

A STUDY ON RNA PSEUDOKNOT PREDICTIONS

By

LEO YEAN LING

A thesis submitted to the Department of Mathematical and Actuarial Sciences,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Mathematical Sciences

March 2013

ii

ABSTRACT

A STUDY ON RNA PSEUDOKNOT PREDICTIONS

LEO YEAN LING

This research proposed an RNA pseudoknot prediction algorithm based on

stem weight maximization. The proposed algorithm consists of three stem

searching functions looking for stems in different searching regions. “Section

search” looks for base pairing in three different regions of the earlier stem

found. Then, “cross search” will identify regions for cross pairing and search

for possible base pairing. Finally, “knot search” which look for H-type

pseudoknots and kissing hairpins that is formed by base pairing between

individual hairpin and other unpaired regions.

 The resulting secondary structure is represented in a dot-bracket

representation and could be visualized by VARNA. A total of 232 RNA

structures have been downloaded from three databases (FRABASE, RNA

STRAND and CompaRNA). Performance of the proposed algorithm is

iii

evaluated by calculating the specificity and sensitivity between the predicted

structures to the experimental structures obtained from database. In addition,

execution time of algorithm proposed is recorded as well. Our results show

that the proposed algorithm can produce reasonably accurate structure in

practical time frame.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere thanks and appreciation

to my supervisor, Dr. Goh Yong Kheng for being an excellent mentor. He has

given me a lot of invaluable guidance and advice till the completion of the

research. Besides, his encouragement contributes a lot for the achievement of

this research.

 Furthermore, I would like to express my heartfelt gratitude to Dr. Liew

How Hui as he has provided lots of suggestions for a better programming

approach. Also, a special note of thanks to my friends who had given me lots

of precious ideas and motivation while finishing the research. Finally, to my

parents, I will always owe them my deepest love; their unceasing support and

encouragement have seen me through my studies in Universiti Tunku Abdul

Rahman.

LEO YEAN LING

v

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

SUBMISSION OF THESIS

It is hereby certified that LEO YEAN LING (ID No: 10UEM01828) has

completed this thesis entitled “A STUDY ON RNA PSEUDOKNOT

PREDICTIONS” under the supervision of Dr. GOH YONG KHENG

(Supervisor) from the Department of Mathematical and Actuarial Sciences,

Faculty of Engineering and Science, and Dr. LIEW HOW HUI (Co-Supervisor)

from the Department of Mathematical and Actuarial Sciences, Faculty of

Engineering and Science.

I understand that the University will upload softcopy of my thesis in pdf

format into UTAR Institutional Repository, which may be made accessible to

UTAR community and public.

Yours truly,

(LEO YEAN LING)

vi

APPROVAL SHEET

This thesis entitled “A STUDY ON RNA PSEUDOKNOT PREDICTIONS”

was prepared by LEO YEAN LING and submitted as partial fulfillment of the

requirements for the degree of Master of Mathematical Sciences at Universiti

Tunku Abdul Rahman.

Approved by:

(Dr. GOH YONG KHENG) Date : …………………..

Assistant Professor/Supervisor

Department of Mathematical and Actuarial Sciences

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

(Dr. LIEW HOW HUI) Date : …………………..

Assistant Professor/Co-supervisor

Department of Mathematical and Actuarial Sciences

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

vii

DECLARATION

I, LEO YEAN LING hereby declare that the thesis is based on my original

work except for quotations and citations which have been duly acknowledged.

I also declare that it has not been previously or concurrently submitted for any

other degree at UTAR or other institutions.

 (LEO YEAN LING)

 Date:

viii

TABLE OF CONTENTS

 Page

ABSTRACTS ii

ACKNOWLEDGEMENTS iv

PERMISSION SHEET v

APPROVAL SHEET vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiv

CHAPTER

1.0 INTRODUCTION 1

 1.1 Objectives 1

 1.2 Research background on RNA secondary structure

prediction

2

 1.3 Problems of RNA secondary structure prediction 4

 1.4 Outline and contributions 6

2.0 REVIEW ON RNA SECONDARY STRUCTURE

PREDICTION ALGORITHM

11

 2.1 Ribonucleic acids (RNA) 11

 2.2 Pseudoknot 13

 2.3 RNA structure representation 15

 2.4 RNA secondary structure prediction excluding

pseudoknot

18

 2.4.1 Base pair maximization 18

 2.4.2 Free energy minimization 19

 2.4.3 Stochastic context-free grammar 22

 2.4.4 Comparative sequence analysis 24

 2.5 RNA secondary structure prediction with pseudoknot 27

 2.5.1 Dynamic programming 28

 2.5.2 pknotsRG 30

 2.5.3 HotKnots 33

 2.5.4 Dynamic weighted matching (DWM) 34

 2.5.5 CyloFold 36

 2.5.6 Stochastic multiple context-free grammar 38

 2.5.7 Dotknot

41

ix

3.0 STEM WEIGHT MAXIMIZATION ALGORITHM 45

 3.1 Construction of weight matrix 47

 3.2 Stem searching 49

 3.2.1 Section search 51

 3.2.2 Cross search 60

 3.2.3 Knot search 65

4.0 ANALYSES 74

 4.1 FRABASE 74

 4.1.1 General performance 75

 4.1.2 Performance of the proposed algorithm

compared to other algorithms

77

 4.2 RNA STRAND 79

 4.2.1 General performance 79

 4.2.2 Performance of the proposed algorithm

compared to pknotsRG and Dotknot

81

 4.3 CompaRNA 82

 4.3.1 General performance 83

 4.3.2 Performance of the proposed algorithm

compared to pknotsRG

85

 4.4 Comparison among three databases 86

5.0 CONCLUSION AND FUTURE WORK 89

 5.1 Superfluous base pair 89

 5.2 Contributions 93

 5.3 Future work 95

REFERENCES 96

APPENDICES 101

x

LIST OF TABLES

Table

 Page

2.1 Restrictions on loop length of core H-type pseudoknot

42

4.1 Total of SP and SN in each category (FRABASE)

75

4.2 Total of SP and SN in each category for pseudoknot

structures (FRABASE)

77

4.3 Performance of the proposed algorithm, Hotknots,

pknotsRG, GotKnot and CyloFold (FRABASE)

78

4.4 Total of SP and SN in each category for the proposed

algorithm, Hotknots, pknotsRG, DotKnot and

CyloFold (FRABASE)

79

4.5 Total of SP and SN in each category for the proposed

algorithm, pknotsRG and DotKnot (RNA STRAND)

81

4.6 Performance of the proposed algorithm in predicting

RNA sequences with various length

84

4.7 Performance of the proposed algorithm and pknotsRG

(CompaRNA)

86

5.1 Total occurrence of various problems 93

xi

LIST OF FIGURES

Figure

 Page

2.1 Chemical structure of RNA

11

2.2 Folding of RNA sequence

12

2.3 RNA secondary structure

13

2.4 Arc diagram for RNA structure

14

2.5 H-type pseudoknot (left) and kissing hairpins

(right)

14

2.6 RNA structure

15

2.7 Circular representation of RNA structure

16

2.8 Mountain diagram and tree diagram of RNA

structure generated using Matlab

17

2.9 Representation of RNA secondary structure in dot-

bracket format

17

2.10 Dot-bracket representation of RNA structure

18

2.11 Dynamic programming algorithm for RNA

secondary structure prediction

21

2.12 Aligning two sequences using dynamic

programming

26

2.13 Illustration of the recurrence used in dynamic

programming

29

2.14 Illustration of the initialization process

29

2.15 Simple pseudoknot which is formed by two stems

(a-a’ and b-b’)

31

2.16 Juxtapose and nested stems

36

3.1 Flow chart of the proposed algorithm

46

xii

Figure

 Page

3.2 Stems found in the weight matrix. Valid stems are

highlighted in green and blue color while invalid

stems are highlighted in yellow color

52

3.3 Stem adjustment when loop size is less than 3nt

53

3.4 Three regions of a stem

55

3.5 Juxtapose and nested stems

56

3.6 Stem selection while both stems are having equal

stem weight value, 30. Stem on the left is selected

due to its shorter stem length, 3

56

3.7 Determine unpaired regions for “cross search”

61

3.8 Base pairing found by “cross search”

63

3.9 Determine searching regions for knot search

66

3.10 Pseudoknots found by “knot search”

68

3.11 RNA structure predicted in Example 6

73

4.1 Difference of SN and SP values (SN-SP) for 30

structures downloaded from RNA STRAND

80

4.2 Execution time of the proposed algorithm,

pknotsRG and DotKnot (RNA STRAND)

82

4.3 Box plot for SP and SN values achieved by the

proposed algorithm (CompaRNA)

83

4.4 Execution time required for the structure prediction

of CompaRNA structures

85

4.5 SP values achieved for predicting structures

obtained from RNA STRAND, CompaRNA and

FRABASE

87

4.6 SN values achieved for predicting structures

obtained from RNA STRAND, CompaRNA and

FRABASE

88

5.1 Extra base pairing found in structure predicted by

the proposed algorithm

90

xiii

Figure

 Page

5.2 Extra base pairing found in pseudoknot predicted

by the proposed algorithm

91

5.3 Problems of stem weight maximization

implemented by the proposed algorithm

92

5.4 Triple helix interaction 95

xiv

LIST OF ABBREVIATIONS

DWM Dynamic Weighted Matching

FRABASE RNA Fragments Search Engine and Database

MMC Matthew’s Correlation Coefficient

NMR Nuclear Magnetic Resonance

RNA Ribonucleic Acid

SCFG Stochastic Context-Free Grammar

SMCFG Stochastic Multiple Context-Free Grammar

tRNA Transfer RNA

VARNA Visualization Applet for RNA

CHAPTER 1

INTRODUCTION

1.1 Objectives

In this research, the author would like to

i. Predict and identify pseudoknots on various genome.

ii. Develop new algorithm or optimize existing pseudoknot prediction

algorithm.

iii. Compare between structures obtained by pseudoknot prediction

algorithm and experimentally determined structure.

RNA forms the secondary structure by base pairing among the

complementary base pairs, G-C, A-U and G-U. RNA secondary structures

include loops, stems, single strand regions and pseudoknot. Pseudoknots are

significant in some biological processes (Staple & Butcher 2005). For example,

researchers found that only those telomerase ribonucleoprotein complexes

which contain a properly folded pseudoknot are catalytically active

(Mihalusova, Wu & Zhuang 2011).

2

This research aims to develop an RNA pseudoknot prediction

algorithm which is able to recognize two types of pseudoknot structure,

namely H-type pseudoknot and kissing hairpins. Thus far, majority of RNA

secondary structure algorithms are restricted to predict only the H-type

pseudoknot. This might due to the high computational requirement of

predicting kissing hairpins which is formed by the base pairing between two

loop regions.

Then, the structure predicted will be compared to experimentally

determined structure. These structures are obtained from the FRABASE

(Popenda et al. 2010). This database contains only RNA structures determined

through experimental method like NMR, X-ray diffraction and electron

microscopy. By comparing RNA structures predicted by the proposed

algorithm to FRABASE structures, this may provide an indication on how

good is the performance of the proposed algorithm.

1.2 Research background on RNA secondary structure prediction

Traditionally, RNA is merely known as a helper in translation. This view has

changed ever since it is known to be vital in regulation of genes (Valencia-

Sanchez et al. 2006) and as a catalyst in various cellular processes (Vaish,

3

Kore & Eckstein 1998). Therefore, researchers began their study on RNA

sequences.

 RNA secondary structures are formed by base pairing among

complementary bases. Then, the interaction among these structures would

form the tertiary structure of RNA. Since determining tertiary structure by

experimental method is expensive and time consuming, computational

methods have been developed for secondary structure prediction because it

serves as a foundation for the tertiary structure prediction (Mathews & Turner

2006).

