2 4 6 8

Figure 4.4: Two-diffusion strategy proposed by Ping et al.

To allow the algorithm to be executed parallelly, the image needs to be

divided into block and running on the multi-core processing units

simultaneously. However, the processing unit that processes the image data of

the current block needs to wait for the other processing unit that processes the

previous block to complete. This time-consuming encryption method is similar

to encryption algorithms with ciphertext block chain (CBC) mode, whereby one

cipher pixel is affected by previous cipher (Wang et al., 2018). This shortage

limits the application on the platform based on field programmable gate array

(FPGA)/complex programmable logic device (CPLD) or digital circuits that can

support parallel processing.

Since computational speed can be greatly accelerated in the parallel

encryption mode, the CBC-like diffusion mode must be avoided. To have the

parallel encryption mode, there are suggestions to be considered.

1. The image data is divided into blocks.

2. Each processing unit processes each block independently and possesses

their own memory.

3. The encryption within each block must satisfy the confusion and

diffusion properties adequately (Katz and Lindell, 2020). This can be
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done by using the block cipher with counter (CTR) mode to avoid the

current plaintext block from being influenced by previous block. This

method is suitable for parallel computing because the counter values are

encrypted independently in parallel before combining with the plaintext

to produce the ciphertext. Besides, it is also proven that the CTR mode is

secure against the chosen plaintext attack.

4. To further enhance the diffusion effect, the encrypted data are exchanged

and communicated among the processing units.

4.5 Summary

In this chapter, we analyzed an image encryption network that adopting two

point diffusion strategy, where its diffusion process is intermingled with the

permutation process. The analysis shows that chosen plaintext attack can be

launched against the image encryption scheme by using ten 2×2 plain images.

The time complexity of the attack is 2216.51 encryptions, which is much lower

than the key space claimed by Ping et al., i.e. 2356. The possible values of secret

keys x0 and y0 and the equivalent key s1
s2

has also been reduced substantially to

265.75. The recovered keys can be used to recover the plain image with larger

size. The key space can be further diminished when pseudorandom sequences

generated by the Henon map are implemented using digital computers in real

applications, with a more detailed discussion provided in Chapter 6.

Additionally, the method proposed by Ping et al. does not achieve a

significant improvement in efficiency compared to conventional diffusion

methods, primarily because the encryption process is not parallelized. To ensure

parallelism during the encryption process, images should be classified into

different levels based on the available parallel resources of the computing
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system. The diffusion should then be performed within each group under a

parallelism framework. To avoid sequential encryption within the group, using

a block cipher based on counter mode is a popular method for enabling parallel

encryption.
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CHAPTER 5

DYNAMICS ANALYSIS OF TWO ONE-DIMENSIONAL CHAOTIC

MAPS

This chapter explores the dynamics of two one-dimensional chaotic maps with

the aim of proposing new chaotic map through cascading methods to enhance

their chaotic behavior. This study is significant because the fundamental

properties of chaos, such as sensitivity to initial conditions, unpredictability, and

randomness, which are essential for designing secure encryption algorithms. By

understanding and improving these properties, we intend to contribute to the

development of more robust image encryption schemes.

In this chapter, we focus on the characteristics of one-dimensional chaotic

maps, which are crucial for achieving the second research objective of this

thesis. We have selected two well-known chaotic maps, namely the Logistic

map and the Beta map, to compare the performance of our proposed map with

those existing in the literature. While these maps are widely used, they have

certain limitations, for example, the Logistic map contains periodic windows

within its chaotic range, which can reduce its overall chaoticity and introduce

potential vulnerabilities in encryption applications.

By examining these limitations, this chapter not only highlights the

weaknesses of commonly used chaotic maps but also underscores the

importance of enhanced chaotic behavior for image encryption schemes. The

findings presented here establish a foundation for developing improved chaotic

maps through cascading methods.
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5.1 Introduction

Over the past decade, chaotic systems have received attentions from many

researchers to study their chaotic behaviors. This is due to the interesting

characteristics of chaotic systems, for example, aperiodicity, high sensitivity to

the initial conditions and system parameters, ergodicity and random-like

behaviors. This is just analogous to the confusion and diffusion properties of

cryptographic properties (Shannon, 1949). Matthews (1989) was the first

person to apply chaotic system to image encryption technology. Since then, the

popularity of using chaos in cryptography has been grew significantly.

Chaotic system has been widely applied in designing image encryption

scheme. This is because the conventional encryption methods such as Data

Encryption Standard (DES) (National Bureau of Standards, 1977), Advanced

Encryption Standard (AES) (Daemen and Rijmen, 2013), and International

Data Encryption Algorithm (IDEA) (Lai and Massey, 1990) are no longer

suitable to encrypt image data because of the bulky data capacity and high

correlation among the pixels. Chaotic map is therefore applied in (a)

constructing permutation matrices in the encryption process; (b) generating a

chaotic pseudorandom sequences; and (c) producing the ciphertext by having

the plain pixel to be the secret keys and the chaotic map to be the encryption

operation (Zhang et al., 2012).

Wu et al. (2018b) designed an image encryption based on a chaotic map

which is formed by combining 2D-Henon map and a Sine map. The authors

used the chaotic map to generate keystream and then apply DNA approach to

encrypt the plain image. An image encryption scheme designed based on 2D

Logistic-Sine-Cosine map was presented by Huang (2019). The chaotic system

are created based on 2D Logistic, Sine and Cosine maps. Zhu et al. (2019)

presented a new chaotic map based on 2D Logistic-Modulated-Sine-
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Coupling-Logistic map for image encryption, whereby Sine map is modulated

by the Logistic map and then the result of modulation and Sine map are coupled

together.

In this chapter, we introduce a new chaotic map, called Logistic-Beta map

which is formed by combining Logistic map with Beta map. Logistic map is a

one-dimensional map which has been widely used in encryption scheme (May,

1976). Beta map is a chaotic map proposed by Zahmoul et al. (2017), which is

based on a statistical distribution, called Beta function. We study the chaotic

behaviors of the Logistic-Beta map, i.e. its trajectory, bifurcation diagram and

Lyapunov exponent. We also demonstrate our proposed chaotic map has a

better chaotic behaviors than the classical Logistic and Beta maps, and a

one-dimensional logistic-based chaotic map.

Organization: The remainder of this chapter is organised as follows. Section

5.2 describes the preliminaries of some exisiting chaotic maps. Section 5.3

presents the mathematical model of our newly proposed chaotic map. Section

5.4 discusses the dynamical analysis of our proposed map. The last section

summarizes the chapter.

5.2 Preliminaries

This section briefly discusses the Logistic map and Beta map which are going to

generate our proposed chaotic map. We also discuss a one-dimensional chaotic

map that designed based on Logistic map. We will compare the chaotic

behaviors of our proposed chaotic map with the following three chaotic maps in

next section.
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Logistic map

Logistic map is a one-dimensional discrete-time dynamical system proposed by

May (1976). It is an iterated map that represented by a first order difference

equations as

xn+1 = rxn(1− xn), (5.1)

where xn ∈ (0,1) and r ∈ [0,4].

Beta map

Zahmoul et al. (2017) proposed a chaotic map based on a Beta function, known

as Beta map. It is defined as

yn+1 = µ ·B(yn;y1,y2,c,d), (5.2)

where B(yn;y1,y2,c,d) denotes the Beta function for y = {yn}∞
n=0 and µ is a

multiplier that controls the amplitude of Beta map. The beta function of y is

represented by

B(y;y1,y2,c,d) =


( y−y1

ym−y1

)c( y2−y
y2−ym

)d
, if y ∈ (y1,y2);

0, otherwise.
(5.3)

Given that ym = cy2+dy1
c+d denotes the weighted mean of y1 and y2, where

c,d,y1,y2 ∈ R and y1 < y2. The parameters c and d are determined as

c = p1 +q1 × e; (5.4)

d = p2 +q2 × e, (5.5)

where e is a bifurcation parameter and p1, p2,q1 and q2 ∈R are randomly chosen

constants.
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A chaotic map must be bounded. To prove this, we identify the value of µ

that results in yn+1 ∈ (y1,y2). We know that the first derivative test can help to

find the minima and maxima of a function, then we compute dyn+1
dyn

= 0 by fixing

y1,y2,ym as constant.

dyn+1
dyn

= µ

[
d
( yn − y1

ym − y1

)c( y2 − yn

y2 − ym

)d−1(− 1
y2 − ym

)
+

c
( y2 − yn

y2 − ym

)d( yn − y1

ym − y1

)c−1( 1
ym − y1

)]
0 = µ · (yn − y1)

c−1(y2 − yn)
d−1

(ym − y1)c(y2 − ym)d · [c(y2 − yn)−d(yn − y1)]

yn =
cy2 +dy1

c+d
. (5.6)

Noted that yn = ym. Next, we compute the second derivative on yn+1 with respect

to yn as

d2yn+1

dy2
n

= µ
( yn−y1

ym−y1

)c−2( y2−yn
y2−ym

)d−2( 1
(y2−ym)(ym−y1)

)2 ·(
d(yn − y1)[−c(y2 − yn)+(d −1)(yn − y1)]+

c(y2 − yn)[−d(yn − y1)+(c−1)(y2 − yn)]
)

(5.7)

Then, substitute Equation (5.6) into Equation (5.7).

d2yn+1

dy2
n

∣∣∣∣
yn=ym

= µ
( 1
(y2−ym)(ym−y1)

)2 ·
[
cd(ym − y1)(y1 − y2)

+cd(y2 − ym)(y1 − y2)
]
< 0, ∵ y1 < y2. (5.8)

Therefore, ym is the local maximum.

By letting yn = ym, we determine the range of µ by substituting Equation

(5.6) into Equations (5.2) and (5.3) as

y1 < µ ·
(ym−y1

ym−y1

)c(y2−ym
y2−ym

)d
< y2.

(5.9)
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Hence, µ ∈ (y1,y2).

Modified Logistic map

The is a chaotic map designed by modifying the Logistic map discussed in

Equation (5.1). It is proposed by Lestari et al. (2018) to allow the initial values

to be positive or negative. It can be defined by

xn+1 =

 g1(xn);

h1(xn),
(5.10)

for xn ∈ (−1,1).

The recursive equation of the modification is given as

xn+1 =

 (−3
2 |r|−

√
2|r|) · xn · ((2

√
2−2)xn +1), for −1 < xn < 0;

(−3
2 |r|−

√
2|r|) · xn · ((2

√
2−2)xn −1), for 0 ≤ xn < 1,

(5.11)

where r ∈ [−4,4]. In Section 5.4, we compare the dynamical performance of this

chaotic map with our proposed map.

5.3 The proposed chaotic map

The newly proposed chaotic map, called Logistic-Beta map is designed by

combining of two chaotic maps, i.e. Logistic map and Beta map. The

mathematical model of our new one-dimensional chaotic map is represented by

xn+1 = f (xn) = g(h(xn)),and f : [0,1]→ [0,1],
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where h(·) represents the Beta map with µ = 1 given in Equation (5.2). Beta map

is chosen to enlarge phase space, while g(·) represents the Logistic map given in

Equation (5.1). Therefore, the Logistic-Beta map is defined as

xn+1 = r
(

xn − y1

ym − y1

)c( y2 − xn

y2 − ym

)d[
1−

(
xn − y1

ym − y1

)c( y2 − xn

y2 − ym

)d]
, (5.12)

where n is the iteration number, ym = cy2+dy1
c+d and c,d,y1,y2 ∈ R and y1 < y2.

Recall that parameters c and d are determined by equations (5.4) and (5.5) as

c = p1 +q1 × e;

d = p2 +q2 × e,

where e is a bifurcation parameter and p1, p2,q1 and q2 are randomly chosen

constants.

Since the chaotic map must be bounded, careful selection of the parameter r

must be done to ensure the phase space is in a closed interval. Rewrite Equation

(5.12) as

xn+1 = rh(xn)(1−h(xn)) = rh(xn)− r[h(xn)]
2, (5.13)

where h(xn) =
( xn−y1

ym−y1

)c( y2−xn
y2−ym

)d . To obtain the maximum value of xn+1, solve

xn by computing

dxn+1

dxn
= rh′(xn)−2rh(xn) ·h′(xn) = rh′(xn)[1−2h(xn)] = 0, (5.14)

where

h′(xn) = d
( xn−y1

ym−y1

)c( y2−xn
y2−ym

)d−1(− 1
y2−ym

)
+

c
( y2−xn

y2−ym

)d( xn−y1
ym−y1

)c−1( 1
ym−y1

)
= (xn−y1)

c−1(y2−xn)
d−1

(ym−y1)c(y2−ym)d · [c(y2 − xn)−d(xn − y1)]. (5.15)

When r = 0, xn+1 = 0 regardless the value of xn.
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Next, when h′(xn) = 0, we obtain

xn =
cy2 +dy1

c+d
. (5.16)

This obtained xn equals to ym in Equation (5.12). Then, we substitute ym into

Equation (5.12) and obtain

r
(

ym − y1

ym − y1

)c(y2 − ym

y2 − ym

)d[
1−

(
ym − y1

ym − y1

)c(y2 − ym

y2 − ym

)d]
= 0. (5.17)

Therefore, when xn = ym, we will get xn+1 = 0 regardless the value of r. We

could not determine the range of r for this case.