 Dynamic programming approach has been implemented for RNA

pseudoknot prediction but this approach faced the problems of high time and

space complexities. The pseudoknot prediction algorithm developed by Elena

Rivas and Sean R. Eddy has a worst case of in time complexity and

 in storage complexity (Rivas & Eddy 1999). The algorithm proposed

by Uemura et al. has a complexity of in time and in space

(Uemera et al. 1999). Thus, these algorithms can only predict RNA structures

for short sequences and will fail for long sequences due to insufficient

memory or lengthy execution time.

4

Besides, various heuristic approaches have been proposed for RNA

secondary structure prediction including pseudoknots, such as maximum

weighted matching (Tabaska et al. 1998), iterated loop matching (Tahi,

Engelen & Rgnier 2003), dynamic weighted matching (Liu et al. 2006),

HotKnots (Ren et al. 2005), DotKnot (Sperschneider, Datta & Wise 2011), etc.

Heuristic algorithms usually restrict on predicting specific type of pseudoknot.

In addition, structure generated by algorithms which involved free energy

calculation strongly depends on the energy model applied. Also, the amount of

known pseudoknots is limited. Consequently, lack of sequences available for

pseudoknot prediction by comparative approach and testing on accuracy of

algorithms developed.

1.3 Problems of RNA secondary structure prediction

Pseudoknots are important RNA secondary structure. Numerous approaches

have been implemented to predict RNA secondary structures including

pseudoknots. Although various pseudoknot prediction algorithm has been

proposed but each has its own restrictions or limitations. Below are some of

the main problems encountered by RNA secondary structure prediction

algorithm:

(i) Structure predicted from thermodynamic model is not the native

structure (Reeder et al. 2006).

5

(ii) Structure predicted from heuristics algorithms is not the optimal

structure (Liu, Ye & Zhang 2006, Van Batenburg, Gultyaev &

Pleij 1995).

(iii) Lack of well-aligned sequences to perform sequence alignment

(Wilm, Higgins & Notredame 2008).

(iv) Structure prediction algorithm excluding pseudoknots due to its

high complexity (Akutsu 2000, Lyngso & Pederson 2000).

This research will focus on the fourth problem stated above.

Due to the difficulties in predicting pseudoknots, it has been excluded

from most of the RNA secondary structure prediction algorithms developed.

For those algorithms which implemented dynamic programming to predict

pseudoknot structures, they faced the problem of high time and space

complexities. Therefore, pseudoknot prediction algorithm by heuristic

approach has been proposed. The time and space complexities of heuristic

algorithms developed are much reduced while compared to dynamic

programming approach. Hence, this research attempt to propose an algorithm

which can predict reasonably accurate structure in a practical time frame.

6

1.4 Outline and contributions

This research is aimed to develop a pseudoknot prediction algorithm. Existing

pseudoknot prediction algorithms by dynamic programming approach are

facing the problems of high time and space complexities. Therefore, these

pseudoknot prediction algorithms are limited to identify the most common

type of pseudoknot, H-type pseudoknot. In addition, restriction on sequence

length is imposed as well. Most of the developed pseudoknot prediction

algorithms are able to handle only short RNA sequences.

In order to develop a pseudoknot prediction algorithm, reviews on

developed RNA secondary structure prediction algorithms are done. In

Chapter 2, eleven RNA secondary structure prediction algorithms are

discussed. The earliest algorithm proposed for RNA structure prediction is

based on the base pair maximization method (Nussinov et el. 1978). It looks

for RNA structure with the maximum number of base pairs.

Then, RNA structure prediction is further enhanced by taking into

consideration the free energy contribution of different structures (Zuker &

Stiegler 1981, Zuker 1989). Besides, stochastic context-free grammar has been

implemented for RNA structure prediction as well (Eddy 2005). This method

predicts the RNA secondary structure according to some production rules.

7

Alternatively, RNA structure prediction by comparative sequence analysis

method is proposed as well (Meyer & Miklós 2007). It predicts RNA structure

by looking for conserved regions among RNA sequences. This method

produces good result but it requires several homologous sequences for

structure prediction.

Former methods discussed are proposed for RNA secondary structure

prediction excluding pseudoknot. Here, several approaches proposed for

pseudoknot prediction are briefly discussed. Tatsuya Akutsu has proposed a

pseudoknot prediction algorithm by implementing dynamic programming

technique (Akutsu 2000). This method has high time complexity and it is

impractical for predicting long RNA sequences. Therefore, Jens Reeder and

Giegerich proposed the implementation of canonization in predicting

pseudoknot structures (Reeder, Steffen & Giegerich 2007).

Besides dynamic programming approach, structure prediction based on

the idea of iteratively forming stable stems is proposed by Ren et al. (Ren et al.

2005). Another approach proposed for RNA structure prediction is the

dynamic weighted matching algorithm (DWM) (Liu et al. 2006). It searches

for stems with maximum compound weight value recursively. Stochastic

context-free grammar has been modified for pseudoknot prediction as well

(Mizoguchi, Kato & Seki 2011). This method generates RNA secondary

8

structure by enhanced production rules. Apart from the approaches

aforementioned, a recent development for pseudoknot prediction including

kissing hairpins is proposed by Sperschneider J et al. (Sperschneider, Datta &

Wise 2011). This is a pseudoknot detection algorithm which output several

near-optimal pseudoknot structures.

In this research, a pseudoknot structure prediction algorithm has been

developed. The proposed algorithm is developed by extending the DWM

algorithm (Liu et al. 2006). There are two stages involved in the proposed

algorithm that is construction of weight matrix and stem searching. Stem

searching is the core step in structure prediction. Three types of stem

searching are implemented where each process is looking for stems in

different searching regions. Details for each stage are presented in Chapter 3.

After structure prediction, analysis on structures predicted by the

proposed algorithm is presented in Chapter 4. Performance of the proposed

algorithm is evaluated by structure comparison between predicted structure

and reference structure. Reference structures are obtained from three online

databases, FRABASE (Popenda et al. 2010), RNA STRAND (Andronescu et

al. 2008) and CompaRNA (Puton et al. n.d.). FRABASE is a database which

collects all RNA structure determined through experimental method.

Therefore, structures obtained from FRABASE are reliable and appropriate for

9

structure comparison. For RNA STRAND and CompaRNA, majority of the

RNA structures downloaded are predicted using comparative sequence

analysis method.

The last chapter concludes this thesis with a discussion about problems

encountered, contributions and future work. In the proposed algorithm, all

stem found during the stem searching process will be filtered before listing as

the potential stems. The characteristics of potential stem can be found in

Section 3.2.1. Besides, Chapter 5 discusses about some problems arouse while

developing the proposed algorithm. The main problem of the proposed

algorithm would be having additional base pairs in the predicted structure.

Discussion for the problem is presented in Section 5.1 with relevant examples.

Subsequently, contributions and some suggestions for future work are

presented. This research has developed a pseudoknot prediction algorithm

which can predict two types of pseudoknot, which are H-type pseudoknot and

kissing hairpins. In addition, results of structure comparison show that the

proposed algorithm yields reasonably accurate structure. Among three

databases, the proposed algorithm achieved highest average SP and SN values

for the prediction of FRABASE structures (SP-95.60, SN-98.18). Thus,

structures predicted by the proposed algorithm have high similarity to

experimentally determined structures.

10

Moreover, the proposed algorithm can handle long RNA sequences.

Thus far, the proposed algorithm has been tested on RNA sequence with the

maximum length of 3174nt. For short RNA sequences (<400nt), the proposed

algorithm can generate the structure of input sequence in a very short time

frame (0.16s in average). This shows that the proposed algorithm can handle

long RNA sequences and perform structure prediction in a short duration.

Finally, some suggestions are provided as the future work of the

research. Since the proposed algorithm faced the problem of having extra base

pairing in the predicted structure, a post processing might be included so as to

eliminate these superfluous base pair. Then, the proposed algorithm can be

further modified for the prediction of triple helix interaction which is a

complex pseudoknot structure. Besides, free energy calculation can be added

as the criteria of stem filtration. Consequently, a more stable RNA structure is

produced.

CHAPTER 2

REVIEW ON RNA SECONDARY STRUCTURE PREDICTION

ALGORITHM

2.1 Ribonucleic acids (RNA)

Figure 2.1: Chemical structure of RNA.

RNA is a nucleic acid consists of ribose sugar, nitrogenous base and phosphate

groups. It plays a central role in various biological functions within cells. RNA

is traditionally known to be involved in translation of protein. However,

researchers have found that it is also important in performing other functions

within cell. They might act as a catalyst of chemical reaction (Doudna & Sech

2002, Brown 1999). The Ribonuclease P RNA is found to be a ribozyme which

cleaves the RNA sequences. Besides, RNA also help in the regulation of

transcription and translation (Storz 2002), modulates protein across expression

(Meister & Tuschi 2004) and act as a information carrier as well.

12

 The primary structure of RNA is a sequence of nucleotides, namely A

(Adenine), U (Uracil), C (Cytosine) and G (Guanine). Secondary structure is

formed when RNA single strand fold onto itself by base pairing among

complementary nucleotides (Refer to Figure 2.2 for the illustration of RNA

folding.). Essentially, there are two types of base pairing, Watson-Crick (G-C

and A-U) and Wobble (G-U). Among these three types of base pair, G-C is the

most stable base pair, then follow by A-U and the least stable G-U pair. G-C

contains three hydrogen bonds while A-U and G-U contains two hydrogen

bonds.

Figure 2.2: Folding of RNA sequence.

According to a survey conducted by Roy et al. (Roy et al. 2008),

occurring percentage of G-C, A-U and G-U pairs in 145 RNA crystal structures

are 54.04, 17.17 and 6.88 respectively. These three pairs are having higher

occurrence frequency while compared to other noncanonical base pairs. This

may due to the stabilization effect of having polar hydrogen bonding between

bases of Watson-Crick and Wobble base pairs.

13

2.2 Pseudoknot

Base pairing interactions of RNA sequence form different types of secondary

structures. These include stems, single stranded regions, bulge loops, interior

loops, hairpin loops, multiloops and pseudoknots. Figure 2.3 shows different

types of RNA secondary structures.

Figure 2.3: RNA secondary structure.

Pseudoknots are functionally important in several known RNAs. It

plays functional roles in cases such as ribosomal frameshifting (Giedroc,

Theimer & Nixon 2000), regulation of translation and splicing (Draper, Gluick

& Schlax 1998), selinocystein biosynthesis, etc. A pseudoknot is an RNA

structure that is formed when bases within a loop pair with complementary

bases in another unpair region to form a stem (Refer to Figure 2.3 or Figure 2.5

14

for H-type pseudoknot and kissing hairpins.). Figure 2.4 shows the arc diagram

of pseudoknot structure.

Figure 2.4: Arc diagram for RNA structure.

 Among several distinct types of pseudoknots, H-type pseudoknot is the

simplest and classical pseudoknot (Chen & Chen 2009). It is formed by the

base pairing between loop and unpair region. For kissing hairpins, it is formed

by the base pairing between two loop regions. Figure below shows the

structure of H-type pseudoknot and kissing hairpins.

Figure 2.5: H-type pseudoknot (left) and kissing hairpins (right).

(a) Structure without pseudoknot.

(b) Structure with pseudoknot.

15

2.3 RNA structure representation

RNA structure predicted can be illustrated in various ways. Usually base

pairing in RNA structure is represented by drawing a line between the

corresponding bases as shown in Figure 2.6(a). For this type of RNA structure

representation, every nitrogenous base is represented using a dot. Sometimes,

the alphabet (A, C, G, U) representing each base is shown instead of a dot.

Also, line connecting each type of bases can be different too. G-C pair is

represented by double line; A-U pair is represented by single line with a dot in

the middle; G-U pair is represented by single line. Figure 2.6 shows these two

types of RNA structure representation and the corresponding 3D structure as

well.

Figure 2.6: RNA structure.

(a) Each base

represented by a dot.

(b) Each base

represented by its

corresponding

alphabet.

(c) 3D structure

16

 Besides the RNA representations shown in Figure 2.4 and Figure 2.6,

RNA structure can be illustrated using circular representation as well. For this

type of representation, nitrogenous bases are arranged in a circular manner.

Then, base pairing is represented by drawing a line in between the

corresponding bases. However, circular representation is seldom used.

(a) Structure generated using

VARNA.

(b) Structure generated using Matlab.

Figure 2.7: Circular representation of RNA structure.

Another type of RNA structure representation is the mountain diagram.

In mountain diagram, unpair bases will form a horizontal line while continuous

base pairing (stem structure) will form a slope. Another type of similar RNA

structure representation is the tree representation. For tree diagram, unpair

bases is represented by single dot while base pairing is represented by dots

which connect with a straight line going downwards.

17

Figure 2.8: Mountain diagram and tree diagram of RNA structure generated

using Matlab.

 Lastly, the simplest type of RNA structure representation that is the dot-

bracket representation. This representation is used throughout this research

because it is simple and easy for storing purpose. In dot-bracket representation,

base pairings are represented by round brackets („(‟ and „)‟) while unpair bases

are represented by dots („.‟). Pseudoknot which include cross pairing in

between stem regions will be represented by square brackets („[‟ and „]‟).

Figure 2.9 illustrates how an RNA structure is represented in dot-bracket

format and Figure 2.10 shows the dot-bracket representation of structure shown

in Figure 2.4.

Figure 2.9: Representation of RNA secondary structure in dot-bracket format.

 (a) Mountain diagram (b) Tree diagram

18

((((..((((((....))))))...))))

(a) Structure without pseudoknot.

..(((((..[[[.))))).......]]]

(b) Structure with pseudoknot.

Figure 2.10: Dot-bracket representation of RNA structure.

2.4 RNA secondary structure prediction excluding pseudoknot

This section discusses several methods for RNA secondary structure prediction

excluding pseudoknot. These methods show how RNA structure is derived

from its primary sequence. Firstly, base pair maximization is presented because

this is the earliest method proposed for RNA secondary structure prediction.

Then, three commonly used methods for RNA structure prediction, free energy

minimization, stochastic context-free grammar and comparative sequence

analysis are presented.

2.4.1 Base pair maximization

In 1978, RNA folding problem is formulated as a matching problem by Prof.

Ruth Nussinov et al. (Nussinov et el. 1978). She implemented the algorithm

using dynamic programming technique. Her algorithm aims to maximize the

19

base pairing for a given sequence which obeys planarity conditions as stated

below:

(i) No crossing between any two paired nucleotides.

(ii) No two adjacent nucleotides may be paired.

This algorithm makes sure that every base-pairing must be adjacent to another

base pair and this forces the formation of two or more parallel stems. Therefore,

it focuses on “base-stacking” effects of RNA sequence. However, this

algorithm doesn‟t consider the stabilizing and destabilizing effect of stem and

loop respectively.

2.4.2 Free energy minimization

Optimal computer folding of RNA sequences by using thermodynamics is

proposed by Zuker M and Stiegler P (Zuker & Stiegler 1981). Thermodynamic

principles indicate that the structure with lowest free energy should be the most

stable structure. Hence, Zuker‟s algorithm computes the structure with

minimum free energy by dynamic programming. Free energy is computed by

summing up the energy contributions of all types of RNA secondary structures.

The recurrence relation for Zuker‟s algorithm is shown on next page.

20

 

 

 

    

 
   
 
 





































jiVM

jiVBI

jiVjies

jieh

jiV

jkWkiW

jiV

jiW

jiW

jiW

jki

,

,

1,1,

),(

min,

,1,min

,

1,

,1

min),(

      

       ajkWkiWjiVM

jiVjijiebijiVBI

jki

jjii
jjii










1,1,1min,

','',',,min,

1

2''
''

where

The dynamic programming implementation involves 2 steps, that is “fill”

and “traceback”. First, diagonal of matrix is initialized to zero. Then, the “fill”

step computes and stores minimum folding energy for all fragments of the

sequence. It incessantly builds up larger segments in a recursive manner by

iteratively minimize the free energy. This process stops when it reaches the

(1,N) position in the matrix (which is the upper right most corner). Then, from

here it obtains the optimal structure by “tracing back” the optimal path which

 jiW , : Minimum free energy from i to j .

 jiV , : Minimum free energy from i to j where i is pair to j .

 jieh , : Energy of the hairpin loop closed by the base pair  ji, .

 jies , : Energy of the stacked pair  ji, and  1,1  ji .

 ',',, jijiebi : Energy of the bulge or interior loop that is closed by  ji, .

 jiVBI , : Energy of a bulge or interior loop that involves a base pair

 ',' ji and is closed by  ji, .

 jiVM , : Energy of multiloop from two smaller structures.

21

leads to that particular value of minimum free energy. This process is shown in

Figure 2.11 with a simpler recurrence relation shown below (Eddy 2004).























),1(),(min

)1,(

),1(

),()1,1(

min),(

jkEkiE

jiE

jiE

xxejiE

jiE

kji

ji

Figure 2.11: Dynamic programming algorithm for RNA secondary structure

prediction.

However, Zuker‟s method may produce a minimum free energy

structure which is not necessarily the native structure. Occasionally, there

might be more than one structure with equivalent minimum free energy value

but this method only returns one structure for every input sequence. Therefore,

he further improved his algorithm by predicting suboptimal structures (Zuker

1989). He suggests that structures with free energy value fall within a specified

range (usually 5-10%) from the minimum value should also be considered as

the potential RNA structure. Although these structures possess free energy

22

value which is slightly higher than optimal structure, they can be topologically

different from each other.

2.4.3 Stochastic context-free grammar

Sean R. Eddy has proposed stochastic context-free grammar (SCFG) for RNA

structure prediction as an alternative to dynamic programming implementation

(Eddy 2005). SCFG can model nested and long-distance pairwise correlations

in strings of symbols. Long distance pairwise correlation is one reason why

pseudoknot is difficult to predict. On the other hand, it generates parse tree

which is the RNA secondary structure analog of a sequence alignment. Parse

tree is generated based on the five production rules as listed below.

 Every production rules contain non-terminal („S‟) and terminal symbols

(„a‟, „b‟). For RNA structure prediction, terminal symbols represent A, U, C or

G. Leftwise will generate a terminal symbol on the left while rightwise will

generate a terminal symbol on the right. Pairwise is generating a base pair and

bifurcation is generating a branch. The following example demonstrates how

SCFG works in the recognition of CAUCAGGGAAGAUCUCUUG.

S aS : Leftwise

S Sa : Rightwise

S aSb : Pairwise

S SS : Bifurcation

S e : End

23

Example 1 : Structure prediction by implementing SCFG.

Sequence : CAUCAGGGAAGAUCUCUUG

1S Pairwise

C 2S G Pairwise

CA 3S UG Bifurcation

CA 4S 9S UG Pairwise

CAU 5S A 9S UG Pairwise

CAUC 6S GA 9S UG Leftwise

CAUCA 7S GA 9S UG Leftwise

CAUCAG 8S GA 9S UG Leftwise

CAUCAGGGA 9S UG Pairwise

CAUCAGGGAA 10S UUG Pairwise

CAUCAGGGAAG 11S CUUG Pairwise

CAUCAGGGAAGA 12S UCUUG Leftwise

CAUCAGGGAAGAU 13S UCUUG Leftwise

CAUCAGGGAAGAUCUCUUG End

Parse tree :

24

Structure :

 However, there are some limitations for structure prediction by SCFG

method. SCFG algorithm would require time and memory proportional to at

least (is the length of sequence.) [23]. Thus, this method is only suitable

for short sequence RNA structure prediction.

2.4.4 Comparative sequence analysis

RNA secondary structure prediction by comparative sequence analysis requires

several sequences for evaluating similarity among them. Usually the input

sequence for structure prediction is known as target sequence while sequence

used to compare with target sequence will be known as reference sequence.

Besides, aligning sequences may provide the evolutionary history and

information of how closely related the sequences are.

C - G

A - U

U - A A - U

C - G

A G

G - C

A - U

U C G

25

 Simple alignment of two sequences is just comparing the bases one at a

time. If they are identical, then a match score is assigned according to the

scoring system (Krane & Raymer 2003). Also, there would be a penalty for

non-identical bases. Besides checking whether the bases are identical, gaps are

also allowed while aligning sequences. By referring to the example scoring

system (Refer to the following page), the score of aligning two sequences with

gaps and without gaps is shown.

Alignment without gap penalty :

Alignment GGCCAUG

GCAUG

GGCCAUG

 GCAUG

GGCCAUG

 GCAUG

Score +1 +2 +4

Alignment with gap penalty (only three examples are shown here) :

Alignment GGCCAUG

GC--AUG

GGCCAUG

G-C-AUG

GGCCAUG

G--CAUG

Score +2 +3 +3

 Since alignment involve gap penalty will generate many possible

alignments, scoring matrix is used to obtain the alignment with optimum score.

This can be implemented using dynamic programming as in the case free

energy minimization method. The recurrence relation for aligning two

26

sequences is shown on next page while scoring matrix and result are shown in

Figure 2.12.

Score matrix :

 G C A U G

 0 -1 -2 -3 -4 -5

G -1 1 0 -1 -2 -3

G -2 0 1 0 -1 -1

C -3 -1 1 1 0 -1

C -4 -2 0 1 1 0

A -5 -3 -1 1 1 1

U -6 -4 -2 0 2 1

G -7 -5 -3 -1 1 3

Optimal score : 3

Result :

-G-CAUG

GGCCAUG

Figure 2.12: Aligning two sequences using dynamic programming.

where  jiS , is the optimal score at position  ji, .

27

Simple alignment can be modified for multiple sequence alignment.

Multiple sequence alignment will identified the conserve regions among

sequences and produce the structure with highest similarity while compared to

reference structures. Therefore, similar sequences are usually used for

comparing with target sequence.

There are various implementation of comparative sequence analysis

such as SimulFold (Meyer & Miklós 2007) and hxmatch (Witwer, Hofacker &

Stadler 2004). Although results obtained by these two methods are comparable

to other algorithms, they have some limitations too. Structure prediction by this

approach requires several sequences for aligning the input sequence. Therefore,

this method is generally used in prediction of RNA sequences belong to certain

specific type of RNA in which their common structure is known. For example,

tRNA always fold into a cloverleaf structure.

2.5 RNA secondary structure prediction with pseudoknot

In this section, some methods of RNA secondary structure prediction including

pseudoknots will be discussed.

28

2.5.1 Dynamic programming

Prediction using dynamic programming is proposed by Akutsu T (Akutsu

2000). This method only deals with simple pseudoknot (H-type pseudoknot in

Figure 2.5) using the recurrence relation shown on the following page.

where if is a base pair, otherwise .

 corresponds to the case where ith and jth nucleotides make a

base pair. This is illustrated in the Figure 2.13 and the similarly for

and

29

Figure 2.13: Illustration of the recurrence used in dynamic programming.

Besides, initialization is performed as well. Below is the initialization

procedure and followed by figure illustrating this process.

for the other satisfying or

Figure 2.14: Illustration of the initialization process.

 =

 +

 =

 +

 =

 +

i j j k k i i j k

30

 Then, for each pair , computes the above scores and obtains the

score of a pseudoknot whose endpoints are by :

 Finally, optimal score  nS ,1 is computed by the following recurrence

formula:

 Akutsu‟s method can predict RNA structure with simple pseudoknots.

For an input sequence of length n, this algorithm requires  4nO time

complexity and it increases with the coverage of types of pseudoknot.

Therefore, improvement can be done in order to decrease the time complexity

of this algorithm. Also, there is no established energy function known for

pseudoknot structure. This is important for evaluating the energy contribution

of loops and stems in pseudoknot structures. Furthermore, it has not been

implemented and tested for RNA structure prediction.