So, we look at the final case, i.e. when 1−2h(xn) = 0. We have

( xn−y1
ym−y1

)c( y2−xn
y2−ym

)d
=

1
2

(xn − y1)
c(y2 − xn)

d =
1
2
(ym − y1)

c(y2 − ym)
d

=
( 1

21/2c
(ym − y1)

)c( 1
21/2d

(y2 − ym)
)d

=

[(
1

21/2c
ym +

(
1− 1

21/2c

)
y1

)
− y1

]c

×[
y2 −

((
1− 1

21/2d

)
y2 +

1
21/2d

ym

)]d

. (5.18)

So,

xn =
1

21/2c
ym +

(
1− 1

21/2c

)
y1 =

(
1− 1

21/2d

)
y2 +

1
21/2d

ym. (5.19)

To make sure xn+1 ∈ [0,1], we determine r by substituting Equation (5.19)

into Equation (5.12). Let xn,1 =
1

21/2c ym+
(
1− 1

21/2c

)
y1 and xn,2 =

(
1− 1

21/2d

)
y2+
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1
21/2d ym. Then, we obtain the range of r as

0 ≤ r
(

xn,1 − y1

ym − y1

)c(y2 − xn,2

y2 − ym

)d[
1−

(
xn,1 − y1

ym − y1

)c(y2 − xn,2

y2 − ym

)d]
≤ 1

0 ≤ r
( 1

21/2c (ym − y1)

ym − y1

)c( 1
21/2d (y2 − ym)

y2 − ym

)d[
1−

( 1
21/2c (ym − y1)

ym − y1

)c( 1
21/2d (y2 − ym)

y2 − ym

)d]
≤ 1

0 ≤ r
( 1√

2

)( 1√
2

)
(1−

( 1√
2

)( 1√
2

)
)≤ 1

0 ≤ r ≤ 4.

(5.20)

From Equation (5.20), we have r ∈ [0,4] which is same as the Logistic map.

5.4 Dynamical performance

In this section, we will characterize the dynamics of Logistic-Beta map

geometrically with the trajectory and bifurcation plots, and statistically with the

Lyapunov exponent.

5.4.1 Trajectory

Trajectory or orbit presents the moving path of the set of all points in the

dynamical system (Kocarev and Lian, 2011). We show the trajectories for the

Logistic-Beta map and the chaotic maps discussed in Section 5.2.

For Logistic-Beta and Beta maps, we set the initial values, x0 = 0, as shown

in Figures 5.1a and 5.1c. While the initial values for Logistic map and modified

Logistic maps, x0 = 0.1 and their trajectories are plotted in Figures 5.1b and

5.1d. As shown in Figure 5.1a, Logistic-Beta map has a larger distribution area

as compared to Logistic and Beta maps, referring to Figures 5.1b and 5.1c. Even
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though the modified Logistic map in Figure 5.1d has a wider range for xn+1, the

outputs are not random and lack of dispersion. Therefore, Logistic-Beta map

produces more random output and demonstrates a better ergodicity.

(a) (b)

(c) (d)

Figure 5.1: Trajectory Diagram: (a) Logistic-Beta map with r = 3.5,e =
0.1,y1 = −1,y2 = 1, p1 = 5, p2 = 3,q1 = 1,q2 = −1 (b) Logistic map with
r = 3.58 (c) Beta-map with µ = 0.85,e = 0.65,y1 = −1,y2 = 1, p1 = 5, p2 =
3,q1 = 1,q2 =−1 (d) Modified Logistic map with r = 2

5.4.2 Bifurcation diagram

Bifurcation shows a qualitative change in dynamics for the variation of the

control parameters of a dynamical system (Kocarev and Lian, 2011). In other

word, the dotted area of the diagram describes the chaotic behavior of the

system. As shown in Equation (5.12), Logistic-Beta map consists of two control
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parameters, i.e. r from Logistic map in Equation (5.1) and e from Beta map in

Equation (5.4) and (5.5). We first vary the parameter r and shows the

bifurcation diagram for r = [0,4] in Figure 5.2a. When the parameters exceed

the critical value, i.e. r = 1.155, the Logistic-Beta map exhibits a

period-doubling bifurcation by converting the attractor from a period-1 firing to

a period-2 firing. The following period-doubling bifurcations occur at r = 1.95,

2.1, 2.53, and 3.04. The dotted area in between bifurcations shows that the

onset of chaos as various curves start merging together. As shown in Figure 5.2,

(a) (b)

(c)

Figure 5.2: Bifurcation diagram of chaotic maps with different bifurcation
parameters: (a) Logistics-Beta map with 0≤ r ≤ 4,e= 0.4,y1 =−1,y2 = 1, p1 =
4, p2 = 2,q1 = 1,q2 = 0.2 (b) Logistics map with 2.5 ≤ r ≤ 4 (c) Modified
Logistic map with 0.2 ≤ r ≤ 2

the logistic-based chaotic maps consists of windows of periodic behaviors

causing the maps vulnerable to parameter estimation attacks (Arroyo et al.,

2010).

Logistic-Beta map has an advantage over the other maps as it has another
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control parameter e which enlarges the phase space and make the proposed map

more chaotic. We compare the bifurcation diagram of Beta map and Logistic-

Beta map by varying parameters e, refer to Figures 5.3 for the comparison. As

shown in Figure 5.3a, the proposed map has excellent chaotic behavior along the

range e ∈ [0,6] as it has a very few periodic windows as compared to Beta and

the dotted points are scattered around the area.

(a) (b)

Figure 5.3: Bifurcation diagram of chaotic maps with different bifurcation
parameters: (a) Logistics-Beta map with 0 ≤ e ≤ 9 and r = 3.57,y1 = −1,y2 =
1, p1 = 4, p2 = 2,q1 = 1,q2 = 0.2 (b) Beta map with 0 ≤ e ≤ 9,µ = 0.85,y1 =
−1,y2 = 1, p1 = 4, p2 = 2,q1 = 1,q2 = 0.2

5.4.3 Lyapunov exponent

Lyapunov exponent (LE) is a quantitative measure to test the sensitivity of the

chaotic map to the slight changes in the initial conditions and control parameters

(Kocarev and Lian, 2011). A positive LE indicates that the chaotic map has a

good chaotic behavior, and the higher the LE value shows a better sensitivity of

the map to its initial value or system parameters. From Figure 5.4a, it is obvious

that Logistic-Beta map has the highest LE value and also a greater chaotic range,

i.e. it has positive LE for e > 2.3. As shown in Figures 5.4b and 5.4c, Logistic

map has positive LE for r ∈ [3.57,4] while Beta map has positive LE values for
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e > 3.2. For modified Logistic map in Figure 5.4d, the chaotic map only have

positive LE when r ∈ [−2,−1.5]∪ [1.5,2].

(a) (b)

(c) (d)

Figure 5.4: Lyapunov Exponent: (a) Logistic-Beta map with e ∈ [0,10],r =
3.57,y1 = −1,y2 = 1, p1 = 4, p2 = 2,q1 = 1,q2 = 0.2, (b) Logistic map with
r ∈ [3,4], (c) Beta-map with e ∈ [0,6],µ = 0.85,y1 = −1,y2 = 1, p1 = 4, p2 =
2,q1 = 1,q2 = 0.2, (d) Modified Logistic map with r =±2

5.5 Summary

This chapter proposes a new chaotic map, called Logistic-Beta map. We have

proven that the proposed chaotic map has significantly improved the chaotic

behaviors of classical Logistic and Beta maps. The chaotic behaviors of

proposed chaotic map also have been discussed and compared with modified

Logistic map which is a chaotic map designed based on Logistic map. The
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advantages of Logistic-Beta map is summarized as follows.

1. The large distribution area in the phase plane shows that our map has a

good ergodicity.

2. The large darked area in the bifurcation diagram demonstrates that the

proposed map has a large chaotic region, leading to a large key space.

3. A positive Lyapunov Exponent value indicates that our proposed map has

good sensitivity to initial values.

These advantages make the proposed chaotic map suitable to be applied in an

image encryption scheme.
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CHAPTER 6

DYNAMICS ANALYSIS OF A TWO-DIMENSIONAL CHAOTIC MAP

This chapter focuses on the design and application of a two-dimensional chaotic

map that demonstrates enhanced chaotic behavior. It introduces a new chaotic

map developed through cascading methods to overcome the limitations identified

in previous chapters. The goal is to strengthen the chaotic properties of the map

for cryptographic applications.

Building on previous findings, this work is driven by two key observations.

First, Chapter 4 analyzed Ping et al.’s scheme, which uses the Henon map to

generate pseudorandom sequences. The Henon map serves as the foundation

for both the permutation and diffusion processes in this scheme. Under specific

parameter settings and finite precision environments, its chaotic behavior

deteriorates, resulting in reduced unpredictability and randomness. This

degradation weakens its security, making it vulnerable to cryptographic attacks.

Second, Chapter 5 revealed periodic windows in one-dimensional chaotic maps,

including the Logistic and Beta maps. Even the proposed Logistic-Beta map

exhibits some periodic windows, compromising its effectiveness for encryption.

These weaknesses emphasize the need for more robust chaotic systems.

To address these issues, this chapter proposes a novel two-dimensional

chaotic map by cascading chaotic maps with modular components, enhancing

their overall dynamical properties. The resulting two-dimensional improved

modular chaotic map (2D-IMCM) shows greater sensitivity to initial conditions,

enhanced randomness, and a wider chaotic range than traditional maps. These

improved features are utilized to generate high-quality pseudorandom number

sequences that are suitable for cryptographic applications. Furthermore, this

work lays the foundation for Chapter 8, where a novel two-dimensional
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Sine-Henon map is proposed and applied to a color image encryption scheme.

6.1 Introduction

To solve the dynamical degradation problem, many chaotification approaches

have been proposed by researchers, for example, perturbing chaotic states or

parameters (Luo et al., 2021; Liu et al., 2020), linear feedback control (Liu

et al., 2020; Liu and Liu, 2020), coupling (Liu and Liu, 2020; Pak et al., 2021),

and cascading of multiple chaotic maps (Pak et al., 2021; Zhang, Ding and Li,

2020; Wong, Yap, Goi and Wong, 2020). Comparison of these approaches is

summarized in Table 6.1.

Table 6.1: Comparisons of Chaotification Approaches

Chaotification

Methods

Characteristics Limitations

Perturbation Use external perturbation

sources

High computational cost

Feedback

control

Use state function to

manipulate the trajectory

of chaotic map

Have to work with other

methods to improve the

chaoticity

Coupling Combine chaotic maps High computational cost

Cascading Use outputs of one chaotic

map as the state variable

of another map

Regular dynamics

Comparing to other approaches that require external sources or high

computational costs, cascading technique combines two or more chaotic maps

which can significantly improve the complexity of dynamics characteristics
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with more flexibility and prolong the cycle length. However, the cascading

chaotic systems proposed in (Pak et al., 2021; Zhang, Ding and Li, 2020; Wong,

Yap, Goi and Wong, 2020) that used one-dimensional chaotic maps as the seed

map did not have complex structures. Using Henon map as the seed map in (Wu

et al., 2021) also did not give a good result as the chaotic range of the control

parameters is not broad enough.

The main novelty of this chapter is as follows: (1) We demonstrate the

dynamical degradation of the Henon map in the fixed-point arithmetic domain

using state-mapping network. (2) We apply cascading approach to construct a

new 2-dimensional (2D) chaotic system to produce the pseudorandom

sequences without the usage of external sources and low computational cost. (3)

A pseudorandom number generating algorithm is designed. The output passed

all the subtests in the NIST SP800-22 indicating that it has a good randomness.

Organization: The remainder of this chapter is organised as follows. Section

6.2 describes the preliminaries of some exisiting chaotic maps. Section 6.3

discusses the dynamical degradation of Henon map. Section 6.4 presents the

mathematical model of our newly proposed chaotic map and dynamical analysis

of our proposed map. Section 6.5 discusses the application of our proposed map

to pseudorandom number generator. The last section summarizes the chapter.

6.2 Preliminaries

In this section, we first present the equations of the existing chaotic maps which

will be applied in designing the new chaotic map. A 2D chaotic map, Henon

map will be used as the seed map, while the logistic map will be used as one of

the state variables of 2D chaotic map. We also introduce an 2D modular

chaotification system (2D-MCS) proposed by (Hua et al., 2020) for the
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performance comparison purpose. Given x and y are two state variables, and

n ∈ Z+ is the number of iterations.

Henon map

Recall from Equation (4.1) that the Henon map is mathematically represented by

 xd+1 = 1−ax2
d + yd;

yd+1 = bxd,

where a = 1.4 and b = 0.3 are the control parameters and d is the d-th iteration

of the chaotic map. Lastly, x0 and y0 are the initial values of the chaotic map.

Logistic map

Recall from Equation (5.1), Logistic map is represented by

xd+1 = µxd(1− xd), (6.1)

where µ is the control parameter.

2D-MCS

2D-MCS is proposed by Hua et al. (2020) and it is represented by

M(x,y) = F(x,y) mod N, (6.2)

where F(x,y) is a 2D chaotic map and N is a positive integer. We let F(x,y) be

the Henon map where they are given in Equations (4.1). The resulting chaotic

maps are named as Improved Henon map.
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6.3 Dynamical degradation of Henon map

As mentioned in Subsection 4.2.1 of Chapter 4, the Henon map from Equation

(4.1) is utilized to generate pseudorandom sequences for keystream generation.

However, when the Henon map is implemented on digital computers with limited

precision, the dynamic properties of the continuous chaotic map may not be

preserved. This section further explores the dynamical properties of the Henon

map through the state-mapping network (SMN).

According to Li, Feng, Li, Kurths and Chen (2019) and Li et al. (2021),

using the fixed point precision of n and quantifization, the SMN is built with

(2n)2 possible states. For illustration, SMNs of Henon map are plotted with the

control parameters a = 1.4,b = 0.3 and the precision of n = 3,4 using Matlab

R2019a environment. For n = 3 or 6-bit precision, the output of each iteration

of the henon map will fall into one of the (23)2 = 64 states. For n = 4 or 8-bit

precision, it will have (24)2 = 256 possible states. As shown in Figure 6.1, the

characteristics of the iteration trajectories of the Henon map are listed below:

• All the initial states numbered from [−2n,2n −1] converge to fixed points

through the transient process. The fixed points are referring to self-loops

in the SMN, i.e. −16 and −17 for n = 3, and −47 and −49 for n = 4.