2.5.2 pknotsRG

pknotsRG is an pseudoknot prediction algorithm developed by Jens Reeder and

Robert Giegerich (Reeder, Steffen & Giegerich 2007). It produces structure

31

with minimum free energy value based on dynamic programming approach.

This algorithm requires  4nO time and  2nO space for structure prediction

which is much reduced while compared to the algorithm developed by Akutsu

(Akutsu 2000).

Figure 2.15: Simple pseudoknot which is formed by two stems (a-a’ and b-b’).

pkntosRG is designed to speed up the prediction of RNA secondary

structure with simple pseudoknot (H-type pseudoknot) by the implementation

of three canonization rules:

(i) Both strand in a stem must have the same length (|a| = |a’| and |b|

= |b’|). Therefore, no bulge is allowed in the stem structure.

(ii) Both stems involved in pseudoknot structure (a, a’ and b, b’)

must have the maximal extend.

(iii) If two stems would overlap, their boundary is fixed at an arbitrary

point between them.

32

First rule is to confirm that no bulge can be found in the stem involved

in forming pseudoknot structure. Second rule will ensure that base pairings of

stems involved in pseudoknot structure are having the maximal extend. This is

due to energy model which strongly favors helix extension. Last rule is to draw

the border between two stems facing each other and competing for the same

bases.

This algorithm considers the class of simple recursive pseudoknot

which is further restricted by three rules of canonization, canonized simple

recursive pseudoknot (csr-PK). The implementation of canonization reduced

the search space and expedites the process of structure prediction while

compared to the algorithm developed by Rivas and Eddy (pknotsRE) which

considers general classes of pseudoknots (pknotsRG – time and

space, pknotsRE - time and space). In addition, evaluation of the

coverage of csr-PK on known pseudoknot structures has been done as well.

Results show that 135 out of 172 simple recursive pseudoknots are included in

the class csr-PK (78.49%).

pknotsRG has been tested on RNA sequences obtained from

Pseudobase. Results show that it is good in predicting RNA structure for short

sequences. While predicting RNA structure for longer sequences (>400nt), the

minimum free energy structure predicted diverged from experimentally

33

determined structure. Besides, this algorithm requires lengthy execution time

for structure prediction.

2.5.3 HotKnots

HotKnots is a heuristic algorithm developed for RNA secondary structure

prediction including pseudoknots. This algorithm predicts RNA structure based

on the idea of iteratively forming stable stems (Ren et al. 2005).

 This algorithm begins with the generation of simple stem-like

substructures which are termed as „hotspots‟. A set of hotspots will be

computed as the basis for developing RNA structure by adding substructure

one at a time into the partially formed structure. HotKnots maintained multiple

partially formed structures and it considers several different addition of

substructure in an attempt to produce a tree of candidate structures. Then,

standard energy model is used to determine which structures at nodes of the

tree have the lowest free energies. Besides, the energy model is also used to

determine how to prune the tree of partial structures, so that more alternatives

are explored from the most promising partial structures.

 HotKnots has been tested on 43 RNA sequences. The length of test

sequences can be divided into two categories, short (28-108 nt) and long (210-

34

400 nt). HotKnots outperformed the other software available (ILM, pknotsRE,

STAR and pknotsRG-mfe) while predicting structure for short sequences. For

structure prediction using long sequences, performance of HotKnots is better

than the other software except STAR. However, HotKnots achieved higher

sensitivity value than STAR on five out of twelve sequences in the long

category.

 Although performance of HotKnots is comparable to the other software

available, it can be further improved by modifying the search technique. A

more advanced search technique can reduce the execution time of the

algorithm. In addition, better energy model can be used for structure

determination and selection so as to increase its performance.

2.5.4 Dynamic weighted matching (DWM)

Dynamic weighted matching algorithm is another method being implemented.

Liu et al. used a dynamic weight related with stem length and a recursive

algorithm to predict RNA secondary structures including pseudoknots. This is

done by searching the stem structure with maximum weight summation step-

by-step (Liu et al. 2006). The space complexity of this algorithm is  2nO and

the time complexity is less than  nnO log3
.

35

 In this algorithm, RNA structure prediction is regarded as an

optimization problem. The author introduced “compound weight” as the

optimization criterion. This means that the algorithm looks for structure with

maximum whole weight value as the predicted RNA secondary structure. The

compound weight means addition of constant weight and dynamic weight

which is defined as below while given a section of stem,  kjiStm ,, .

    kwwwwW GUAUGC

k

l

jikji 





3

11

0

1,1,,

 The first term on the right hand side of equation is the constant weight

whereas the following term is the dynamic weight. Constant weight is the sum

of weight for every base pair in stem. Dynamic weight is a product of average

weight and square root of stem length. A double recursive algorithm is used to

search the stems with maximum weight sum and potential pseudoknot.

 This algorithm works according to two main principles. First is the

whole weight sum maximization and secondly is first-near-last far principle.

The second principle means that juxtapose stems are considered first and

nested stems are second (Refer to Figure 2.16 for juxtapose and nested stems.).

According to van Batenburg et al. (Van Batenburg, Gultyaev & Pleij 1995), it

seems like this principle produces better result because it yields structures

i : 5‟-end initial site.

j : 3‟-end terminal site.

k : Stem length.

where

36

which are closer to real structures. On the whole, this algorithm performed well

for tRNA sequences but not ideal for ncRNA due to increase of sequence

length and longer distance interaction.

Figure 2.16: Juxtapose and nested stems.

This method is able to predict pseudoknot structure and it is found to be

quite fast in structure prediction. The result shows that it is good in tRNA

structure prediction with an average value of 95.08 for SN and 95.34 for SP.

Although high SP and SN values are achieved, DWM algorithm has only been

tested on 8 tRNA sequences downloaded from GenBank database.

2.5.5 CyloFold

CyloFold is an RNA secondary structure prediction algorithm that is not

restricted in terms of pseudoknot complexity (Bindewald, Kluth & Shapiro

2010). It is developed by Eckart Bindewald, Tanner Kluth and Bruce A.

Shapiro. This algorithm is based on simulation of folding process in a coarse-

grained manner by choosing stems based on established energy rules.

37

 CyloFold starts with generating a list of stems structure which

contained at least three base pairs. Then, it continues with the folding

simulation by picking stems from the list generated with a Boltzmann-weighted

probability. Each chosen stem is represented by a very coarse-grained 3D

representation in a virtual 3D workspace.

Stem structure is represented by a cylinder that is capped with a half-

sphere on both ends. Single strand regions between stems are represented as

constraints for the maximum distance between the ends of the capped cylinders.

Then, every newly chosen capped cylinder will be placed into the 3D

simulation space at a random position such that the distance-constraints are

fulfilled. The distance constraints are a function of single-stranded sequence

lengths between connected stems. In addition, steric feasibility of structure is

check during the folding process. Once no more stems can be placed, a

simulation run is completed and output from CyloFold is the overall best

scoring structure generated by fifty simulation runs.

 CyloFold has been tested on two datasets. First dataset consists of 26

RNA sequences in which their tertiary structure is available in the Protein Data

Bank; Second dataset consists of 241 RNA sequences obtained from

Pseudobase. Comparison among structures generated by CyloFold and other

38

existing software (pknotsRG, HotKnots and UNAfold) shows that CyloFold

outperformed the others in term of the MCC score for both datasets.

 This algorithm simulate the RNA folding process and produce the RNA

secondary structure by selecting stems with a probability assigned according to

their free energy contribution. Therefore, the structure prediction of CyloFold

depends on the energy model employed. Furthermore, fifty simulation runs is

required for the structure prediction of an input sequence. Thus, it might

acquire lengthy execution time for structure prediction of longer RNA

sequences due to the compute-intensive approach.

2.5.6 Stochastic multiple context-free grammar

Stochastic multiple context-free grammar (SMCFG) developed by Nobuyoshi

Mizoguchi, Yuki Kato and Hiroyuki Seki is a grammatical approach for

ncRNA structure prediction including pseudoknots (Mizoguchi, Kato & Seki

2011). In SMCFG, the right-hand side of a production rule is denoted by

function application form. For example, a rule aXbS  can be expressed by

)(1 XfS  where 1f is the function defined by axbxf ][1 (x is an arbitrary

sequence of terminal symbols) (Mizoguchi, Kato & Seki 2011).

39

 This method assigned application probability to each production rule by

the referring to the aligned multiple sequences. Application probability is

defined as the product of the transition probability and the paired or unpaired

probability. Then, it uses the CYK algorithm to predict the consensus

secondary structure according to the grammar shown below:

Type Rule Function

E   ,vW

S  yv WJW     2121, xxxxJ 

D  yv WSKW      2121 ,, xxxxSK 

LU1  yLv WUPW i

1     21211 ,, xxxxUP iL
i 



RU1  yRv WUPW j

1     
21211 ,, xxxxUP jR

j 




LU 2  yLv WUPW k

2     21212 ,, xxxxUP kL
k 



RU 2  yRv WUPW l

2     lR xxxxUP l 

21212 ,, 

PL  yLv WBPW ji
     

2121 ,, xxxxBP jiL
ji 




PR  yRv WBPW lk
     lkR xxxxBP lk 

2121 ,, 

PC  yCv WBPW li
     liC xxxxBP li 

2121 ,, 

Example 2 demonstrates the generation of simple RNA pseudoknot

structure by using the grammar aforementioned.

Example 2 : Sequence derivation using MCFG.

Sequence : GCGAAGCGCGUUG

Structure :

40

Sequence derivation :

     ,,1 GUPW G

Lv 

    GGGUPW G

Lv ,,2  

    GUAGGGBPW AU

Cv ,, 

    GUUAAGGUAGBPW AU

Cv ,, 

    GUUGAAGGUUAGGUPW G

Rv ,,2 

    GUUGGAAGCGUUGAAGBPW GC

Lv ,, 

    GUUGCGAAGCGGUUGGAAGCBPW CG

Lv ,, 

    GUUGGCGAAGCGCGUUGCGAAGCGBPW GC

Lv ,, 

   GUUGGCGAAGCGCJWv , GCGAAGCGCGUUG

For SMCFG, it is developed for ncRNA structure prediction. It requires

the input file with aligned multiple sequences for the calculation of application

probability. Therefore, structure generated by SMCFG depends on the

sequence alignment of input sequences. This algorithm has been tested on

ncRNA sequences comprise from eight different families. Although the overall

performance of SMCFG is almost comparable to existing pseudoknot

prediction algorithm (hxmatch and Pair-SMCFG), it achieved low performance

while predicting ncRNA from certain family of ncRNA sequences Mizoguchi,

Kato & Seki 2011).

41

2.5.7 DotKnot

DotKnot is an pseudoknot detection algorithm which identifies two types of

pseudoknot, that is H-type pseudoknot and intramolecular kissing hairpins

(Sperschneider, Datta & Wise 2011). This algorithm is developed by Jana

Sperschneider, Amitava Datta and Michael J. Wise.

 This algorithm assembles pseudoknots in a constructive fashion from

the secondary structure probability dot plot calculated by RNAfold (Hofacker

et al. 1994). RNAfold is an RNA secondary structure prediction algorithm

which output the minimum free energy structure and base pairing probability

matrix. Firstly, a set of promising stems is obtained by setting a low-probability

threshold () so as to discover the potential pseudoknot stems. These

stems are stored in a dictionary, . The properties of stems are as follows:

(i) Contain at least 3 base pairs.

(ii) Absolute percentage increase or decrease of stack probabilities for

subsequent base pairs in a stem must be lower than a certain

threshold, .

(iii) Stem weight calculated using simple stacking model, must

be lower than 0.0 kcal/mol.

(iv) Stem weight calculated using free energy model proposed by

Turner group (Mathews et al. 1999), must be lower than 4.0

kcal/mol.