• The transient length, namely the distrance from a leaf nodes to a root node

is very short. Many initial states converge to the fixed point in only one or

two iterations.

Based on the observations, different initial values of the henon map can produce

the same chaotic sequence after a short iteration. This indicates that numerous

invalid and equivalent keys may lead to identical chaotic sequences. As a result,

the key space is significantly smaller than anticipated in practical applications.

To address this issue, one might consider utilizing a chaotic system with greater
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(a) n = 3

(b) n = 4

Figure 6.1: State-mapping networks of Henon map with a = 1.4 and b = 0.3,
implemented under different fixed-point precisions n
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complexity and a longer cycle length, which can withstand dynamic degradation

in real-world scenarios.

6.4 Two-dimensional improved modular chaotic map

The 2-dimensional improved modular chaotic map (2D-IMCM) proposed in this

chapter is expressed by

 x1,d+1 = g(x1,d, f (x2,d + k) mod N;

x2,d+1 = g(x1,d, f (x2,d + k) mod N,
(6.3)

Under this proposal, a 2-dimensional chaotic system is cascaded with other

function to prolong the cycle length. In other words, the output of f is used to

initiate the pseudo trajectory of another function, g for every iteration. So, f (·)

denotes the logistic map while g(·) denote the seed map which is the 2D chaotic

map.

To show the effectiveness of 2D-IMCM, we use Henon map as the seed map.

We name the resulting chaotic map as 2D-Henonlog map. The equation of the

proposed 2D-Henonlog map is given as

 xd+1 = 1−ax2
d +µyd(1− yd)+ k mod N;

yd+1 = bxd mod N,
(6.4)

where µ , a and b are control parameters, N is positive integer, and k is a constant

to improve the complexity.
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6.4.1 Proof of chaoticity

To prove a dynamical system is chaotic, we must fulfill two criteria: (1) The

chaotic map must be bounded. (2) There must have at least one positive

Lyapunov Exponent (LE). If a dynamical system has at least one positive LE,

then the two extremely close trajectories will diverge in multi-direction over the

time, and make the dynamical system become chaotic.

The first criterion is fulfilled because the equation involves modular

arithmetic, so the outputs are bounded as 0 ≤ xd,yd ≤ N, where N is the number

of iterations. To show 2D-IMCM fulfills the second criterion, we use the

method proposed by Alawida et al. (2019). Let g be the function of 2D chaotic

map and f be the function of logistic map. The LE of 2D-IMCM is given by

LE = lim
n→∞

1
n

n−1

∑
d=0

ln
∣∣∣∣dg
dx

| f (xd) ×
d f
dx

|xd

∣∣∣∣
= lim

n→∞

(
ln
∣∣∣∣dg
dx

| f (xd) + ln |d f
dx

|xd

∣∣∣∣)
= lim

n→∞

(
ln
∣∣∣∣dg
dx

| f (xd)

∣∣∣∣)+ lim
n→∞

(
ln
∣∣∣∣d f
dx

|xd

∣∣∣∣).
(6.5)

When both LEg and LE f are greater than zero, then LE of 2D-IMCM will be

greater than zero, meaning that 2D-IMCM is chaotic. To make LEg, LE f > 0,

the selection of control parameters within the chaotic region of the chaotic map is

important. Henon map is chaotic when a = 1.4 and b = 0.3, whereas the chaotic

region of logistic map is µ ∈ (3.5699456,4). As shown in Figures 6.2a and 6.2b,

both chaotic maps have one positive LE.

LE is also an indicator to show the sensitivity to the initial conditions. The

higher the LE values of the chaotic maps, the better its sensitivity. From Figures

6.2a and 6.2c, it is observed that the LE value of 2D-Henonlog map is 1.7119

which is larger than LE value of Henon map, 0.42311. Thus, our proposed 2D-
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IMCM has better chaotic behavior than its underlying map.

6.4.2 Performance evaluations

In this section, we present the dynamics of 2D-IMCM geometrically using the

bifurcation plots to visualize the chaotic range of the 2D-IMCM. We also plot

the state mapping network of the 2D-IMCM to study its periodicity. In the study,

we compare their performance with the existing 2D chaotic system, i.e., Henon

map and Improved Henon map proposed by Hua et al. (2020).

Bifurcation Diagram

Bifurcation diagram is a test showing the dynamical change of a chaotic map

when the control parameters change (Kocarev and Lian, 2011). The dotted area

scattered on the diagram indicates the chaotic area of a chaotic map. In the

experiment, we set x0 = 0.1,y0 = 0.1,a = 1.4,b = 0.3,k = 3,µ = 3.67 for

Henon, Improved Henon and 2D-Henonlog maps. Figures 6.3a-6.3c shows the

bifurcation diagrams by changing parameter a, Figures 6.3d-6.3f demonstrates

the bifurcation diagrams by changing parameter b. It can be seen that Henon

map in 6.3a & 6.3d and Improved Henon map in Figure 6.3b & 6.3e exist

multiple periodic windows which shows non-chaotic regions on the

discontinuous chaotic ranges.

From Figure 6.3c and 6.3f, it is observed that the outputs of our proposed

2D-Henonlog map are randomly distributed on the entire phase plane for a wide

range of parameters. Besides, 2D-Henonlog also has another advantage of

having additional parameters µ and k which can widen the phase space and

make the dynamical system more chaotic. We vary the parameter µ and k, and
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(a)

(b)

(c)

Figure 6.2: Lyapunov Exponents of underlying seed maps
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show the bifurcation diagrams in Figures 6.3g and 6.3h. Apparently,

2D-Henonlog has excellent chaotic behaviors because the dotted points are

scattered evenly in the whole range of the parameters.

State mapping network

To investigate the dynamical degradation of the chaotic map, we use the state

mapping network (SMN) to observe iterative trajectories of the digital chaotic

maps. The periodic distribution of chaotic maps is studied in the following

aspects: the maximal transient length, cycle length, number of cycles, and the

number of fixed points. In the study, the SMNs are drawn with (2n)2 possible

states, where n is the finite computational precision. We use n = 3 in the

experiment, meaning that the outputs of the chaotic maps will fall into 64 states.

We also choose the parameters where the chaotic maps are chaotic, refer to

Figures 6.1a, 6.4a and 6.4b for SMNs of Henon map, Improved Henon map and

2D-Henonlog map, respectively. The results of periodic distribution are

compared and summarized in Table 6.2.

We observe that Henon map and 2D-Henonlog map has two cycles, whereas

Improved Henon map has three cycles. The maximal transient length measures

the largest number of iterations of the state variables before entering into a cycle.

From Figures 6.4a and 6.4b, it is observed that 2D-Henonlog map has the same

maximal transient length with the Improved Henon map. Both chaotic maps

enter into a periodic cycle after 8 iteration operations, but the cycle length of

2D-Henonlog map is longer. Besides, 2D-Henonlog map also does not have

fixed point. The fixed point is represented by the self-loops in the SMNs. From

Figures 6.1a and 6.4a, we can see that Henon and Improved Henon map tends to

converge to the fixed points after limited number of iterations. This means that

there might exist equivalent keys that would result in same chaotic sequences.

The results show that our proposed chaotic maps are outperformed than the other
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: Bifurcation diagram of chaotic maps
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the chaotic maps.

(a) State-mapping network of Improved Henon map

(b) State-mapping network of 2D-Henonlog map

Figure 6.4: SMN of chaotic maps

6.5 Application to pseudorandom number generator

Chaotic map is commonly used to design a pseudorandom number generator

(PRNG) whereby the sequence produced by PRNG is useful to build the

permutation vector and perform encryption operations of the image encryption
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Table 6.2: Comparisons of period distribution

Chaotic map Max. Max. No. of No. of
(control transient cycle cycle fixed
parameters) length length points
(a) Henon 3 0 2 2
(b) Improved Henon 8 4 3 1
(c) 2D-HenonLog 8 5 2 0

algorithm. This section presents a PRNG designing algorithm based on

2D-Henonlog. The algorithm is given as follows.

1. Set the initial conditions (x0 = 0,y0 = 0) and control parameters of the 2D-

Henonlog (a = 1.4,b = 0.7,k = 3,µ = 3.67) given in Equation (6.4)).

2. Iterate the chaotic maps for 106 times.

3. Apply the following formula to the outputs of 2D-Henonlog.

X = {floor(xd ×1015)(mod 256)}106

d=1,

Y = {floor(yd ×1015)(mod 256)}106

d=1.

4. Obtain sequences X′ and Y′ by converting the sequences X and Y to an 8-bit

binary array.

To test the pseudorandom-like behavior of the PRNG produced from the

algorithm above, we perform the randomness test by using the National

Standard and Technology Institute (NIST) SP800-22 test suite (Bassham III

et al., 2010). It consists of 15 subtests with passing criteria that the p-value of

each test must be greater than or equal to the significance level of α . In our

experiment, we set α = 0.01 and 106 bit in the bitstream length. The results are

presented in Table 6.3. It shows that the PRNG produced by our proposed

chaotic maps passed all the subtests.

1denotes the average values of the respective tests.
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Table 6.3: NIST SP800-22 Test Results

Test p-value
Frequency 0.122325
Block Frequency 0.213309
Cumulative Sums1 0.350485
Runs Test 0.534146
Longest Run 0.350485
Binary Matrix Rank 0.739918
FFT 0.534146
Non-overlapping Template1 0.494351
Overlapping Template 0.534146
Universal 0.534146
Approximate Entropy 0.122325
Random Excursions1 0.482017
Random Excursions Variant1 0.232147
Serial1 0.630949
Linear Complexity 0.534146

6.6 Summary

This chapter presents a new two-dimensional chaotic map based on cascading

technique and modular operation. Henon map was chosen as the examples to

show the effectiveness of the proposed chaotic map. The chaoticity of the

chaotic map was proven. The dynamical performance was shown by using

bifurcation diagram and state mapping network. The results show that our

proposed chaotic map possesses a better chaotic behavior as compared to the

underlying seed maps and other existing chaotic maps. The chaotic map was

applied to design a PRNG. The sequences produced by the PRNG passed all the

subtests in the NIST SP800-22 test suite. Despite of that, there are still some

tests can be carried on the produced sequences, e.g., complexity test, speed test,

scale index, etc. Besides, we can further extend the research work to the

application of the cascading chaotic map in the image encryption algorithm.
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CHAPTER 7

A NEW IMAGE ENCRYPTION SCHEME BASED ON

HYPERCHAOTIC SYSTEM AND SHA-2

This chapter builds upon the cryptanalysis conducted in Chapters 3 and 4 by

introducing a new image encryption scheme that addresses the weaknesses

identified in previous methods. Chapter 3 revealed that the genetic

algorithm-based encryption scheme proposed by Biswas et al. has low

sensitivity to changes in plaintext, which violates key cryptographic design

principles such as nonlinearity. Additionally, Chapter 4 demonstrated that the

scheme by Ping et al., which combines permutation and diffusion into a single

process using the Henon map, suffers from dynamical degradation, making it

vulnerable to chosen-plaintext attacks.

To address these limitations, this chapter presents an improved image

encryption scheme that utilizes a hyperchaotic system and SHA-2. The

hyperchaotic system increases unpredictability and expands the keyspace.

Additionally, a nonlinear diffusion process is integrated to enhance security

against differential attacks, which is a response to the weaknesses found in the

sequential encryption methods of the targeted schemes. The incorporation of

SHA-2 further elevates the sensitivity of the cipher to the plaintext, ensuring

that even a slight change in the input results in a significantly different

ciphertext. By implementing these improvements, the proposed encryption

scheme establishes a more robust security framework and overcomes the

vulnerabilities identified in prior schemes.
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7.1 Introduction

The common chaotic based encryption scheme consists of two processes, i.e.,

permutation and diffusion to fulfill the confusion and diffusion properties

(Shannon, 1949). The permutation-diffusion architecture that firstly proposed

by Fridrich (1998) becomes the benchmark in image encryption and was widely

utilized by many researchers. In the permutation process, the position of the

image is changed at the pixel or bit levels and then the values are altered in the

diffusion process. However, Fridrich’s scheme with multi-round was

cryptanalyzed by Solak et al. (2010) by chosen ciphertext attack and the

cryptanalytic attack was further improved by Xie et al. (2017). Besides, there

are many schemes found to be insecure (Boriga et al., 2014; Zhang et al., 2016;

Biswas et al., 2015; Khan, 2015) and cryptanalyzed by chosen plaintext or

ciphertext attacks (Wen et al., 2017; Wu et al., 2018a; Wong, Yap, Wong, Phan

and Goi, 2020; Alanazi et al., 2021) due to the linear relationship between

cipher and plain image and the independence of chaotic sequences from the

plain image. Moreover, the widely applied diffusion mechanisms based on

different combination of modular addition and exclusively-or operation have

been discussed and cracked by Zhang et al. (2018) and Chen et al. (2021),

respectively.

To overcome the weaknesses mentioned above, this chapter presents an

image encryption based on a hyperchaotic system that modified from Lorenz

chaotic attractor in keystream generation process (Zhang et al., 2017). The

initial condition of the hyperchaotic system is generated by SHA-256 hash

algorithm to avoid the chosen plaintext attack. A new nonlinear equation is used

in the diffusion process to further enhance the security of the image encryption

scheme. The remainder of this chapter is organized as follows. Firstly, the

proposed image encryption scheme is discussed in details. Next, the simulation
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results and the security tests are discussed. Finally, the conclusion is drawn.

Organization: The remainder of this chapter is organised as follows. Section

Section 7.2 presents a new image encryption scheme by using a

four-dimensional hyperchaotic system and adopting permutation-diffusion

architecture. Section 7.3 discusses the security analysis to show that the

proposed scheme has large key and subkey space, high key sensitivity, good

information entropy, and capability to resist statistical and differential attacks.

The last section summarizes the chapter.

7.2 The proposed image encryption algorithm

A four-dimensional hyperchaotic system presented by Zhang et al. (2017) is

applied in our scheme and the mathematical equation is given by



ẋ = a(y− x)− ew,

ẏ = xz−hy,

ż = b− xy− cz,

ẇ = ky−dw,

(7.1)

where x,y,z,w are the state variable, and a, b, c, d, e, h and k are the control

parameters.

The bifurcation diagrams of the hyperchaotic system given in Equation (7.1)

are shown in Figure 7.1. The bifurcation measures the dynamical variation of

the tiny change in one of the parameters. Fig. 7.1a–7.1g shows the bifurcation

diagram with the change of parameter a, b, c, d, e, h and k, respectively. For

example, Figure 7.1a shows the bifurcation diagram for the range of 0 ≤ a ≤ 25,

while the rest of the parameters remain unchanged. Besides of the changing

parameter, the other parameters used in the plotting are x0 = 3.2, y0 = 8.5, z0 =
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3.5, w0 = 2.0, a = 5, b = 20, c = 1, d = 0.1, e = 20.6, h = 1, k = 0.1, x0 = 3.2,

y0 = 8.5, z0 = 3.5 and w0 = 2.0. The dotted points in the diagrams indicates

the chaotic region of the system while the solid lines show the periodic region.

The hyperchaotic system shows chaotic behaviors when a > 0, b > 5, c ∈ (0,2),

d > 0, e > 0, h ∈ (0,4) and k > 0.

To increase the sensitivity of image encryption to plain image, SHA-256 hash

algorithm (FIPS, 2001) is used to generate a 256-bit digest of the plain image, K.

Slightly change in the plain image will results in a totally different digest. The

digest is divided into 32 8-bit blocks as

K = k1,k2, . . . ,k32. (7.2)

The initial conditions of the chaotic system, x0,y0,z0 and w0 are updated using

K as
x′0 = x0 +

(k1⊕k2⊕···⊕k8)
216 ,

y′0 = y0 +
(k9⊕k10⊕···⊕k16)

216 ,

z′0 = z0 +
(k17⊕k18⊕···⊕k24)

216 ,

w′
0 = w0 +

(k25⊕k26⊕···⊕k32)
216 .

(7.3)

Then, the chaotic system is iterated for N0 + L times by using x′0,y
′
0,z

′
0,w

′
0, to

generate four pseudorandom sequences. The first N0 elements are removed to

avoid harmful transient effect and four sequences X = {x(i)}L
i=0, Y = {y(i)}L

i=0,

Z = {z(i)}L
i=0, and W = {w(i)}L

i=0 are obtained, where L is the size of the plain

image. The sequences X, Y, Z and W will be used in permutation and diffusion

stages which will be discussed in the subsections later.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.1: Bifurcation of hyperchaotic systems by changing the range for
different control parameters
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7.2.1 Permutation stage

Permutation is a process to change the position of the plain pixels in order to

disrupt the correlation between the adjacent pixels of an image. Conventionally,

the pixels are swapped by using two-dimensional area-preserving chaotic maps,

for instance, baker’s map and Arnold’s cat map. However, the periodicity,

existence of fixed points, and constrained cycle length of the chaotic maps

jeopardize the efficiency and security level of the process.

To overcome this problem, the permutation vector is generated by the state

variables from the hyperchaotic system given in Equation (7.1). Suppose the

image pixels are scanned sequentially from left to right and from top to bottom

rows. Without the loss of generality, the plain image with size, L = M ×N is

denoted as P= {p(i)}MN
i=0 . The sequence X= {x(i)}MN

i=0 , are changed to an integer

sequence X′ = {x′(i)}MN
i=0 , where

x′(i) = floor([abs(x(i))−floor(x(i))]×1015). (7.4)

The permutated image is produced by using Equations (7.5) and (7.6).

[V,Idx] = sort(X′), (7.5)

P′ = P(Idx). (7.6)

where V is the new vector after sorting X′ in ascending order while the Idx is the

index vector of V. The plain image pixels are then permutated according to the

index value.
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7.2.2 Diffusion stage

To impose the avalanche effect in the encryption scheme, the pixel value is

modified through the diffusion process. Inspired by Hua et al. (2018), a random

matrix R is inserted to the permutated image using the modular addition to

eliminate the linear relationship between plain and cipher images. Firstly, a

sequence Y′ = {y′(i)}MN
i=0 is generated by using the sequence Y from Equation

(7.1) through the following quantization.

y′(i) = floor([abs(y(i))−floor(y(i))]×1015) mod 256. (7.7)

The 1D array of Y′ is then reshape into a M ×N matrix R and the modular

addition is applied on the permutated matrix P′ from Equation (7.6) and R.

R = reshape(Y′,M,N), (7.8)

P′′ = (P′+R) mod 256, (7.9)

where P′′ = {p′′(i)}MN
i=0 .

Besides, the pixel values are further diffused by using a nonlinear equation.

The nonlinear equation is formed by the combination of exclusively-OR and

modular addition of two random masks, permutated pixels and previous cipher

pixels. The random masks are the quantized sequences Z′ and W′ given by

z′(i) = floor([abs(z(i))−floor(z(i))]×1015) mod 256. (7.10)

w′(i) = floor([abs(w(i))−floor(w(i))]×1015) mod 256. (7.11)
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Then, the nonlinear equation is represented by

c(i) = [(z′(i)+w′(i)) mod 256]⊕ (z′(i)+ [(p′′(i)+w′(i))

mod 256⊕ c(i−1)]) mod 256, (7.12)

where c(i) is the ith pixels of the cipher image C = c(i)MN
i=0 .

7.2.3 Encryption algorithm

The detailed encryption process is given as follows:

Input The plain image P with size of M × N, Secret keys (a,b,c,d,e,h,k),

(x0,y0,z0,w0), and N0.

Output Cipher image C.

1. Generate K and updated initial conditions according to Equation (7.2) and

(7.3).

2. Iterate hyperchaotic system in Equation (7.1) for N0 +MN times and discard

the first N0 elements to avoid harmful transient effect. Four chaotic sequences

are obtained X= {x(i)}MN
i=0 , Y= {y(i)}MN

i=0 , Z= {z(i)}MN
i=0 and W= {w(i)}MN

i=0 .

3. Obtain sequence X′ using Equation (7.4) and shuffle the plain image pixels

according to the permutation vector given in Equations (7.5) and (7.6).

4. Obtain sequence Y′ using Equation (7.7) and reshape the random matrix R by

using Equation (7.8). Insert the random matrix R into the permutated image

using Equation (7.9).

5. Obtain two random masks Z′ and W′ using Eqs. (7.10) and (7.11) and perform

diffusion using Equation (7.12) to get cipher image C.
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7.2.4 Decryption algorithm

The detailed decryption process is given as follows:

Input The cipher image C, Secret keys (a,b,c,d,e,h,k), (x0,y0,z0,w0), and N0.

Output The recovered plain image P.

1. Use updated initial conditions to generate hyperchaotic system in Equation

(7.1) for N0 +MN times and discard the first N0 elements to get rid of the

harmful transient effect and obtain four chaotic sequences X= {x(i)}MN
i=0 , Y=

{y(i)}MN
i=0 , Z = {z(i)}MN

i=0 and W = {w(i)}MN
i=0 .

2. Obtain quantized chaotic sequences Z′ and W′ according to Eqs. (7.10) and

(7.11).

3. Obtain P′′ using the following the operation.

p′′(i) = ((((c(i)⊕ ((z′(i)+w′(i)) mod 256))− z′(i)) mod

256)⊕ c(i−1))−w′(i) mod 256.

4. Get sequence Y′ and matrix R by using Eqs. (7.7) and (7.8) and obtain P′ =

(P′′−R) mod 256.

5. Recover plain image by performing P(Idx) = P′.

7.3 Security analysis

The simulations for image encryption algorithm were implemented in MATLAB

R2019a, using a personal computer with Intel® CoreTM i5-8250 CPU @ 1.60GHz,

8 GB memory and a Windows 10 operating system. To evaluate the performance
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of our proposed encryption scheme, we selected a 256×256 plain image titled

‘Airplane’ from the USC-SIPI image database. The secret keys used in the test

are a = 5, b = 20, c = 1, d = 0.1, e = 20.6, h = 1, k = 0.1, x0 = 3.2, y0 = 8.5,

z0 = 3.5 and w0 = 2.0. To test the security of the proposed method, the key

and subkey space, ability to resist statistical and differential attacks, information

entropy, and secret key sensitivity are tested in the experiments.

7.3.1 Key and subkey space

For a secure image encryption, the key space must be large enough to withstand

the brute force attack. The secret keys are the initial conditions (x0,y0,z0,w0)

and control parameters of hyperchaotic system (a,b,c,d,e,h,k), and the digest

of SHA-256 K = k1,k2, . . . ,k32. According to IEEE standard for floating point

(Rajaraman, 2016), the computation precision of floating-point number is around

10−15. So, the key space is 1015×11 ×2256 ≈ 2342.37.

According to Yap et al. (2016), the encryption scheme is breakable if the

subkeys can be recovered by the attacker easily. In the proposed scheme, the

plain image can be recovered if the (a,b,c,d,e,h,k) and (x′0,y
′
0,z

′
0,w

′
0) are

known. There exist 1015×7 possible values for (a,b,c,d,e,h,k). On the other

hand, the possible values of (x′0,y
′
0,z

′
0,w

′
0) depend on (x0,y0,z0,w0) and the

exclusively-or of ki, for 1 ≤ i ≤ 32. To obtain x′0 in Equation (7.3), we require

x0 and k1 ⊕ k2 ⊕·· ·⊕ k8, and their possible values are 1015 and 28, respectively.

Same argument applies on y′0, z′0, and w′
0. Thus, the effective key space of this

scheme is 1015×7 × (1015 × 28)4 ≈ 2254.57. Since it is still greater than 2100,

therefore it is sufficient to resist brute-force attack (Alvarez and Li, 2006).
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7.3.2 Statistical attack

Histogram and chi-square test

A secure image encryption must ensure that the cipher image is uniformly

distributed. Histogram is plotted to show the distribution of the pixel intensity

of the image. Figures 7.2a and 7.2b show the plain and cipher images whereas

their respective histogram are plotted in Figures 7.2c and 7.2d. It is obvious that

the pixel values of the plain image are distributed in an unbalanced mode while

the pixel values of the cipher image are uniformly distributed.

(a) (b)

(c) (d)

Figure 7.2: Histogram Analysis. (a) Plain image. (b) Cipher Image. (c)
Histogram of Plain image. (d) Histogram of Cipher image.
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To further verify the uniformity of the pixel distribution of the cipher image,

chi-square (χ2) test is carried out using

χ
2 =

L

∑
i=1

(o(i)−m(i))2

m(i)
,

where o(i) and m(i) denote the frequency of observations and expected frequency

at the ith interval, respectively, and L is the maximum level of grayscale image,

i.e., 256 in this scheme. The smaller the χ2 value, the closer the distribution of

cipher images to the uniform distribution. The result shows that the χ2 value is

274.875 which is lower than the critical value of 293 under significance level of

5%. Therefore, the histogram of the cipher image is uniform.

Correlation analysis

Image data have a high correlation to the adjacent pixels in different directions

i.e., horizontal, vertical and diagonal directions. Attacker could exploit this

feature to retrieve the information of the images. To test correlation between the

adjacent pixels of the encrypted image, coefficient of adjacent pixels ρXY is

calculated by

ρXY =
CovXY

σX σY
,

CovXY =
1
N

N

∑
i=1

(xi −E(X))(yi −E(Y )),

E(X) =
1
N

N

∑
i=1

xi, E(Y ) =
1
N

N

∑
i=1

yi

σ
2
X =

1
N

N

∑
i=1

(xi −E(X))2, σ
2
Y =

1
N

N

∑
i=1

,(yi −E(Y ))2

where X and Y are two adjacent pixels and N is the total number of duplets

(X ,Y ) from the image. From Table 7.1, it shows that the correlation values for

the cipher image are close to zero, which means that the pixels of the cipher
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Table 7.1: Correlation Analysis of Plain and Cipher Images

Image Horizontal Vertical Diagonal
Plain image 0.9571 0.9366 0.8927

Cipher image -0.0093 0.0026 0.0055

image are not correlated to each other.

7.3.3 Differential attack

The commonly used statistical tests to measure the strength of the underlying

encryption scheme against differential attack are number of pixels change rate

(NPCR) and unified average change intensity (UACI). They are represented by

NPCR(C1,C2) =
∑

M
i=1 ∑

N
j=1 F(i, j)

N ×M
×100%,

F(i, j) =

 0, if C1(i, j) =C2(i, j),

1, if C1(i, j) ̸=C2(i, j),

UACI(C1,C2) =
1

MN

M

∑
i=1

N

∑
i=1

∑
M
i=1 ∑

N
j=1 |C1(i, j)−C2(i, j)|

L−1
×100%,

where L is the largest allowable pixel value in the image, while C1 and C2 are two

cipher images with one pixel difference. In the experiment, the upper-left pixel

of the image is added by one pixel to test on the differential attack. As mentioned

in (Wu et al., 2011), the ideal expected values of NPCR and UACI in a grayscale

image should be 99.6094% and 33.4635%, respectively. From the experiment,

the NPCR and UACI values are 99.6307% and 33.4636%, respectively, which

are higher than the ideal values. This shows that our proposed scheme has good

avalanche effect and can resist to differential attack.
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7.3.4 Information entropy

Information entropy is a test to measure the randomness and the distribution of

the image pixels. It can be calculated using

H(m) =−
L−1

∑
i=0

P[m(i)] log2 P[m(i)],

where P[m(i)] is the probability of occurrence of m(i), L is the maximum level

of grayscale image, i.e., 256 in this scheme. The maximum value of entropy is

8. The closer the value near to 8, the higher the randomness of the pixels in the

image. In this experiment, the entropy of cipher image is 7.9975, which is close

to 8, so the randomness of the cipher image is satisfactory.