42

Then, maximum weight independent set (MWIS) calculations is used to

assemble noncrossing secondary structure elements. MWIS calculation is

performed on a list of sorted endpoints for all stems. It will penalize long bulge

or internal loops and ensure that confidence of stems is at least . These

restrictions reduced the search space and expedite the algorithm while handling

long sequences. Those stems which contained bulge or internal loops are stored

in a dictionary (
) while stems which formed multiloops are stored in a

different dictionary (
).

Stems from and
 are used to construct core H-type pseudoknots in

which their energies are evaluated by advanced energy models. Restrictions on

the structure of core H-type pseudoknots are:

(i) At most one interrupted stem is allowed.

(ii) The maximum and minimum length for each loop region is listed

in Table 2.1.

Table 2.1: Restrictions on loop length of core H-type pseudoknot.

Loop Location in Figure 2.15
Minimum loop

length

Maximum loop

length

 u 1 100

 v 0 50

 w 2 100

(iii) For interrupted stems with more than 10 base pairs,

 must contain at least 2nt while must contain at least 6nt.

43

Subsequently, those core H-type pseudoknots with low energy value

will be selected for constructing recursive pseudoknots. Each loop region (

 , and) is allowed to fold into any secondary structure elements. These

structures can be found in ,
 and

 . Then, the loop entropy of recursive

pseudoknots is recalculated using effective loop length. The effective loop

length of a pseudoknot loop with internal structure elements is the number of

unpaired nucleotides outside those internal structure elements plus the number

of internal structure elements. Finally, those pseudoknots which fulfilled the

following two criteria will be stored in a dictionary, before the removal of

false positive pseudoknots by using MWIS calculations.

(i) Free energy, < -5.25 kcal/mol.

(ii) Normalized pseudoknot free energy, , denotes

the length of pseudoknot .

After obtained H-type pseudoknots, kissing hairpin structures are

constructed by referring to the list of H-type pseudoknot structures stored in a

specific manner. The free energy value for kissing hairpins is estimated by

adding the stacking energies, including dangling ends for the three stems

involved in kissing hairpins structure plus a length-dependent value for the

loop entropies. Properties of stems involved in the formation of kissing

hairpins are as follows:

(i) kcal/mol and kcal/mol.

(ii) Confidence sum > .

44

(iii) Normalized kissing hairpins free energy, .

 This algorithm is designed for identifying 2 types of pseudoknot

structures, H-type pseudoknot and intramolecular kissing hairpins. Kissing

hairpins are restricted to be shorter than 400nt in order to improve the runtime

of algorithm. Besides, it provides a number of near-optimal H-type pseudoknot

and kissing hairpin candidates as well.

 Results show that DotKnot performed better than pknots, FlexStem and

RNAfold while predicting RNA structures with pseudoknots. It can predict

kissing hairpins correctly and achieve highest MCC score for most test

sequences. For pseudoknot-free test set, MCC score of DotKnot is comparable

to pknotsRG and RNAfold which implement dynamic programming method

for structure prediction (pknotsRG-0.59, RNAfold-0.57, DotKnot-0.55,

HotKnots-0.55, FlexStem-0.52).

CHAPTER 3

STEM WEIGHT MAXIMIZATION ALGORITHM

This chapter presents an algorithm which predicts RNA secondary

structure based on stem weight maximization. Stem is an important RNA

structure as it is made up by continuous base stacking which stabilize the RNA

structure. Base stacking of Watson-Crick base pairs (G-C and A-U) are more

preferable than Wobble base pair (G-U). Hence, the proposed algorithm always

select the stem which possess more preferable base pairs by referring to the

stem weight value calculated.

Figure 3.1 shows the general view of stages involved in the proposed

algorithm. At the end of this chapter, Example 6 which illustrates the overall

structure prediction of stem weight maximization algorithm is presented.

46

Figure 3.1: Flow chart of the proposed algorithm.

 The proposed algorithm begins with the construction of weight matrix.

The weight matrix constructed will be used for stem searching in which

selected stem is the one with highest stem weight value. Stem searching is

subdivided into three stages. Each stage will search for stems in different

regions. Searching regions for "section search" are those remaining unpaired

regions of previously found stem (Refer to Figure 3.4 for the searching regions

of "section search".). Subsequently, the proposed algorithm will continue with

"cross search" which searches for base pairing in the unpaired regions after

"section search" (Refer to Figure 3.7 for determining searching regions of

"cross search".). Finally, the "knot search" will search for pseudoknots if there

are valid regions for the formation of pseudoknots (Refer to section 3.2.3 for

the details of "knot search").

Construction of weight matrix

Knot search

Cross search

Stem searching

Section search

47

3.1 Construction of weight matrix

In this research, sequences used for structure prediction are obtained from

FRABASE (Popenda et al. 2010), RNA STRAND (Andronescu et al. 2008)

and CompaRNA (Puton et al. n.d.). Sequences downloaded from these

databases include various types of RNA such as tRNA, ribosome and

Ribonuclease P RNA.

The proposed algorithm begins with the construction of weight matrix

which will be used for stem searching in the following stage. Weight matrix is

a two dimensional matrix used to store the weight value assigned for each base

pair. The proposed algorithm includes three types of base pair (G-C, A-U and

G-U). These three types of base pair are assigned with a value each as its

weight that is 11, 8 and 3 respectively (Liu et al. 2006). Higher value is

assigned for Watson-Crick base pairs (G-C and A-U) due to their stabilization

effect towards the RNA structure. Wobble pair (G-U) is assigned with lower

weight value because it is thermally less stable than Watson-Crick base pairs.

For other combination of base pairs, they are assigned with the value zero.

48

Given an input sequence of length N , a weight matrix of size NN  is

created,   NNwMatrix . First, construction of weight matrix begins with the

initialization of diagonal to zero value. Then, fill up the matrix according to the

base pair‟s weight value as follows:

 















0

3

8

11

, nm aawMatrix

m and n refer to the row and column of weight matrix. ma

refers to the

nucleotide at row m while na refers to the nucleotide at column n .

Example 1 : Construction of weight matrix.

Input sequence : GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU

Length (N) : 32

Matrix created :   NNwMatrix

, if ma = G and na = C or vice versa.

, if ma = A and na = U or vice versa.

, if ma = G and na = U or vice versa.

, otherwise.

49

 Example 1 shows the construction of weight matrix for the input

sequence, GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU. Input

sequence has the length of 32, therefore dimension of weight matrix created

should be   3232wMatrix . Subsequently, initialize the diagonal with value

zero and start to fill up weight matrix at the position   310wMatrix which is

circled in Example 1. At this position, G is paired with U, thus it is filled with

the value „3‟. The process of filling up weight matrix continues until all

position which satisfies the condition of nm  is filled with the corresponding

weight value. The completed weight matrix would be an upper triangular

matrix.

3.2 Stem searching

After construction of weight matrix, the next step would be searching for stem.

Stem searching is looking for continuous base pairing of nucleotides which

form a stem (Refer to Figure 3.2 for the structure of stem in weight matrix.). In

the weight matrix, stem is the continuous regions which contained nonzero

entries diagonally.

The stem searching process is divided into three stages, which search

for stem in different regions:

(i) Section search

50

(ii) Cross search

(iii) Knot search

 These three searching processes are dependent. The first search (section search)

must be completed before carry on to the next search (cross search) and finally

the last search (knot search).

 “Section search” is searching for stem in three different regions (Refer

to Figure 3.4 for the illustration of searching regions.). It will select the stem

with maximum stem weight value from each region. “Cross search” will

identify possible base pairing in the unpaired region (Refer to Figure 3.8 for

determining searching region of “cross search”.). “Knot search” is the final

stage of stem searching. It will search for pseudoknot structures in between

loop and unpaired regions.

In the proposed algorithm, “section search” and “knot search” consider

only those stems which possess stem length greater than 2nt. In addition, loop

length of stems found in “section search” must be greater than 2nt as well. For

“cross search”, it is searching for possible base pairing in the bulge and internal

loop regions. Hence, the stem length is set to be not greater than 2nt in this case.

Besides, it will search for possible stem if there exists a pair of unpair regions

which are located at the beginning and ending of input sequence. Here, the

51

minimum stem length is 3nt. The following subsections will discuss about each

of these searching stages in detail.

3.2.1 Section search

“Section search” is the first stage of stem searching. It searches for stems

which possess maximum stem weight value in the specified regions of weight

matrix constructed. The stem weight value is the summation of successive base

pairing diagonally in the weight matrix.

 Since the formation of Watson-Crick base pairs stabilize the RNA

secondary structure, “section search” begins with identifying the stems with

maximum stem weight value from the entire weight matrix constructed in the

earlier stage. Stems are marked by the regions perpendicular to the diagonal

with continuous non-zero entries in the weight matrix. In Figure 3.2, it shows

all possible stems for the input sequence,

GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU.

52

Figure 3.2: Stems found in the weight matrix. Valid stems are highlighted in

green and blue color while invalid stem is highlighted in yellow color.

In “section search”, stem and loop length of stems must be greater than

2nt. For those stems which do not possess loop length greater than 2nt, the

proposed algorithm will unpair the innermost base pairing of nucleotides in

order to form a valid stem. Thus, the stem length is deducted by one. For

example, two innermost base pairs of stem (highlighted in red color)

highlighted in blue color has been unpaired in order to become valid stems

with loop length of 4nt. The stem weight of this stem is 22 which can be

obtained by summing up the values involved in the stem formation (8, 3 and 11

diagonally).

53

In Figure 3.2, the stem highlighted in yellow color is invalid because its

loop length is less than 3nt. The proposed algorithm cannot unpair the

innermost base pair and make it become valid stem due to its stem length

which is equal to the minimum value, 3. Figure 3.3 illustrates the process of

stem modification aforementioned.

Figure 3.3: Stem adjustment when loop size is less than 3nt.

Details for “section search” are as follows:

1. Search for valid stems within the specified region in weight matrix. The

initial searching region for “section search” is the entire weight matrix.

2. Calculate the weight of each valid stem and store them into a list. The

stem weight, w of a stem with length k is obtained by summing up

those weight values recorded in the weight matrix, starting at the first

position with nonzero entry as follows:

 
k

knkmwMatrixw),(

Loop size = 1

Stem length = 3

Loop size = 1

Stem length = 5

Discarded! Stem length is

equal to the minimum

value, 3.

Loop size = 3

Stem length = 4

The innermost base pair is

removed.

54

Note that stem is enclosed by neighboring entries with zero weight

value that is both  1,1  nmwMatrix and  1,1  knkmwMatrix

are zero.

3. Stem selection.

a) If stem which involved base pairing between the first and last

nucleotides of input sequence exist, select it.

b) Else, select the stem with maximum stem weight value from the

list of stem weight. If there are several stems which possess the

maximum stem weight value, select the one with the shortest

stem length.

4. Divide the selected stem into three regions and repeat step 1-3 for each

region.

First stem for any input sequence would be the one with the highest

stem weight value found within the entire weight matrix. Then this stem will be

divided into three regions and “section search” continues looking for stem with

similar properties in each region. Before searching for stem in each region,

searching regions of at least 6nt must be fulfilled because minimum six

nucleotides are required to form a stem with at least three base pairs in length.

55

Figure 3.4 shows three regions of stem. Region 1 is the unpair region

before the stem while region 3 is the unpair region after the stem. Region 2 is

the loop region of the stem. For each stem found, “section search” will divide it

into three regions and continue to search for new stem in each region

recursively. This process continues until no more stem can be found.

Figure 3.4: Three regions of a stem.

During the first stem searching process of “section search”, if there is a

stem which includes base pairing between the first and last nucleotides of input

sequence, it will be selected and stored in stem_section without further

evaluation. This is due to the preference of the proposed algorithm which

favors nested stems rather than juxtapose stems. Observations from the

experimental structure obtained from FRABASE shows that RNA structure

preferred nested stems while compared to juxtapose stems (64 structures with

nested stem structures; 7 structures with juxtapose stem structures.). Figure 3.5

shows the configuration of nested stems and juxtapose stems.