7.3.5 Key sensitivity

This test measures the sensitivity of cipher image to a tiny change in secret key.

A robust algorithm should be able to secure from the attack with a slight change

in the secret key. The attacker cannot break the algorithm and obtain the useful

information by using a similar key. The key sensitivity tests can be conducted in

two methods: (1) a different encrypted image is produced with the altered key,

and (2) the encrypted image cannot be decrypted with a slightly altered key.

For the first method, to determine which secret key x0, y0, z0, or w0 has the

highest sensitivity, we conducted a test by adding 10−15 to each key individually

while keeping the other keys unchanged. Our comparisons revealed that y0 has

the greatest effect on the cipher. Specifically, the image encrypted using y0 +

10−15 exhibited the highest difference ratio compared to the image encrypted
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Table 7.2: Difference ratio between the encrypted image using the original key
and the updated key.

Updated Key x0 +10−15 y0 +10−15 z0 +10−15 w0 +10−15

Difference Ratio 0.995681 0.996490 0.996124 0.996094

with the original key. The difference ratios for each updated key are summarized

in Table 7.2. For graphical illustration, we utilize two keys: key1 (x0 = 3.2,y0 =

8.5,z0 = 3.5 and w0 = 2.0) and key2 (x0 = 3.2,y′′0 = 8.5+ 10−15,z0 = 3.5 and

w0 = 2.0). We encrypt the same plain image using both key1 and key2, resulting

in different encrypted images (refer to Figures 7.3b and 7.3c). The difference

ratio between these two encrypted images, as shown in Figure 7.3d, is 0.99649.

This indicates that 99.649% of the pixels between the two images are different.

Therefore, the encrypted image produced by a slightly altered key is entirely

different and cannot be exploited by an attacker.

In the second method, we use key1 to encrypt the plain image (see Figures

7.3a and 7.3b). Then, both key1 and key2 are used to decrypt the cipher image.

Both key1 and key2 are then employed to decrypt the encrypted image. As shown

in Figures 7.3e and 7.3f, the original image can only be recovered using key1.

The image decrypted with key2 is completely unrecognizable.

7.3.6 Comparison of the test performance

The performance of the proposed scheme is compared with the encryption

schemes presented by Boriga et al. (2014); Zhang et al. (2016); Biswas et al.

(2015); Khan (2015) and the values are summarized in the Table 7.3.

Our proposed scheme has the largest key space which indicates that it is the

safest against the brute force attack. Even though the correlation of the

proposed scheme is not the best, it is very close to 0. That means the cipher
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Key Sensitivity Analysis. (a) Plain image. (b) Cipher Image using
key1. (c) Cipher Image using key2. (d) Difference between Figures 7.3b and 7.3c
(e) Recovered image using key1. (f) Recovered image using key2.
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Table 7.3: Comparison of Test Performance

Test Proposed Boriga et al. Zhang et al. Biswas et al. Khan
Key space 2254.57 2248 2159 2448 2159

Correlation:
Horizontal -0.0093 0.001587 -0.004223 0.0027 0.0107
Vertical -0.0026 0.014706 0.00055 0.0019 0.0141
Diagonal 0.0055 0.002381 -0.003665 0.0070 0.0097
NPCR 99.6307% 99.27% 99.6155% 99.676% 99.6124%
UACI 33.4636% 33.22% 33.4988% 33.422% 33.4591%
Information
Entropy 7.9975 7.999282 7.9992495 7.9988 7.9972

pixels are not correlated to the adjacent pixels. The NPCR and UACI scores in

our proposed scheme is higher than than the ideal values, i.e. 99.6307% and

33.4636%, respectively. Thus, it is good in resisting against the differential

attack. Lastly, the information entropy of our proposed scheme is not as good as

the other. However, it is very close to the 8, therefore the randomness of the

proposed scheme is still satisfactory.

7.4 Summary

This chapter presents a new image encryption scheme based on the

hyperchaotic system and SHA-2 algorithm. The hyperchaotic system has a

better chaotic behavior over the lower-dimensional chaotic system in terms of

ergodicity, sensitivity to the initial condition and control parameters,

randomness and structural complexity. Furthermore, the use of SHA-256 hash

function in modifying the initial conditions of the hyperchaotic system highly

enhances the sensitivity of the cipher to the change of plain image. The

nonlinear equation used in the diffusion process also introduces a good

avalanche effect in the encryption scheme. To test the security level of the

proposed scheme, a series of experiments have been conducted. All the
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numerical results demonstrate that our proposed scheme has good security

performance and thus it is suitable for image encryption.
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CHAPTER 8

CROSS-PLANE COLOR IMAGE ENCRYPTION BASED ON

TWO-DIMENSIONAL SINE-HENON MAP AND GENETIC

ALGORITHM

Building on the cryptanalysis conducted in Chapters 3 and 4, this chapter

presents a new image encryption scheme that addresses the weaknesses

identified in previous methods suitable for color images. Chapter 3 examined

Biswas et al.’s encryption scheme, which demonstrated low sensitivity to

plaintext changes, violating fundamental cryptographic principles such as

strong diffusion and nonlinearity. Similarly, Chapter 4 investigated Ping et al.’s

encryption method, which relies heavily on the Henon map for both

permutation and diffusion. However, due to the dynamical degradation of the

Henon map under certain conditions, the encryption exhibited weak diffusion

effects, making it vulnerable to chosen-plaintext attacks. Chapters 5 and 6

introduced the cascading method to improve the chaotic properties of maps.

Motivated by these approaches, we propose a novel chaotic map that integrates

the sine trigonometric function with the Henon map to enhance its chaotic

behavior.

Unlike the grayscale image encryption proposed in Chapter 7, this chapter

focuses on dynamically encrypting the cross-planes of color images to

maximize security. To further enhance the sensitivity of the cipher to plaintext

changes, we incorporate the SHA-256 hash function, ensuring that even minor

modifications in the input image produce significant alterations in the

encryption process. Additionally, we integrate genetic algorithms that leverage

the intrinsic characteristics of image bit distributions, applying mutation and

crossover operations in a dynamic order. A novel uniform crossover method is
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introduced to improve randomness. Lastly, pixel-level diffusion is implemented

to enhance the avalanche effect, strengthening the overall security of the

encryption scheme against cryptanalysis.

8.1 Introduction

The majority of proposed image encryption schemes work at the pixel level.

Most of these schemes encounter an issue where the pixel value and histogram

statistics remain unchanged after the permutation process, primarily due to

insensitivity to tiny change of the plain-image. To overcome this problem, many

researchers incorporate bit-level operations into their designs, which involve

studying the bit distributions within each pixel. Furthermore, a significant

number of them combine this technique with DNA coding (Rehman et al.,

2019; Akkasaligar and Biradar, 2020). When performing the permutation and

diffusion process, intrinsic features of the image are taken into consideration.

This process involves dividing the image into two blocks, namely those

containing the most significant bits (MSB) and least significant bits (LSB)

respectively. Different treatments are given to MSB and LSB blocks, whereby

the MSB block that carries around 94.12% of information should be given more

attention. In the diffusion process, bit-level encryption is susceptible to

chosen-plaintext attacks. Therefore, we continue to employ pixel-level diffusion

after bit-level encryption.

Genetic algorithm was firstly introduced by Holland (1975, 1992) in

encryption algorithm. This technique imitates the natural evolution and

selection process. To apply genetic algorithm in image encryption, the genetic

information is substituted by the pixel or bit values of an image. There are two

genetic operators in this technique: crossover and mutation. For a new sequence
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to be generated, a pair of parent sequences and the crossover region are chosen.

The information in between the crossover region of parent sequences are

swapped to produce the child sequences. Mutation operator is a process to

change the information of the selected sequences through the flipping of the bit

values. Biswas et al. (2015) presented an image encryption algorithm based on

genetic operations for wireless sensor network but it was found insecure against

the known plaintext attack (Wong, Yap, Wong, Phan and Goi, 2020). Mozaffari

(2018) proposed a grayscale image encryption algorithm using the crossover

and mutation operations to perform the bitplane permutation and substitution

processes. Zhang, He, Li and Wang (2020) proposed an color image encryption

by converting each color plane into a one-dimensional sequence and applying

the genetic algorithms on each color plane separately. The common weaknesses

of these image encryption algorithms are the secret keys for the mutation and

crossover are independent of the plain image, resulting the algorithms are

vulnerable to the plaintext-like attacks.

In this chapter, we present a color image encryption based on the

two-dimensional sine-henon chaotic map and genetic algorithm. We also adopt

the cross-plane selective encryption method to improve the encryption power

and security level.

Organization: The remainder of this chapter is organised as follows. In the

next section, we recall the operations of the genetic algorithm. We then presents

a new two-dimensional chaotic map based on sine and henon maps to generate

the pseudorandom sequences for encryption in Subsection 8.3. In Section 8.4,

we present an image encryption scheme that composes both bit-level encryption

and pixel-level diffusion. In Section 8.5, we present the security analysis on the

key space, key sensitivity and resistance to chosen plaintext attack. Section 8.6

concludes the chapter.
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8.2 Genetic Algorithm

Genetic algorithm is a technique that emulates the principles of natural

selection and genetics observed in biological evolution. It involves two

fundamental operations: crossover and mutation. Crossover is a process of

exchanging the selected part of two parent bit strings to produce the child bit

strings. The crossover technique includes single-point, two-point and

multi-point crossover Wong, Yap, Wong, Phan and Goi (2020). On the other

hand, mutation introduces random changes to the offspring population.

8.2.1 One-point crossover

Single-point crossover is a process where single point is chosen and the parts

before or after of the chosen point are exchanged between two parent bit strings.

Let A = (a1,a2, . . . , an) and B = (b1,b2, . . . ,bn) be two parent bit strings with

size of n, and crossover points f ∈ {1, . . . ,n} and g ∈ {1, . . . ,n} are the index of

the parent bit strings to be swapped. Let A′ = (a′1,a
′
2, . . . , a′n) and

B′ = (b′1,b
′
2, . . . ,b

′
n) be the corresponding child bit strings. When the crossover

points f and g are equal, we apply the one-point crossover on the parent bit

strings A and B. If f > n
2 , then the first bit until the f th bit of the parent bit

strings will be interchanged, the crossover process

(A′,B′) = Crossover1(A,B, f ,g) is given in Equation (8.1). Refer to Figure 8.1a

for graphical illustration.
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a′i =


bi, for 1 ≤ i ≤ f ,

ai, for f < i ≤ n.

b′i =


ai, for 1 ≤ i ≤ f ,

bi, for f < i ≤ n.

(8.1)

If f ≤ n
2 , then the ( f + 1)th bit until the last bit of the parent bit strings will

be interchanged, refer to Figure 8.1b for the graphical demonstration. The child

bit strings (A′,B′) = Crossover1(A,B, f ,g) can be obtained by

a′i =


bi, for f < i ≤ n,

ai, for 1 ≤ i ≤ f .

b′i =


ai, for f < i ≤ n,

bi, for 1 ≤ i ≤ f .

(8.2)

8.2.2 Two-point crossover

Similar to one-point crossover, the selected part in between two points of two

parent bit strings are exchanged. Let f and g are two crossover points. When f

and g are different, two-point crossover will be applied the parent bit strings A

and B. If f < g, the bit values in between f th until gth positions of the two parent

bit strings are interchanged and produce the child bit strings A′ = (a′1,a
′
2, . . . ,

a′n) and B′ = (b′1,b
′
2, . . . ,b

′
n). The equation (A′,B′) = Crossover2(A,B, f ,g) are

shown in Equation (8.3), refer to Figure 8.2a for graphical illustration. Equation

(8.3) also applies for f > g, where the graphical representation of the process is
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a1 · · · ax/2 af−1 afax/2+1

af+1 · · · an

Parent bit string A

f th bit

b1 · · · bf+1 . . .bf

Parent bit string B

Child bit string A′

Child bit string B′

Crossover1

. . .

bf−1 bnbx/2 bx/2+1 . . .

1st bit

a1 · · · ax/2 af−1 afax/2+1 af+1 · · · an. . .

b1 · · ·

bf+1 . . .

bfbf−1

bn

bx/2 bx/2+1 . . .

(a)

Parent bit string A

f + 1th bit

b1 · · · bf+1 . . .bf

Parent bit string B

Child bit string A′

Crossover1

bf−1 bnbx/2 bx/2+1. . .

nth bit

a1 · · · ax/2af−1 af ax/2+1af+1 · · · an. . .

a1 · · · af−1 af bf+1 . . . bnbx/2 bx/2+1. . .

ax/2 ax/2+1af+1 · · · an. . .b1 · · · bfbf−1

Child bit string B′

(b)

Figure 8.1: One-point crossover process
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shown in Figure 8.2b.

a′i =


bi, for f ≤ i ≤ g,

ai, for i < f or i > g.

b′i =


ai, for f ≤ i ≤ g,

bi, for i < f or i > g.

(8.3)

8.2.3 Uniform crossover

Uniform crossover is a process where the child bits are produced from either

parent with equal probability. Let A = (a1,a2, . . . , an) and B = (b1,b2, . . . ,bn)

be the parent bit strings and C = (c1,c2, . . . , cn) and D = (d1,d2, . . . , dn) be

two binary strings with length n. In this chapter, the bits of A and B will be

interchanged if the bits of the corresponding positions in C and D are equal,

i.e., ci = di for i ∈ {1,2, . . . ,n}. The child bit strings A′ = (a′1,a
′
2, . . . , a′n) and

B′ = (b′1,b
′
2, . . . ,b

′
n) of the uniform crossover are produced based on (A′,B′) =

Crossoveru(A,B,C,D), where

a′i =


bi, for ci = di,

ai, for ci ̸= di.

b′i =


ai, for ci = di,

bi, for ci ̸= di.

(8.4)

Refer to the example given in Figure 8.3, as the values of bits at position 2,3,4

and 7 of binary string C and D are the same, the bits at the corresponding

positions of parent bit strings A and B are interchanged.
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a1 · · · af−1 af+1 ag−1. . . agaf ag+1 · · · an

Parent bit string A

f th bit gth bit

b1 · · · bf−1 bf+1 bg−1. . . bgbf bg+1 · · · bn

Parent bit string B

a1 · · · af−1

af+1 ag−1. . . agaf

ag+1 · · · an

Child bit string A′

b1 · · · bf−1 bg+1 · · · bn

Child bit string B′

bf+1 bg−1· · · bgbf

Crossover2

(a)

a1 · · · ag−1 ag+1 af−1. . . afag af+1 · · · an

Parent bit string A

gth bit f th bit

b1 · · · bf−1 bf+1bg−1 . . .bg bfbg+1 · · · bn

Parent bit string B

a1 · · · ag−1 af+1 · · · an

Child bit string A′

b1 · · · bg−1 bf+1 · · · bn

Child bit string B′

Crossover2

ag+1 af−1. . . afag

bf−1. . .bg bfbg+1

(b)

Figure 8.2: Two-point crossover process
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Parent bit string A

a1 a6a2 a3 a4 a5 a7 a8

Parent bit string B

b1 b6b2 b3 b4 b5 b7 b8

Binary string C

c1 c6c2 c3 c4 c5 c7 c8

Binary string D

d1 d3 d4 d5d2 d6 d7 d8
a1 b2 b3 b4 a5 a6 b7 a8

Child bit string A′

b1 a2 a3 a4 b5 b6 a7 b8

Child bit string B′

ci = di, for i = 2, 3, 4, 7
Crossoveru

Figure 8.3: Uniform crossover process

8.2.4 Mutation

Mutation is commonly known as a negation operator that changes one or multiple

bits in a given bit string (Hassan and Abuhaiba, 2011). Let G = (g1,g2, . . . ,gn)

be a n-bit string. Let k ∈ {0,1, . . . ,n} be the mutation. Let Mutation(G,k) be the

function of mutation, where G and k are two parameters for this function. The

output of the function, string H = (h1,h2, . . . ,hn) is obtained by flipping every

kth to nth bits by one bit. If k = 0, G = H. If k ̸= 0, then

h j =

 g j, for 1 ≤ j ≤ k−1,

1−g j, for k ≤ j ≤ n.
(8.5)

Figure 8.4 shows the graphical illustration of the mutation process.

8.3 Proposed chaotic map

The chaotic map plays a crucial role in image encryption by generating

pseudorandom sequences, and its dynamical performance significantly
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g1 g2 . . . gk gk+1 . . . gn

kth bit

gk−1

Mutation

nth bit

g1 g2 . . . 1− gk 1− gk+1 . . . 1− gngk−1

G

H

Figure 8.4: Mutation process

influences the security of encryption. Many researchers favor one-dimensional

chaotic maps due to their simple structures, which facilitate high efficiency.

However, they suffer from drawbacks such as limited and discontinuous chaotic

ranges. The control parameters of these maps serve as the secret keys, but their

small chaotic ranges make the key space becomes small. High-dimensional

chaotic maps are applied in cryptographic applications because of their broad

chaotic ranges and complex structures, despite requiring higher computational

cost. The introduction of two-dimensional chaotic maps addresses the

limitations encountered in both one-dimensional and high-dimensional chaotic

maps. By offering a balance between efficiency and performance,

two-dimensional chaotic maps are widely adopted in image encryption.

8.3.1 2D-SHCM

In order to show the chaotic behavior of a dynamical system, it is necessary to

demonstrate that the chaotic map is bounded. The sine function is a

trigonometric function generating the outputs that are bouded within the
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interval [-1,1]. Unlike the regular Henon map, the 2D-SHCM can leverage the

entire range for parameters a and b because the sine function itself exhibits

chaotic behavior when k is large, and even slight difference in the output of the

seed maps can lead to significant difference in the overall chaotic system.

Moreover, the cascade system further modifies the chaotic states of the Henon

map after each iteration. The dynamical system of 2D-SHCM is represented

mathematically by

xi+1 = sin(π(1+ yi −a(xi + k)2)),

yi+1 = sin(π(b(xi + k)),
(8.6)

where {xi,yi}∞
i=0 ∈ [−1,1] are the state variables, a and b are control parameters

and k is a constant.

The proposed 2D-SHCM improve the chaotic performance of the sine and

henon maps. To demonstrate its strength, we perform evaluatuation on its

chaotic performance and compare it with some recently proposed 2D chaotic

maps. The evaluations are performed using phase diagram, bifurcation diagram,

and state mapping network. A phase diagram visualizes the dynamical behavior

of a chaotic map within the state space over time. Bifurcation diagram

illustrates the transition of chaotic map from periodic to chaotic behavior as the

parameters change. Additionally, the state mapping network serves as a

functional graph to study the period and cycle distribution of the chaotic map in

the digital domain.

8.3.2 Phase diagram

Phase diagram serves as a tool for observing the chaotic trajectories of the

proposed maps in phase space. As illustrated in Fig. 8.5, the attractor of
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2D-SHCM exhibits greater complexity compared to those of 2D-CLSS (Teng

et al., 2022) and 2D-SCS (Hua et al., 2019). Analysis of these diagrams reveals

that the distribution region of 2D-SHCM is significantly larger than that of

2D-CLSS and 2D-SCS. It means that 2D-SHCM has better ergodicity and

randomness, making it more resilient against various forms of attacks.

(a) (b)

(c)

Figure 8.5: Trajectories of 2D chaotic maps: (a) 2D-CLSS, (b) 2D-SCS and (c)
2D-SHCM
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8.3.3 Bifurcation

Bifurcation diagram shows the connections between the chaotic points and the

control parameters. The dotted area in the bifurcation diagram indicates the

chaotic region. Bifurcation diagrams are plotted for the control parameters

p ∈ (0,4) for 2D-CLSS and a,b ∈ (−1,4) for 2D-SCS and 2D-SHCM. From

the Figure 8.6, it demonstrate the 2D-SHCM has the least periodic windows and

all the chaotic points are widely distributed over the range of the control

parameters.

8.3.4 State mapping network

When a chaotic map is generated using a digital device with finite precision,

the resulting chaos fails to maintain the dynamic characteristics of the original

chaotic map in the continuous domain. To study the the dynamical behaviours

of chaotic maps in digital domain, state mapping network (SMN) or functional

graph are utilized to observe the iterative trajectories of the digital chaotic maps.

We apply the techniques given by Li, Feng, Li, Kurths and Chen (2019); Li et al.

(2021) which can be constructed in the following way: the (2n)2 possible states

are are considered as (2n)2 nodes, where n is the fixed-point arithmetic precision.

Every node (x1,y1) is connected with a directed edge to their corresponding node

(x2,y2) by using integer quantization function. In this chapter, we plot the SMN

for 2D-SHCM with the control parameters a = 1.4,b = 0.3 and n = 3, by which

the quantized outputs of the chaotic map will fall into 64 possible states. Then,

the results are compared to 2D-CLSS with p= 2 and 2D-SCS with a= 2,b= 1.5.

The SMNs are given in Figure 8.7 and comparisons of the period distribution of
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(a) (b)

(c) (d)

(e)

Figure 8.6: Bifurcation diagrams of 2D chaotic maps: (a) 2D-CLSS, (b) 2D-
CHS when b = 0.3, (c) 2D-CHS when a = 1.4 (d) 2D-SHCM when b = 0.3 and
(e) 2D-SHCM when a = 1.4
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Table 8.1: Comparisons of period distribution

Chaotic Max. transient Max. cycle No. of No. of fixed
map length length cycles points
2D-SHCM 7 2 1 0
(Proposed)
2D-CLSS 2 5 1 0
2D-SCS 3 2 3 2

the three chaotic maps are shown in Table 8.1.

From Figure 8.7, we observed that 2D-SCS has two cycles, while 2D-CLSS

and 2D-SHCM have one cycle only. It also observed that the maximal transient

length of the proposed chaotic map is 7, where 2D-CLSS and 2D-SCS are 2

and 3, respectively. The proposed map has the longest maximal transient length,

meaning that the state variables requires to iterate more times before entering

into a cycle. From Figure 8.7b, it is evident that 2D-SCS tends to converge into a

fixed point, which is depicted by a self-loop in one of the cycles. This indicates

the potential existence of equivalent keys of equivalent keys that can generate

the identical chaotic sequences. For 2D-CLSS and 2D-SHCM maps, they enter

into a cycle with the cycle length of 5 and 2. The total cycle length is the sum

of the maximal transient length and the maximum cycle length. The proposed

chaotic map exhibits the longest cycle length compared to the other chaotic maps,

demonstrating that our proposed chaotic maps outperform the others.
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(a)

(b)

(c)

Figure 8.7: State mapping network of 2D chaotic maps: (a) 2D-CLSS, (b) 2D-
SCS and (c) 2D-SHCM
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8.4 Proposed image encryption scheme

8.4.1 Notations

Some notations used in this chapter are listed as follows.

• The bold uppercase letters are used to represent an assembly, which can be

an array or sequence, a matrix, or a 3D color image. A plain color image P

with size 3×M×N consists of three color planes R, G and B with each color

plane consists of M ×N pixels. Each pixel of a color plane ranges from 0 to

255 and consists of 8 bits. Each color plane is divided into eight bitplanes

using the BBD technique Zhou, Cao and Chen (2014), i.e.,

R = {R1,R2, . . . ,R8},

G = {G1,G2, . . . ,G8},

B = {B1,B2, . . . ,B8}.

(8.7)

The ith bitplane represents the collection of the ith bit of all pixels in the

corresponding channel, for i ∈ {1,2, . . . ,8}. The ith bitplane can be
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represented in the matrix form as

Ri =



Ri
1,1 Ri

1,2 · · · Ri
1,N

Ri
2,1 Ri

2,2 · · · Ri
2,N

...
... . . . ...

Ri
M,1 Ri

M,2 · · · Ri
M,N


,Gi =



Gi
1,1 Gi

1,2 · · · Gi
1,N

Gi
2,1 Gi

2,2 · · · Gi
2,N

...
... . . . ...

Gi
M,1 Gi

M,2 · · · Gi
M,N


,

Bi =



Bi
1,1 Bi

1,2 · · · Bi
1,N

Bi
2,1 Bi

2,2 · · · Bi
2,N

...
... . . . ...

Bi
M,1 Bi

M,2 · · · Bi
M,N


.

(8.8)

• LSB and MSB denote the least significant bit block and the most significant

bit block, respectively. The LSB is composed of the lower four bitplanes of

the three color planes, while the MSB consists of the higher four bitplanes of

the three color planes. Each block size is 12M×N. The equation of LSB and

MSB blocks are given by

LSB =



l1,1 l1,2 · · · l1,N

l2,1 l2,2 · · · l2,N
...

... . . . ...

l12M,1 l12M,2 · · · l12M,N


,

=

(
R1,G1,B1,R2,G2,B2,R3,G3,B3,R4,G4,B4

)T

,

(8.9)

MSB =



m1,1 m1,2 · · · m1,N

m2,1 m2,2 · · · m2,N

...
... . . . ...

m12M,1 m12M,2 · · · m12M,N


,

=

(
R5,G5,B5,R6,G6,B6,R7,G7,B7,R8,G8,B8

)T

,

(8.10)
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where Ri, Gi and Bi are given by Equation (8.8).

• The operation ⊕ denotes the bitwise logical exclusive OR (XOR) of two bit

strings.

• Let X be a sequence of length L. The operation [Zx,Idxx] = sort(X) denotes

a new sequence Zx obtained by sorting X in ascending order. Corresponding

to the elements in Zx, their indices in X will form a new sequence Idxx, which

is a random permutation of the integers within the range 1 to L.

• The operation f loor denotes rounding a number down to the nearest integer.

8.4.2 Intrinsic properties of image

The information percentage of every bitplane can be calculated based on

Equation (8.11) and the results are shown in Table 8.2. Figure 8.8 visualizes the

amount of image information for color plane B in eight bitplanes.

B(i) =
2i−1

∑
8
i=1 2i−1

, (8.11)

where i refers to the ith bitplane. From Table 8.2, it shows that the lower four

Table 8.2: Information percentage of each bitplane of a color plane

Bitplane, i Percentage (%) Bitplane, i Percentage (%)
1 0.39 5 6.27
2 0.78 6 12.55
3 1.57 7 25.10
4 3.14 8 50.20

bitplanes for i ∈ {1,2,3,4} carry less information as they contribute to a total of

5.88% of the image information, while the higher four bitplanes for

i ∈ {5,6,7,8} carry most of the visually meaningful data as they cover 94.12%
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of the image information. The inherent properties of the bit distribution

motivates us to randomly shuffle the bits from the higher bitplanes with the bits

from lower bitplanes. Another properties is that majority of the bits at the 8th

bitplane has the opposite value from the corresponding bits at 7th bitplane. It is

demonstrated by Figures 8.8g and 8.8h. The processing of interchanging bits

between higher and lower bitplanes can help to eliminate the strong correlation

within the higher bitplanes. In our proposed encryption scheme, the shuffling

process will be done by the crossover process and then followed by the

mutation and non-sequential diffusion process.

8.4.3 Pseudorandom sequences generation

The large key space is important to resist the brute force attack. The secret keys

includes the initial conditions x0,y0 ∈ [−1,1] and control parameters a,b ∈ R

of 2D-SHCM. A secure hash function SHA-256 is applied on the plain image

and its digest is used to obtain the secret keys. Using SHA-256 can make a

slight change of the plain image to generate a totally different digest, and hence

enhance the sensitivity of the image encryption to the plain image. Thirty two

8-bit blocks are generated by the hash function as

H = {h1,h2, . . . ,h32}. (8.12)

To produce two chaotic sequences X and Y, the initial conditions and the

control parameters of 2D-SHCM in Equation (8.6), x0,y0,a and b are updated
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(a) 1st bitplane (b) 2nd bitplane

(c) 3rd bitplane (d) 4th bitplane

(e) 5th bitplane (f) 6th bitplane

(g) 7th bitplane (h) 8th bitplane

Figure 8.8: The eight bitplanes of color plane B
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using the digest H by



x′0 = x0 +
h1⊕h2⊕···⊕h8

215 ,

y′0 = y0 +
h9⊕h10⊕···⊕h16

215 ,

a′ = a+ h17⊕h18⊕···⊕h24
215 ,

b′ = b+ h25⊕h26⊕···⊕h32
215 .