56

(a) Juxtapose stem

(b) Nested stem

Figure 3.5: Juxtapose and nested stems.

When there are several stems with maximum stem weight value, the

proposed algorithm will select the one which possess the shortest stem length

(Refer to Figure 3.6 for the illustration of stem selection.). Consequently, RNA

structure predicted by the proposed algorithm contains more Watson-Crick

base pairs (G-C and A-U) which stabilize the structure.

Figure 3.6: Stem selection while both stems are having equal stem weight

value, 30. Stem on the left is selected due to its shorter stem length, 3.

57

Every selected stem will be stored as a triplet, [i, j, k]. i

indicates the starting position of stem, j is the ending position and k is the

length of stem. Position of i, j and k can be found in Figure 3.4. For “section

search”, the proposed algorithm will discard those stems which do not possess

stem length and loop length of at least three base pairs and three nucleotides

respectively. All triplet of stems found in “section search” are stored in a list

named stem_section.

Example 2 : Stem searching of “section search”.

Input sequence : AAUAGGGCCUAAGCCCCUUUGGCCCAUGGGAGCCA

Stem found (stem_section) : [[4, 24, 5], [10, 18, 3],

 [26, 34, 3]]

Length (N) : 35

Weight matrix :

Region 3 : 25-34

58

“Section search” starts with finding the first stem with maximum stem

weight value in weight matrix. In Example 2, first stem found is [4, 24, 5]

with weight value 55 (11+11+11+11+11). The maximum stem weight value is

obtained by summing up those values highlighted with red circle in the weight

matrix. Then, this stem is divided into three regions. Region 1 ranges from 0-3,

Region 2 ranges from 9-19 and Region 3 ranges from 25-34. These three

regions can be found in the stem diagram (lower left corner) of Example 2.

Also, these three regions are highlighted with red triangle in the weight matrix.

Then, “section search” continues searching for stem in each of the three

regions. The second stem found is [10, 18, 3] (circled in blue) and three

regions of this stem are highlighted using blue triangle. These three blue

triangles are invalid regions for stem searching because none of them fulfilled

the minimum length of searching region, 6nt. As a result, “section search” does

not perform stem searching in these regions. After that, “section search” carry

on its stem searching process in Region 3 of first stem, [4, 24, 5]. Here, it

found another stem, [26, 34, 3] (circled in green). Subsequently, no more

stem can be found and “section search” halt at this point.

Example 3 : Stem searching of “section search” involving base pairing of

 first and last nucleotide.

59

Input sequence : GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU

Stem found (stem_section) : [[0, 31, 3], [7, 21, 3]]

Length (N) : 32

Weight matrix :

Example 3 shows the process of “section search” which involved base

pairing of starting and ending nucleotides. In step 3(a) (Refer to page 49.),

"section search" will check on all valid stems before select the one with

maximum stem weight value during first run. Therefore, the first stem being

selected in Example 3 is [0, 31, 3] (circled in red) instead of

[14,31,7](highlighted in yellow color).

60

Since the stem found begins at the position „0‟ and ends at the position

„31‟, this means that the next search do not involve Region 1 and Region 3.

Hence, “section search” continue to search for stems in Region 2, which is the

area ranges from 3 to 28 (Region bounded with red triangle in Example 3.).

Stem found in this region is [7, 21, 3] (circled in blue). After this,

“section search” continue with stem searching in regions bounded with blue

triangle. No stem can be found in any of these regions, therefore “section

search” stop at this moment.

 Although “section search” and DWM are similar but the process of

stem selection is different. DWM algorithm selects stem with the maximum

whole weight value which is the compound weight (Refer to section 2.5.4 for

the detail of DWM). For the proposed algorithm, it searches for potential stem

before the calculation of stem weight instead of compound weight for DWM

algorithm. Besides, stem length and loop size must be at least 3nt in order to be

a potential stem.

3.2.2 Cross search

“Cross search” is searching for stem with maximum stem weight value as well.

It differs from “section search” in the searching region. “Cross search” looks

for stem in the unpaired regions. “Unpaired region” refers to the region which

contained unpaired nucleotides excluding hairpin loop. Unpaired regions can

61

be determined by exploring the dot bracket representation of

stem_section (Refer to Figure 3.7 for searching of unpaired regions for

“cross search”.) . The minimum size of unpaired region is set to be at least 3nt.

...((((....(((....)))..(((...))).....))))....(((....))).....

Figure 3.7: Determine unpaired regions for “cross search”.

Unpaired regions are stored in a list, S . Each region is represented

using two values which indicate the starting and ending positions of region.

After determined the unpaired regions, “cross search” will begin the stem

searching process. In general, the stem searching of “cross search” is

summarized as follows:

1. Select the first region, 0S and last region, 1)(SlenS from S .

2. Determine the validity of regions selected in step 1.

a) Ensure that the first region is not identical with the second

region. If both regions are identical, remove the first region

from S and repeat step 1.

Valid

Valid

OR

Invalid due to length of 2.

Invalid because these are loop regions.

Invalid pair of unpaired regions because green region on the left fall in between red bracket.

pair.

62

b) Search for those stems which enclosed the first region and store

them into a list. Repeat this step for the second region.

c) Check whether the list of stems for both regions are identical.

 If both lists are identical, proceed with step 3

 Else, change the second region to 2)(SlenS . Repeat step 2

for the pair of newly selected regions.

3. Search for base pairing in between both regions.

a) If stems can be found, select the one with maximum stem

weight value and remove both selected regions from S . Then,

repeat step 1.

b) Else, change the second region to 2)(SlenS . Repeat stem 2 for the

pair of newly selected regions. Otherwise, remove the first

region from S and repeat step 1.

“Cross search” begins by selecting the first and last regions from the list

S . For every pair of dissimilar selected regions, “cross search” will determine

whether they are valid for stem searching by compiling a list of stems for each

region. The list contains those stems which enclosed by the selected region. If

both lists are not identical, the second region which is the last region in S will

be changed to the next region before it, 2)(SlenS .

63

Subsequent to the existence of valid regions for stem searching, “cross

search” will search for stems in between the regions and select the one which

possess maximum stem weight value. If the pair of valid regions include first

and last nucleotides of input sequence, the minimum length of stem is set to be

at least 3nt while less than 3nt otherwise. The proposed algorithm discards

short stems which formed by base pairing involving the beginning and ending

of input sequence because isolated base pairs destabilize the RNA structure.

Figure 3.8 shows two examples of stem found by “cross search”.

1BYJ 1EBR

GGCGUCACACCUUCGGGUGAAGUCGCC

((((.(.((((....))))..).))))

GGUGGGCGCAGCUUCGGCUGACGGUACACC

((((..((((((....)))).))...))))

Figure 3.8: Base pairing found by “cross search”.

64

Example 4 : Stem searching of “cross search”.

Input sequence : GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU

Stem found : stem_section - [[0, 31, 3], [7, 21, 3]]

 stem_cross - [[4, 28, 2]]

Dot-bracket representation of stem_section :

(((....(((.........))).......)))

Length (N) : 32

Valid regions : [[3, 6], [22, 28]]

Weight matrix :

Example 4 shows the stem searching for “cross search”. Those stems

found in “section search” are stored in stem_section ([[0, 31, 3],

[7, 21, 3]]). Thus, the proposed algorithm continues with “cross search”

by determining the valid regions ([3, 6], [22, 28]) before stem

65

searching. A stem is found in these two regions, that is [4, 28, 2]. Then,

“cross search” stop because no more valid regions are available for stem

searching.

3.2.3 Knot search

“Knot search” which is the final stage of stem searching, will identify the

existence of pseudoknot structures which are found to be functionally

important in some cellular activities (Draper, Gluick & Schlax 1998). The

proposed algorithm can identify two types of pseudoknot which are H-type

pseudoknot and kissing hairpins. H-type pseudoknot is form by the base

pairing between hairpin loop and unpaired region. Kissing hairpins is form by

the base pairing between two hairpin loops.

 Hence, this stage begins with identifying suitable regions for forming

pseudoknot structures. “Knot search” requires two types of valid regions which

are loop regions and unpaired regions. Loop regions are stored in loop while

unpaired regions are stored in unpair. These two regions are determined by

exploring the dot-bracket representation of stems found in previous stem

searching processes (“section search” and “cross search”). Stems found in

“knot search” are stored in stem_knot. Figure below illustrates how to

determine the searching regions for “knot search”.

66

(((...((((...))))..(((......)))....)))..

Figure 3.9: Determine searching regions for knot search.

By observing those experimentally determined structures obtained from

FRABASE, all pseudoknots are found in large hairpin loop regions. Therefore,

the proposed algorithm will not consider small loop regions while searching for

pseudoknot structures. In the proposed algorithm, the loop length for

pseudoknot structures formation must be at least 6nt. In addition, unpaired

regions which contain less than 5nt are excluded as well.

If both loop regions, L and unpaired regions, S are available, “knot

search” will search for potential pseudoknot structures as follows:

1. Search for H-type pseudoknot.

a) Select 0L and 0S from L and S respectively.

b) If stems can be found, select the one with maximum stem

weight value as the pseudoknot structure. Remove selected

regions from L and S . Then, return to step 1.

c) Else, select the next region in S and repeat previous step.

Invalid due to length of 3 (3<6).

Invalid due to length of 2 (2<3).

Valid OR

67

2. Search for kissing hairpins.

a) Select iL from L in which 0LLi  .

b) If stems can be found, select the one with maximum stem

weight value as the pseudoknot structure. Remove selected

regions from L . Then, repeat step 1.

c) Else, return to step 2(a) by selecting the other loop region as iL .

3. Remove 0L from L and repeat step 1.

First, “knot search” will identify potential H-type pseudoknot structures.

Therefore, it selects first region from L and second region from S to search for

pseudoknot structure. When no more unpaired regions are available for

constructing H-type pseudoknot, “knot search” will continue by selecting the

next region in L as the second region. Hence, it is looking for kissing hairpins.

The proposed algorithm prefers H-type pseudoknot due to its higher occurrence

while compared to kissing hairpin structures. Among 15 FRABASE structures

with pseudoknots, 11 of them are found to be H-type pseudoknot. Figure 3.10

shows two examples of pseudoknot structures found.

68

1YG4 1D0T

AGUGGCGCCGACCACUUAAAAACACCGG

(((((..[[[.))))).........]]]

AGUGGCGCCGACCACUUAAAAACAACGG

(((((..[[[.))))).........]]]

Figure 3.10: Pseudoknots found by “knot search”.

Example 5 : Stem searching of “knot search”.

Input sequence : GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU

Stem found : stem_section - [[0, 31, 3], [7, 21, 3]]

 stem_cross - [[4, 28, 2]]

Dot-bracket representation of stem found in previous stem searching processes :

(((.((.(((.........))).....)))))

Length (N) : 32

Valid regions : loop – [[10, 18]], unpair – [[22, 26]]

Weight matrix :

69

Example 5 illustrates the stem searching of “knot search”. “Knot search”

found the stem, [13, 25, 3] in the valid regions and stored it into

stem_knot. This is a H-type pseudoknot because it involves base pairing

between a loop ([10, 18]) and unpaired region ([22, 26]). In “knot search”,

when a stem is found, the corresponding regions involved in base pairing will

be removed from their corresponding list in which it is obtained. Subsequently

“knot search” keeps on searching for stems if valid regions are available.

Once the stem searching process has been completed, the proposed

algorithm will revise the dot-bracket representation by adding in the

pseudoknot structures obtained by “knot search”. Pseudoknot structures which

involved cross pairing of previously found stems will be represented using

square bracket („[„ and „]‟). The bottom left figure of Example 5 shows the

final structure obtained.

Example 6 : Structure prediction of the proposed algorithm.