(8.13)

We iterate the 2D-SHCM for T + 15rMN times, where the first T elements are

discarded to avoid the harmful transient effect, and r is the number of encryption

rounds. The resulting chaotic sequences are X = {xi}15rMN
i=1 and Y = {yi}15rMN

i=1 .

Then, these two sequences are divided into following sequences.

X1 = {x1i}12MN
i=1 = {xi}[15(r−1)+12]MN

i=15(r−1)MN+1,

Y1 = {y1i}12MN
i=1 = {yi}[15(r−1)+12]MN

i=15(r−1)MN+1,

X2 = {x2i}12M
i=1 = {xi}[15(r−1)+12]MN+12M

i=[15(r−1)+12]MN+1 ,

Y2 = {y2i}12M
i=1 = {yi}[15(r−1)+12]MN+12M

i=[15(r−1)+12]MN+1 ,

X3 = {x3i}N
i=1 = {xi}[15(r−1)+12]MN+12M+N

i=[15(r−1)+12]MN+12M+1,

Y3 = {y3i}N
i=1 = {yi}[15(r−1)+12]MN+12M+N

i=[15(r−1)+12]MN+12M+1,

X4 = {x4i}M
i=1 = {xi}[15(r−1)+12]MN+12M+N+M

i=[15(r−1)+12]MN+12M+N+1,

Y4 = {y4i}3N
i=1 = {yi}[15(r−1)+12]MN+12M+4N

i=[15(r−1)+12]MN+12M+N+1,

X5 = {x5i}3MN
i=1 = {xi}[(r−1)+1]15MN

i=[15(r−1)+12]MN+1,

Y5 = {y5i}3MN
i=1 = {yi}[(r−1)+1]15MN

i=[15(r−1)+12]MN+1.

(8.14)

8.4.4 Encryption

The overview of the proposed scheme is graphically presented in Figure 8.9. The

detailed process is given as follows:
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Input The 3×M×N color image P, Secret keys x0,y0,a and b.

Output Cipher image C.

1. Generate psedorandom sequences according to the process described in

Subsection 8.4.3.

2. Divide the color image P into three color planes: R, G and B. Decompose

each color plane into eight bitplanes by using Equations (8.7) and (8.8).

3. Obtain LSB and MSB according to Equations (8.9) and (8.10), respectively.

4. Perform mutation that has been discussed in Section 3.2.2 as follows:

(a) Compute X′
1 = {x′i}12MN

i=1 and Y′
1 = {y′i}12MN

i=1 from X1 and Y1 given in

Equation (8.14) as

x′i =

 1, if x1i > 0;

0, otherwise,
y′i =

 1, y1i > 0;

0, otherwise,
(8.15)

Reshape X′
1 and Y′

1 into a 12MN blocks as

X′
1 =



x′1,1 x′1,2 · · · x′1,N

x′2,1 x′2,2 · · · x′2,N
...

... . . . ...

x′12M,1 x′12M,2 · · · x′12M,N


, (8.16)

Y′
1 =



y′1,1 y′1,2 · · · y′1,N

y′2,1 y′2,2 · · · y′2,N
...

... . . . ...

y′12M,1 y′12M,2 · · · y′12M,N


, (8.17)

(b) Calculate the hamming weight of every byte in X′
1 and Y′

1 that obtained

from Equations (8.16) and (8.17) to obtain HW1 = {hw1i, j}12M,N/8
i=1, j=1 and
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HW2 = {HW2i, j}12M,N/8
i=1, j=1 as

hw1i, j+1 =
8 j+8

∑
k=8 j+1

x′i,k, hw2i, j+1 =
8 j+8

∑
k=8 j+1

y′i,k. (8.18)

for i = 1, . . . ,12M and j = 0,1, . . . , N
8 −1.

(c) Based on Equation (8.5), perform mutation on LSB from Equation (8.9)

and MSB from Equation (8.10) to obtain two new blocks

V1 = {v1i,k}12M,N
i=1,k=1 and W1 = {w1i,k}12M,N

i=1,k=1 as

v1i,8 j+1:8 j+8 = Mutation(li,8 j+1:8 j+8,hw1i, j+1), (8.19)

w1i,8 j+1:8 j+8 = Mutation(mi,8 j+1:8 j+8,hw2i, j+1), (8.20)

for i = 1, . . . ,12M and j = 0,1, . . . , N
8 −1.

5. Perform row-wise permutation process using two-point crossover and one-

point crossover that are discussed in Subsections 8.2.2 and 8.2.1 as follows:

(a) Using X2 and Y2 from Equation (8.14) to obtain index vectors Idxx2 and

Idxy2 as

[Zx2,Idxx2] = sort(X2), (8.21)

[Zy2,Idxy2] = sort(Y2). (8.22)

(b) Generate two arrays F = { fi}12M
i=1 and G = {gi}12M

i=1 using X2 and Y2 for

the crossover points by

fi = floor((x2i ×1015) mod N)+1, (8.23)

gi = floor((y2i ×1015) mod N)+1, (8.24)

where i = 1, . . . ,12M and N is the column size.

(c) For i = 1, let Idxx2(i)th row of the V1 be the parent bit string A and
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Idxy2(i)th row of the W1 be the parent bit string B, fi and gi be the

crossover points. Perform crossover to obtain child bit strings(
V2(i, :),W2(i, :)

)
= Crossover

(
V1(Idxx2(i), :),W1(Idxy2(i), :), fi,gi

)
,

where Crossover can be either Crossover1 or Crossover2 depending on

Equations (8.1), (8.2) and (8.3).

(d) Repeat Step 5c for i = 2, . . .12M to obtain two blocks V2 and W2.

6. Perform column-wise permutation process using uniform crossover that are

discussed in Subsection 8.2.3 as follows:

(a) Using X3 and Y3 from Equation (8.14) to obtain index vectors Idxx3 and

Idxy3 as

[Zx3,Idxx3] = sort(X3), (8.25)

[Zy3,Idxy3] = sort(Y3). (8.26)

(b) For i = 1, let Idxx3(i)th column of the V2 be the parent bit string A and

Idxy3(i)th row of the W2 be the parent bit string B.

(c) To determine the crossover region, select Idxx3(i)th and Idxy3(i)th

columns of the respective X′
1 and Y′

1 from Equations (8.16) and (8.17) be

the reference arrays C and D. Perform uniform crossover based on

Equation (8.4) to obtain child bit strings
(
V3(:, i),W3(:, i)

)
=

Crossoveru
(
V2(:,Idxx3(i)),W2(:,Idxy3(i)),X′

1(:,Idxx3(i)),

Y′
1(:,Idxy3(i))

)
.

(d) Repeat Steps 6b and 6c for i = 2, . . .N to obtain two blocks V3 and W3.

7. Form a block U = {ui, j}M,3N
i=1, j=1 with M × 3N pixels by combining V3 and

W3, where pixels from column 1 until N are R color plane, column N + 1

until 2N are G color plane, and column 2N +1 until 3N are B color plane.

8. Apply non-linear diffusion as follows:
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(a) Using X4 and Y4 from Equation (8.14) to obtain index vectors Idxx4 and

Idxy4 as

[Zx4,Idxx4] = sort(X4), (8.27)

[Zy4,Idxy4] = sort(Y4). (8.28)

(b) Obtain two sequences X′
5 = {x′′i }3MN

i=1 and Y′
5 = {y′′i }3MN

i=1 from X5 and

Y5 from Equation (8.14) using quantization as

x′′i = floor((x5i ×1015) mod 256), (8.29)

y′′i = floor((y5i ×1015) mod 256). (8.30)

(c) Let U′(Idxx4(1),Idxy4(0)
)
= ∑

M
i=1 ∑

3N
j=1 ui, j mod 256. Compute

U′(Idxx4(i),Idxy4( j)
)
=



[
(x′′k + y′′k ) mod 256

]
⊕[(

x′′k +
(
U′(Idxx4(i−1),Idxy4(3N)

)
⊕U

(
Idxx4(i),Idxy4( j)

))
mod 256

]
,

for i > 1, j = 1,

[
(x′′k + y′′k ) mod 256

]
⊕[(

x′′k +
(
U′(Idxx4(i),Idxy4( j−1)

)
⊕U

(
Idxx4(i),Idxy4( j)

))
mod 256

]
,

otherwise,
(8.31)

where i = 1, . . . ,M, j = 1, . . . ,3N and k = 1, . . . ,3MN.

9. Arrange U′ into R, G, B channels. Repeat Step 2 until Step 8 for remaining

r−1 rounds to obtain the cipher image C.
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Figure 8.9: Encryption Algorithm

8.4.5 Decryption

The decryption is the reverse process of encryption as follows:

Input The cipher image C, Secret keys x0,y0,a and b.

Output Recovered image P.

1. Repeat Step 1.

2. Divide cipher image into R, G and B color planes. Decompose each color

plane into eight bitplanes.

3. Perform the inverse of diffusion process to obtain block U as follows:
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(a) Obtain Idxx4,Idxy4, and X′
5 and Y′

5 based on Equations (8.27)-(8.30).

(b) Obtain block U by computing

U
(
Idxx4(i),Idxy4( j)

)
=



[(
U′(Idxx4(i),Idxy4( j)

)
⊕

(x′′k + y′′k )− x′′k
)

mod 256
]
⊕

U′(Idxx4(i−1),Idxy4(3N)
)
,

for i > 1, j = 1,

[(
U′(Idxx4(i),Idxy4( j)

)
⊕

(x′′k + y′′k )− x′′k
)

mod 256
]
⊕

U′(Idxx4(i),Idxy4( j−1)
)
,

for ∀i, j > 1,

(8.32)

where i = 1, . . . ,M, j = 1, . . . ,3N and k = 1, . . . ,3MN. Extract

U
(
Idxx4(1),Idxy4(1)

)
that satisfying the following equation.

U
(
Idxx4(1),Idxy4(1)

)
=
[(

U′(Idxx4(1),Idxy4(1)
)
⊕

(x′′k + y′′k )− x′′k
)

mod 256
]

⊕
( M

∑
i=1

3N

∑
j=1

i ̸=1&& j ̸=1

U
(
Idxx4(i),Idxy4( j)

)
+

U
(
Idxx4(1),Idxy4(1)

))
mod 256.

(8.33)

4. Split block U into V3 and W3.

5. Perform the inverse of uniform crossover process as follows:

(a) Obtain Idxx3 and Idxy3 using Equations (8.25) and (8.26).

(b) Obtain X′
1 and Y′

2 by using Equations (8.15)-(8.17).

(c) Obtain V2 and W2 by reversing the uniform crossover process in Step 6,

i.e.,
(
V2(:,Idxx3(i)),W2(:,Idxy3(i))

)
= Crossoveru

(
V3(:, i),W3(:
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, i),X′
1(:,Idxx3(i)),Y′

1(:,Idxy3(i))
)

for i = 1, . . .N.

6. Perform the inverse of two-point or one-point crossover process as follows:

(a) Obtain Idxx2, Idxy2, F and G using Equations (8.21)-(8.24).

(b) Obtain V1 and W1 by reversing the crossover process in Step 5, i.e.,(
V1(Idxx2(i), :),W1(Idxy2(i), :)

)
=Crossover

(
V2(i, :),W2(i, :), fi,gi

)
7. Perform the inverse of mutation process as follows.

(a) Obtain the hamming weight HW1 and HW2 using Equation (8.18).

(b) Obtain LSB and MSB by reversing the mutation process in Step 4.

li,8 j+1:8 j+8 = Mutation(v1i,8 j+1:8 j+8,hw1i, j+1), (8.34)

mi,8 j+1:8 j+8 = Mutation(w1i,8 j+1:8 j+8,hw2i, j+1), (8.35)

8. Arrange LSB and MSB into R, G , B channels and combine them as

recovered image P.

8.4.6 Discussion

The proposed encryption scheme exhibits the following advantages.

1. The image encryption scheme fulfills the confusion and diffusion properties

that required by the secure cryptosystem (Shannon, 1949). The mutation

process alters the bit values of the image data and the changes are spread

over whole planes through the crossover process. The non-sequential

permutation and diffusion process can spread the changes from one bit to

another bit in a random order. The bit-level permutation and diffusion shuffle

the eight bit planes thoroughly by considering the intrinsic features of the

image.
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2. The scheme was ended up with a non-linear pixel-level diffusion to further

diffuse the three color planes completely. The diffusion effect depends on the

keystream elements, pixels from the genetic algorithms and previous

encrypted pixel at the random position.

3. The image encryption has the ability to withstand different types of attacks.

This is because the encrypted image will be totally different with a small

change in the pixel, even with the same secret keys being used. The

non-linear diffusion process could magnify the difference in the output of

genetic algorithms through the bitwise exclusively or and modular addition

operations. If any bit is altered, it will alter the U′(Idxx4(1),Idxy4(0)
)

in

Step 8c of the encryption process and cause all the bits to be changed after

one encryption round. Therefore, the encryption requires one round to obtain

good diffusion effect. Its strength of resistance to different types of attacks

are also shown in Section 8.5 Security Analysis.

4. The structure of the encryption scheme is simple and requires low

computational cost. It requires one encryption round to achieve good

security.

8.5 Security Analysis

This section presents the results of various experiments designed to test the

security level of image encryption. All tests were conducted using the Matlab

R2019a environment on a computer equipped with an Intel® CoreTM i5-8250

CPU @ 1.60GHz, 8 GB memory and the Windows 10 operating system. The

experiments were performed using a colour image titled “House” from the

USC-SIPI image database, which has a size of 256 × 256. The secret keys

employed in the tests are x0 = 0.1,y = 0.1,a = 1.4,b = 0.3.
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8.5.1 Key space

For a secure image encryption, the key space must be large enough to withstand

the brute force attack. The secret keys used in the proposed image scheme are

⟨x0,y0,a,b⟩. Since 2D-SHCM has chaotic behavior when a,b ∈ R, if the

computation precision of floating-point number is around 10−15, then the key

space is (1015)4 ≈ 2199.32, which is large enough to resist the brute–force attack.

8.5.2 Key sensitivity analysis

This test measures the sensitivity of cipher image to a tiny changes in secret key.

The proposed image encryption is extremely sensitive to its initial condition and

control parameters. The initial set of secret keys key1 (x0 = 0.1 and y0 = 0.1) is

changed slightly to key2 (x′0 = 0.1+ 1015 and y′0 = 0.1+ 1015). Both key1 and

key2 are used to encrypt the same plain image (refer to Figure 8.10a) and their

cipher images are shown in Figures 8.10b and 8.10c, respectively. Figure 8.10d

shows the difference in the pixel values of these two images and their difference

ratio is 99.6048%, which indicates that 99.6048% of their pixels are different.

Thus, a slight change in the secret keys can produce the cipher image that is

almost totally different.

Next, the cipher image in Figure 8.10b is then decrypted by using both key1

and key2. Based on the results shown in Figures 8.10e and 8.10f, only key1 can

successfully decrypt the cipher image, while the image decrypted by using key2

is unreadable.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.10: Key Sensitivity Analysis. (a) Plain image. (b) Cipher Image using
key1. (c) Cipher Image using key2. (d) Difference between Figures 8.10b and
8.10c (e) Recovered image using key1. (f) Recovered image using key2.
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8.5.3 Resistance to chosen plaintext attack

The chosen plaintext attack is one of the most threatening attack models

commonly used by adversaries. In this scenario, adversaries possess the

capability to select plaintext images and observe their associated cipher images

(Bleichenbacher, 1998). By exploiting the relationship between the chosen

plain images and corresponding cipher images, the adversaries can recover the

plain image from the cipher image without the need for the secret key.

To resist this plaintext attack, our proposed scheme possesses the following

features: (a) Chaotic random sequence are generated using the plain image

pixel. Small change in the pixel value could result in a totally different

sequence. (b) Crossover and mutation of the genetic algorithm introduces the

permutation-diffusion properties to the encryption model. The possible of the

pixels are shuffled and the slight changes in the plain image could spread over

all the pixels of cipher image. (c) The non-linear diffusion process using the

sum of pixels values as one of the input also amplify the diffusion effect.

To visually demonstrate the robust capabilities of our proposed scheme in

defending against this attack, we conduct the analysis on a color image two

special images with pixels are all zero or 255. The tests that we conducted are

histogram, the coefficients of correlation, NPCR and UACI and information

entropies of cipher images for these two special images.

Histogram

A secure image encryption must ensure that the cipher image is uniformly

distributed. Histogram is plotted to show the distribution of the pixel intensity

of the image. It is obvious that the pixel values of the encrypted image in Figure

8.11c is fairly uniform and totally different from the histogram of plain image in
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Figure 8.11b. The histogram of cipher images for two special images, i.e., all

zeros and 255 pixels are plotted in Figures 8.11d and 8.11d. It is observed that

the outputs are uniformly distributed.

(a) Plain image “House” (b) Histogram of plain image

(c) Histogram of encrypted image (d) Histogram of encrypted all black image

(e) Histogram of encrypted all white image

Figure 8.11: Histogram Analysis

To further verify the uniformity of the pixel distribution, χ2 test are carried
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out using

χ
2 =

k

∑
i=1

(ui −np)2

np
, (8.36)

where ui denotes the frequency of observations at the ith interval and n is the

total frequency and p = 1
k . The smaller the χ2 value, the closer the distribution

of encrypted images to the uniform distribution. As shown in Table 8.3, the

proposed encryption scheme passed the test and has a lower χ2 values for the

encrypted image.

Table 8.3: Comparison of χ2 values of plain and encrypted images for “House”
and encrypted special images

Image χ2

Red Green Blue Average
Plain House 258576.8750 299158.6406 394038.9453 317258.1536
Encrypted House 306.0156 255.7343 298.6718 286.8073
Encrypted all 242.0313 232.7656 260.7344 245.1771
black image
Encrypted all 280.7109 237.9375 257.0547 258.5677
white image

Correlation Analysis

Images have a high correlation to the adjacent pixels in different directions i.e.

horizontal, vertical and diagonal directions. Adversaries could exploit this

feature to retrieve the information of the images. To test correlation between the

adjacent pixels of the encrypted image, coefficient of adjacent pixels ρxy is

calculated using

ρxy =
∑

N
i (xi − x̄)(yi − ȳ)√

(∑N
i=1(xi − x̄)2)(∑N

i=1(yi − ȳ)2)
, (8.37)

where x̄ = 1
N ∑

N
i=1 xi and ȳ = 1

N ∑
N
i=1 yi. From Table 8.4, it can be seen that values

obtained by our scheme are much closer to zero, which means that the pixel

values are not correlated to each other.
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Table 8.4: Correlation coefficient of encrypted images for “House”

Image Correlation Coefficient
Horizontal Vertical Diagonal

Proposed -0.00227 -0.00036 0.00179
Black -0.0025 -0.0075 0.0041
White -0.0025 0.0025 0.0005
Paper Liu and Liu (2020) -0.0119 -0.0087 -0.0045
Paper Hu et al. (2020) 0.0012 0.0034 0.0017
Paper Alexan et al. (2023) 0.0014 -0.0015 0.0079

NPCR and UACI

Differential attack is an attack exploiting the differences of the chosen pairs of

inputs and outputs of a cipher are exploited by the attack (Biham and Shamir,

1991). The commonly used statistical tests to measure the strength of the

underlying encryption scheme against differential attack are number of pixel

change rate (NPCR) and unified average change intensity (UACI). These tests

are applied to two encrypted images C1 and C2 with one pixel difference. They

are represented by

NPCR(C1,C2) =
∑i, j F(i, j)

N ×M
×100% (8.38)

and

UACI(C1 −C2) =
∑i, j |C1(i, j)−C2(i, j)|

L×M×N
×100%, (8.39)

where

F(i, j) =

 0 if C1(i, j) =C2(i, j),

1 if C1(i, j) ̸=C2(i, j),
(8.40)

and L is the largest allowable pixel value in the image. The ideal expectation

values for NPCR and UACI are 99.6094% and 33.4635%, respectively. From

Table ??, it shows that all the test images obtain the results that are higher than
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the criterion. We can say that our proposed scheme can effectively withstand the

differential attack.

Table 8.5: NPCR and UACI scores of encrypted images for “House”

Image Average NPCR (%) Average UACI (%)
Proposed 99.6134 33.5323
Black 99.61700 33.46826
White 99.60175 33.40612
Paper Liu and Liu (2020) 99.6100 32.2000
Paper Hu et al. (2020) 99.6236 33.3619
Paper Alexan et al. (2023) 99.6254 30.5681

Information Entropy

Information entropy serves as a metric for evaluating both the randomness and

the distribution of pixels within an image. It is measured by

H(m) =−
L

∑
i=1

P[m(i)] log2 P[m(i)], (8.41)

where P[m(i)] is the probability of m(i), L is the number of pixel values. A

higher value of information entropy indicates a more uniform distribution of

pixels in the image. The image reaches the theoretical maximum information

entropy when each possible pixel value has an equal probability. In other words,

the information entropy for an 8-bit image is H(m)max = log2 28 = 8. In this

experiment, the information entropy of the cipher image and the special images

are closer to 8, indicating satisfactory randomness.
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Table 8.6: Information entropy of encrypted images for “House”

Image Average Information Entropy
Proposed 7.9989
Black 7.9974
White 7.9972
Paper Liu and Liu (2020) 7.9897
Paper Hu et al. (2020) 7.9941
Paper Alexan et al. (2023) 7.9967

8.6 Summary

This chapter presents a new image encryption scheme based on 2D-SHCM, the

proposed two-dimensional chaotic map, genetic algorithms and SHA-256 hash

function. The 2D-SHCM has a better chaotic behavior over the

lower-dimensional chaotic system in terms of ergodicity, sensitivity to the initial

condition and control parameters, randomness and structural complexity.

Furthermore, the use of SHA-256 hash function in modifying the initial

conditions of the chaotic map highly improves the sensitivity of the cipher to

the change of plain image. The genetic algorithms and the nonlinear diffusion

process also introduces a good avalanche effect in the encryption scheme. To

test the security level of the proposed scheme, a series of experiments have been

conducted. All the numerical results demonstrate that our proposed scheme has

good security performance and thus it is suitable for image encryption.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

In this chapter, we summarize the key contributions and findings of this thesis.

We then conclude with recommendations for future research directions.

9.1 Conclusion

This thesis presents several contributions to the field of chaotic-based image

encryption. Firstly, cryptanalysis of existing chaotic-based image encryption

schemes was conducted to evaluate their security. A known plaintext attack was

applied to the scheme proposed by Biswas et al. (2015), revealing weaknesses

in its genetic algorithm-based design. The study also explored the general

properties of genetic algorithms and demonstrated how similar attacks could be

extended to other encryption systems utilizing genetic algorithms. Additionally,

a chosen plaintext attack was performed on the scheme proposed by Ping et al.

(2018), analyzing the security and efficiency of the two-point diffusion strategy

and highlighting the dynamical degradation of the Henon map. The findings

emphasized the need for improved diffusion mechanisms and robust chaotic

sources, leading to the proposal of enhanced encryption techniques.

Next, novel chaotic maps were introduced to address the limitations of

existing chaotic systems used in encryption. A cascading technique was

employed to construct a one-dimensional chaotic map, the Logistic-Beta map,

combining the classical logistic map and beta map to improve chaotic behavior.

Further, a chaotification approach was developed, integrating a two-dimensional
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chaotic map with a one-dimensional chaotic map through modular operations.

This led to the introduction of the 2D-HenonLog map, which merges the Henon

and logistic maps, and the 2D-SHCM map, which combines sine and Henon

maps. These maps exhibited improved chaotic properties, such as increased

sensitivity to initial conditions, reduced periodic windows, and an extended

chaotic range, making them well-suited for pseudorandom number generation

and image encryption. A mathematical analysis of their graph structure over a

digital device was conducted using state-mapping network analysis, evaluating

their dynamical behavior and confirming their suitability for cryptographic

applications.

A crucial aspect of this research was the mathematical analysis of the graph

structure of chaotic maps in digital devices. In digital implementations, finite

precision effects can lead to dynamic degradation, resulting in periodicity, state

collisions, and reduced entropy, which ultimately compromise the security of

encryption systems. To address these issues, we conducted a state-mapping

network analysis comparing the dynamical performance of our proposed

chaotic maps with several existing chaotic maps, including the Henon map,

improved Henon map, 2D-CLSS, and 2D-SCS. This analysis used a directed

graph to illustrate the evolution of digital states, revealing insights into chaotic

trajectories under finite precision. The study uncovered that some maps exhibit

structural weaknesses, such as attractors with short cycles or biased state

transitions, making them vulnerable to cryptanalytic attacks.

Lastly, new chaotic-based image encryption schemes were proposed to

enhance security and efficiency. A grayscale image encryption system was

designed using a four-dimensional hyperchaotic system with a

permutation-diffusion architecture. To further strengthen security, SHA-2 was

incorporated to improve sensitivity to plaintext changes. Additionally, a novel

color image encryption scheme was introduced based on a two-dimensional

Sine-Henon chaotic map and genetic algorithms. This scheme utilized
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cross-plane permutation, nonlinear diffusion, and dynamic genetic operations,

including uniform crossover, to optimize confusion and diffusion. Experimental

results demonstrated the robustness of the proposed schemes, showing strong

resistance to statistical and differential attacks.

Beyond the direct contributions, this research also has practical applications

in secure image transmission and real-time multimedia encryption. The

potential for multiple image encryption and parallel image encryption

techniques is further explored in Section 9.2 Future Work, providing directions

for optimizing encryption efficiency and computational performance. By

addressing fundamental weaknesses in existing chaotic encryption schemes and

proposing innovative solutions, this thesis contributes to the advancement of

secure image encryption methodologies in the digital age.

9.2 Future Work

Based on the research conducted in this thesis, we propose some possible new

directions in the field of image encryption. These directions build on the

foundation laid by chaotic based encryption and create new opportunities for

future improvements in the field. While this research primarily emphasizes the

security aspects of encryption, it does not fully address the computational speed

of image encryption. Therefore, exploring methods to enhance computational

efficiency in future studies would be highly beneficial.

We recommend focusing on multiple image encryption and parallel image

encryption, as these methods offer new ways to improve both security and

processing speed when handling large volumes of image data.

• Multiple Image Encryption: This technique encrypts several images

simultaneously using one encryption algorithm. It makes sure that each
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image maintains confidentiality, integrity, and authenticity under one

cryptographic framework. It is particularly useful for secure transmission

or storage of multiple images, as it streamlines the encryption process

without compromising security. Future research could explore the

development of more efficient schemes to handle large volumes of

images, addressing the increasing need for bulk data encryption in

real-world applications.

• Parallel Image Encryption: This technique uses parallel processing to

encrypt images concurrently, leveraging the power of multi-core

processors or distributed computing environments. It accelerates the

encryption process, especially for large datasets or real-time applications.

Future research could focus on enhancing the computational efficiency of

the parallel encryption algorithms that can processing either segments of

a single image or multiple images simultaneously. This is also useful for

the applications requiring fast, secure encryption of large volumes of

image data.
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