Input sequence : GAAGAAGGGGAAAAAGGAAGUGAGCCUUUAAGGACUCAAAAUCUUACGCCCUUC

Section search : stem_section - [[0, 53, 4],[12,28,5],[30,44,4]]

Structure : ((((........(((((.......))))).((((.......)))).....))))

Weight matrix :

7
0

Cross search : stem_cross - [[6, 49, 2]]

Valid regions : [[4, 11],[45,49]]

Structure : ((((..((....(((((.......))))).((((.......))))...))))))

Weight matrix :

7
1

Knot search : stem_knot - [[20, 37, 4]]

Valid regions : loop – [[17, 23],[34,40]],

 unpair – [[8,11],[17, 23],[34,40],[45,47]]

Structure : ((((..((....(((((...[[[[))))).((((]]]]...))))...))))))

Weight matrix :

7
2

Figure 3.11: RNA structure predicted in Example 6.

73

CHAPTER 4

ANALYSES

This chapter discusses the performance of stem weight maximization algorithm

presented in Chapter 3. RNA structures are obtained from three databases

(FRABASE, RNA STRAND and CompaRNA). Performance of the proposed

algorithm is evaluated by calculating the specificity and sensitivity values. Then,

execution time of the proposed algorithm is recorded as well while predicting

structures of RNA STRAND and CompaRNA.

4.1 FRABASE

This section will discuss about the performance of the proposed algorithm by

testing on 110 sequences downloaded from FRABASE (Popenda et al. 2010).

The length of these sequences are range between 12 – 76 nt. Structures of these

sequences are obtained through experimental method like NMR (97 structures),

X-ray diffraction (12 structures) and electron microscopy (1 structure).

75

4.1.1 General performance

Table 4.1 shows the total of specificity (SP) and sensitivity (SN) obtained by the

proposed algorithm. The table listed the total of SP and SN values fall in each

category (Refer to Appendix B for the complete result.). Since all value obtained

are higher than 70%, the category defined in the table starts with the range 70-

79%. The SP and SN values in percentage form are calculated using the

formulae shown below:

100




FPTP

TP
SP

100




FNTP

TP
SN

TP is the amount of correctly predicted base pairs; FP is the amount of

incorrectly predicted base pairs; FN is the amount of known base pairs which

have not been correctly predicted. SP indicates the proportion of known base

pairs that have been correctly predicted. SN value shows the ability of algorithm

in identifying known base pairs. Higher SP and SN values indicate better

structure prediction by having higher similarity between database structure and

predicted structure. The structure determined through electron microscopy (2J28)

is not shown in Table 4.1. The SP and SN values for 2J28 are 100 for both.

Table 4.1: Total of SP and SN in each category (FRABASE).

Category

(%)

NMR X-ray diffraction Total

SP % SN % SP % SN % SP SN

70 - 79 5 5.2 2 2.1 2 16.7 0 0 7 2

80 - 89 9 9.3 2 2.1 8 66.7 1 8.4 17 3

90 - 99 8 8.2 8 8.2 1 8.3 7 58.3 9 15

100 75 77.3 85 87.6 1 8.3 4 33.3 76 89

Total 97 12 109

76

Majority of sequences obtained 100% for both SP and SN values. For SP

value, there are 76 sequences achieved 100%. This is about 70% from the total

sequences. Meanwhile, there are 89 sequences which achieved 100% for SN

value (82%). Among these sequences, a total of 73 are perfect prediction

(achieved 100% for both SP and SN). This means that structure predicted from

the proposed algorithm are exactly the same with structure downloaded from

FRABASE. Generally, total sequences with high (≥80%) SP value is 102 (94%)

and 107 (98%) for SN value.

From Table 4.1, there are 97 structures determined through NMR

method and 12 structures determined through X-ray diffraction method. From

the table, it shows that the proposed algorithm performed better for structures

determine through NMR method while compared to those structures determine

through X-ray diffraction method. Majority of SP and SN values are fall in the

category of 100% for NMR structure prediction.

Among the 110 sequences downloaded, there are 15 sequences with

pseudoknot structures in which 7 are determined by NMR method while those

remaining are determined by X-ray diffraction method. Table 4.2 shows the total

of SP and SN values in each category. In general, performance of the proposed

algorithm in pseudoknot prediction is quite good because majority of SP and SN

values obtained are high (≥80%).

77

Table 4.2: Total of SP and SN in each category for pseudoknot structures

(FRABASE).

Category

(%)

NMR X-ray diffraction Total

SP SN SP SN SP SN

70 – 79 2 0 1 0 3 0

80 – 89 1 1 7 1 8 2

90 – 99 1 1 0 4 1 5

100 3 5 0 3 3 8

Total 7 8 15

4.1.2 Performance of the proposed algorithm compared to other algorithms

Results obtained by the proposed algorithm are compared with four pseudoknot

prediction algorithms, HotKnots, pknotsRG, DotKnot and CyloFold. HotKnots

is a heuristics algorithm based on the idea of iteratively forming stable stems. It

explores many alternative secondary structures and selects the one with

minimum free energy value (Ren et al. 2005). pknotsRG is a pseudoknot

prediction algorithm which predicts the minimum free energy RNA structure

based on Turner energy rules (Reeder, Steffen & Giegerich 2007, Mathews et al.

1999). DotKnot is a pseudoknot detection algorithm (Sperschneider, Datta &

Wise 2011). CyloFold is simulating a folding process in the coarse-grained

manner by selecting helices based on established energy rules (Bindewald,

Kluth & Shapiro 2010).

MCC (Matthew’s Correlation Coefficient) is calculated in order to know

the performance of various algorithms. MCC is defined as below:

78

If one of the four summation inside the square root is equal to zero, then

denominator is arbitrarily set to one. MCC value ranges from -1 to +1. Number

which closer to +1 means better prediction and +1 indicates perfect prediction.

Table 4.3 summarizes the overall performance of the proposed algorithm

and three other algorithms while Table 4.4 shows the total of SP and SN in each

category for all of them. Generally, performance of the proposed algorithm is

good although its MCC score is slightly lower than HotKnots. The minimum

value for SP is 72.22% and 71.43% for SN (Refer to Appendix B-1 for the

minimum SP and SN values of the other algorithms.). The minimum SP value

achieved is the highest value while compared to the other algorithms.

Table 4.3: Performance of the proposed algorithm, Hotknots, pknotsRG,

DotKnot and CyloFold (FRABASE).

 Average value

 SP SN MCC

Proposed algorithm 95.60 98.18 0.9122

HotKnots 96.86 98.70 0.9396

pknotsRG 95.16 97.02 0.8994

DotKnot 95.59 95.79 0.8884

CyloFold 95.79 93.66 0.8594

79

Table 4.4: Total of SP and SN in each category for the proposed algorithm,

Hotknots, pknotsRG, DotKnot and CyloFold (FRABASE).

Category

(%)

Proposed

algorithm
HotKnots pknotsRG DotKnot CyloFold

SP SN SP SN SP SN SP SN SP SN

40-49 0 0 0 0 0 0 0 0 1 0

50-59 0 0 0 0 3 3 0 0 0 3

60-69 0 0 1 0 1 1 7 1 1 5

70-79 7 2 3 1 5 2 2 10 4 7

80-89 17 3 8 5 9 5 10 10 10 11

90-99 9 15 14 7 14 8 11 5 16 10

100 77 90 85 97 78 91 80 84 78 74

Total 110

4.2 RNA STRAND

RNA STRAND is a database which collects known RNA secondary structures

from various databases (Andronescu et al. 2008). 30 RNA structures with

pseudoknot are downloaded from this database. The source of these sequences is

Ribonuclease P Database (Brown 1999) in which structures are obtained by

comparative sequence analysis method. The length for these structures is range

between 229 - 457 nt.

4.2.1 General performance

Figure 4.1 shows the performance of the proposed algorithm in predicting RNA

STRAND structures. It shows the difference between SP and SN values of the

proposed algorithm in predicting 30 structures downloaded from the database.

Majority of the difference between these two values are always negative. This

80

shows that SP values are higher than SN values for most of the cases. This

indicates that the proposed algorithm obtained higher value of FN while

compared to FP for this dataset.

Figure 4.1: Difference of SN and SP values (SN – SP) for 30 structures

downloaded from RNA STRAND.

The highest peak in Figure 4.1 is 27.63. This value corresponds to the

difference between SN and SP of ASE_00017. The SP value is much lower than

SN in this case due to high FP value obtained. A large segment (75nt) of

ASE_00017 which contained no base pairs is the main cause of the high FP

value obtained.

-15

-10

-5

0

5

10

15

20

25

30

A
SE

_0
0

0
0

1

A
SE

_0
0

0
0

2

A
SE

_0
0

0
0

3

A
SE

_0
0

0
0

4

A
SE

_0
0

0
0

5

A
SE

_0
0

0
0

6

A
SE

_0
0

0
0

7

A
SE

_0
0

0
0

8

A
SE

_0
0

0
0

9

A
SE

_0
0

0
1

1

A
SE

_0
0

0
1

2

A
SE

_0
0

0
1

3

A
SE

_0
0

0
1

4

A
SE

_0
0

0
1

5

A
SE

_0
0

0
1

7

A
SE

_0
0

0
1

8

A
SE

_0
0

0
1

9

A
SE

_0
0

0
2

0

A
SE

_0
0

0
2

1

A
SE

_0
0

0
2

2

A
SE

_0
0

0
2

3

A
SE

_0
0

0
2

6

A
SE

_0
0

0
2

8

A
SE

_0
0

0
2

9

A
SE

_0
0

0
3

0

A
SE

_0
0

0
3

1

A
SE

_0
0

0
3

2

A
SE

_0
0

0
3

3

A
SE

_0
0

0
3

5

A
SE

_0
0

0
3

7

D
if

fe
re

n
ce

 b
e

tw
e

e
n

 S
P

 a
n

d
 S

N
 v

al
u

e
s

(S
N

-
SP

)

Sequence ID

81

4.2.2 Performance of the proposed algorithm compared to pknotsRG and

 DotKnot

The average values of SP and SN of the proposed algorithm in predicting RNA

STRAND structures are 74.62% and 72.51% respectively. Table 4.5 shows that

most of the SP and SN values for the proposed algorithm and DotKnot fall in the

category 70 – 79% while 80 – 89% for pknotsRG. The average SP and SN

values for pknotsRG (SP - 81.33%, SN - 80.03%) and DotKnot (SP - 79.28%,

SN - 76.15%) are higher than the proposed algorithm for this dataset.

Table 4.5: Total of SP and SN in each category for the proposed algorithm,

pknotsRG and DotKnot (RNA STRAND).

Category

(%)

Proposed algorithm pknotsRG DotKnot

SP SN SP SN SP SN

40 – 49 1 0 1 0 1 0

50 – 59 0 0 0 0 0 1

60 – 69 3 12 0 1 0 1

70 – 79 19 16 7 10 14 20

80 – 89 7 2 20 19 15 8

90 – 99 0 0 2 0 0 0

Although performance of the proposed algorithm is not as good as

pknotsRG and DotKnot, but the execution time of the proposed algorithm is

much lower than both of them. This is illustrated in Figure 4.2. The average

execution time of the proposed algorithm is 1.80s whereas pknotsRG and

Dotknot required 16.19s and 16.23s respectively on the whole.

82

Figure 4.2: Execution time of the proposed algorithm, pknotsRG and DotKnot

(RNA STRAND).

4.3 CompaRNA

CompaRNA is a server which performs benchmarking of various RNA structure

prediction algorithm (Puton et al. n.d.). The complete pseudoknot dataset of

CompaRNA has been downloaded. This dataset contained 92 RNA structures

with pseudoknot. The length of these structures ranges between 27 - 3174 nt.

0

10

20

30

40

50

60

200 250 300 350 400 450 500

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Sequence length (nt)

Proposed algorithm pknotsRG DotKnot

83

4.3.1 General performance

Figure 4.3 shows the box plot for SP and SN values achieved by the proposed

algorithm. From the box plot, it can be observed that there are some outliers for

SP while no outliers are found for SN. The minimum value achieved by the

proposed algorithm is 19.57% for SP and 48.51% for SN. For maximum value,

both SP and SN values achieved 100%.

Figure 4.3: Box plot for SP and SN values achieved by the proposed algorithm

(CompaRNA).

For this dataset, length of sequences can be classified into 3 categories,

that is short (), middle () and long

(). The average performance of the proposed algorithm

for each of these categories is summarized in Table 4.6. Table 4.6 shows that

SN SP

84

performance of the proposed algorithm decrease significantly from short to

middle category. This shows that the proposed algorithm perform better in the

structure prediction of short sequences. For longer sequences which range

between 1400-3200nt, the performance of the proposed algorithm has not much

difference. This indicates that performance of the proposed algorithm is quite

stable for structure prediction of longer sequences.

Table 4.6: Performance of the proposed algorithm in predicting RNA sequences

with various length.

Category Length (nt)
Average value

SP SN

Short 25 - 400 73.3 83. 2

Middle 1400 - 1800 61.0 71.3

Long 2700 - 3200 62.2 71.4

 Additionally, performance of the proposed algorithm in terms of

execution time required for structure prediction is recorded as well. Generally,

execution time of the proposed algorithm increased exponentially with length of

sequences. Figure 4.4 shows the execution time of the proposed algorithm while

predicting sequences obtained from STRAND. The figure shows that execution

time increased significantly for every increase of sequence length by 1000nt.

85

0

1000

2000

3000

4000

5000

6000

2
7

3
3

6
7

6
9

7
1

7
5

7
6

8
2

9
2

9
4

1
3

7

1
3

9

1
4

0

3
8

7

1
5

0
0

1
5

1
1

1
5

3
0

2
7

5
4

2
7

7
0

2
8

0
3

2
8

4
9

2
8

8
5

2
9

0
4

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Length of sequence (nt)

Figure 4.4: Execution time required for the structure prediction of CompaRNA

structures.

4.3.2 Performance of the proposed algorithm compared to pknotsRG

Table 4.7 summarized the performance of the proposed algorithm and pknotsRG.

Although total SP values which fall in the category of 100% is higher for

pknotsRG, but performance of the proposed algorithm is better than pknotsRG

on the whole. The average SP and SN values achieved by the proposed

algorithm are 68.54% and 78.31% respectively. For pknotsRG, the average SP

and SN values achieved are 59.63% and 61.04% respectively.

86

Table 4.7: Performance of the proposed algorithm and pknotsRG (CompaRNA).

Category (%)
Proposed algorithm pknotsRG

SP SN SP SN

10 – 19 1 0 1 1

20 – 29 1 0 6 3

30 – 39 3 0 7 6

40 – 49 5 1 28 16

50 – 59 10 1 14 28

60 – 69 31 16 6 7

70 – 79 22 37 3 13

80 – 89 10 24 12 8

90 – 99 2 9 3 8

100 7 4 12 2

4.4 Comparison among three databases

Here, discussion will focus in the comparison of performance of the proposed

algorithm while predicting structures downloaded from three different databases.

Since the length of sequences obtained from CompaRNA is ranged between 27 -

3174nt while the maximum length of sequences obtained from FRABASE and

RNA STRAND are 76nt and 457nt respectively, the range of sequence length

included in this section would be 12 - 457nt.

 From Figure 4.5 and Figure 4.6, performance of the proposed algorithm

is the best while predicting FRABASE structures. For SP values, performance of

the proposed algorithm in predicting CompaRNA structures is not consistent due

to the bigger fluctuation of SP values achieved. Conversely, majority of SP

values achieved for predicting RNA STRAND structures are more consistent by

ranging between 68.5 - 87.5%.

87

0

20

40

60

80

100

120

0 100 200 300 400 500

SP
 v

al
u

e

Length of sequence (nt)

CompaRNA FRABASE RNA STRAND

 Generally, SN values achieved for structure prediction are more

consistent while compared to SP values. SN values achieved are ranged within

60-100 with two exceptional cases which are 48.51% and 53.7%. On the whole,

performance of the proposed algorithm in ascending order is as follow:

CompaRNA (SP-68.54%, SN-78.31%), RNA STRAND (SP-74.62%, SN-

72.51%) and FRABASE (SP-95.60%, SN-98.18%).

Figure 4.5: SP values achieved for predicting structures obtained from RNA

STRAND, CompaRNA and FRABASE.

88

0

20

40

60

80

100

120

0 100 200 300 400 500

SN
 v

al
u

e

Length of sequence (nt)

CompaRNA FRABASE RNA STRAND

Figure 4.6: SN values achieved for predicting structures obtained from RNA

STRAND, CompaRNA and FRABASE.

CHAPTER 5

CONCLUSION AND FUTURE WORK

During the development of the pseudoknot prediction algorithm, various

problems have been encountered. In this chapter, some unsolved problems are

outlined and discussed. The main problem of the proposed algorithm is having

extra base pairs. These extra base pairs generally occurred at the starting

position of stem and pseudoknot structure. Besides, contributions and future

works are presented as well.

5.1 Superfluous base pair

Basically, there are three problems found in structure prediction by the

proposed algorithm. First, structure predicted will contain extra base pairs

while compared to FRABASE structure. These extra base pairs are in fact valid

pairing but they are found to be not paired in the database. Some examples of

structure which contained extra base pairs are shown in Figure 5.1.

90

Figure 5.1: Extra base pairing found in structure predicted by the proposed

algorithm.

 Besides, pseudoknots found in FRABASE always form by a base

pairing only. In the proposed algorithm, “knot search” does not consider stem

with length smaller than 3nt. As a result, pseudoknots predicted by the

proposed algorithm always contained additional base pairs and it might not

form within the same regions as in FRABASE structure. This is shown in

Figure 5.2.

FRABASE structure Predicted structure

.((((.(((((......))))))))). (((((((.((((....)))))))))))

((((((.....)))))) (((((((...)))))))

..(((((..[[[.))))).......]]] ..(((((..[[[[)))))......]]]]

1J4Y

1F7F

1L2X

91

Figure 5.2: Extra base pairing found in pseudoknot predicted by the proposed

algorithm.

FRABASE structure Predicted structure

(((((((..((((....[..)))).((((

(.......))))).....(((((..]...

.))))))))))))....

((((((((.((((...[[[.)))).((((

(.......)))))...]]]((((......

.))))))))))))....

(((((((..((((.....[..)))).(((

(.........)))).....(((((..]..

..))))))))))))....

((((((((.((((........)))).(((

((.......))))).[[[[.((((...]]

]]))))))))))))....

1YFG

4TNA

92

 Furthermore, the proposed algorithm favors stem with maximum stem

weight value. Thus, it might produce structure which is different from

FRABASE structure. This case is observable while FRABASE structure is

having lots of base pairs with stem length less than 3nt. Figure 5.3 shows that

RNA structure might contain a few stems which is short in length whereas the

proposed algorithm does not prefer these stems. Therefore, structure predicted

is diverse from FRABASE structure. Table 5.1 shows the total occurrence of

problems discussed in this section.

Figure 5.3: Problems of stem weight maximization implemented by the

proposed algorithm.

FRABASE structure Predicted structure

......(((.[{{....[[)))...].].]

.}}..

......[[[[(((((...]]]]...)))))

.....

1DDY

93

Table 5.1: Total occurrence of various problems.

5.2 Contributions

This research has developed an RNA pseudoknot prediction algorithm by

extending the DWM algorithm (Liu et al. 2006). Stem selection criteria of the

proposed algorithm is different from DWM algorithm. The proposed algorithm

prefers stem with maximum stem weight value. In addition, stems which does

not fulfilled those criteria discussed in Section 3.2.1 are filtered out before the

calculation of stem weight.

Moreover, the proposed algorithm can predict two types of pseudoknot

structures that is H-type pseudoknot and kissing hairpins. Currently, majority

of pseudoknot prediction algorithms developed are target on the common type

of pseudoknot that is H-type pseudoknot whereas the proposed algorithm can

predict an additional type of pseudoknot, kissing hairpins.

Problems Total

Extra base pairing 20

Pseudoknot 7

Stem selection 6

Short stem 2

94

 In Chapter 4, the proposed algorithm is shown to produce reasonably

accurate structures. Comparison of structures predicted by the proposed

algorithm with FRABASE structures produced high SP and SN values. This

shows that structures predicted by the proposed algorithm have high similarity

with experimentally determined RNA structures.

 In addition, the proposed algorithm can handle long sequences and

perform structure prediction in a short time frame. Hitherto, the maximum

length of RNA sequences that has been tested on the proposed algorithm is

3174nt. For sequences up to 1500nt, it requires about 5 minutes for structure

prediction. From Figure 4.2, it shows that the execution time of the proposed

algorithm is much reduced while compared to pknotsRG and DotKnot.

 In this research, performance of the proposed algorithm is evaluated by

structure comparison between predicted structure and database structure.

FRABASE is one of the databases used for evaluating the performance of the

proposed algorithm. This database contains only RNA structures determined

through experimental like NMR, X-ray diffraction and electron microscopy.

Therefore, comparison with structures obtained from FRABASE provides a

reliable indication on how well is the performance of the proposed algorithm.

95

5.3 Future work

Since the proposed algorithm always contain extra base pairing in pseudoknot,

therefore implementation of post processing for removing these extra base

pairs might be considered as a way to overcome this problem.

 Besides, the proposed algorithm can be modified for the prediction of

triple helix interaction which is another type of pseudoknot as well. Triple

helix interaction is formed when base pairing occurs in between the loop

regions of H-type pseudoknot. Figure below shows the structure of triple helix

interaction.

Figure 5.4: Triple helix interaction.

96

REFERENCES

Akutsu, T. 2000, 'Dynamic programming algorithms for RNA secondary

structure prediction with pseudoknots', Discrete Applied Mathematics, vol. 104,

pp. 45-62.

Andronescu, M., Bereg, V., Hoos, H.H. and Condon, A. 2008, 'RNA STRAND:

The RNA Secondary Structure And Statistical Analysis Database', BMC

Bioinformatics, vol. 9, no. 1, pp. 340.

Bindewald, E., Kluth, T. and Shapiro, B.A. 2010, 'CyloFold: secondary

structure prediction including pseudoknots', Nucleic Acids Research, vol. 38,

pp. w368-w372.

Brown, J.W. 1999, 'The Ribonuclease P Database', Nucl. Acids Res., vol. 27,

pp. 314.

Chen, Q. and Chen, Y.P. 2009, 'Discovery of Structural and Functional

Features in RNA Pseudoknots', IEEE Transactions on knowledge and data

engineering, vol. 21, no. 7, pp. 974-984.

Doudna, J.A. and Cech, T.R. 2002, 'The chemical repertoire of natural

ribozymes', Nature, vol. 418, no. 6894, pp. 222-228.

Draper D.E., Gluick T.C. and Schlax P.J. 1998, 'Pseudoknots, RNA folding

and translational regulation in RNA structure and function', Cold Spring

Harbor Laboratory Press, pp. 415-436.

Eddy, S.R. 2004, 'How do RNA folding algorithms work?', Nature

Biotechnology, vol. 22, no. 11, pp. 1457-1458.

97

Eddy, S.R. 2005, 'Computational Analysis of RNAs', BMC Bioinformatics, vol.

6, pp. 63.

Giedroc D.P., Theimer C.A. and Nixon P.L. 2000, 'Structure, stability and

function of RNA pseudoknots involved in simulating ribosomal frameshifting',

J. Mol. Biol., vol. 298, pp. 167-185.

Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M. and

Schuster, P. 1994, 'Fast folding and comparison of RNA secondary structures',

Monatsh Chem, vol. 125, pp. 167-188.

Krane, D.E. and Raymer, M.L. 2003, Fundamental concepts of bioinformatics.

Pearson Education, Benjamin Cummings, 1301 Sansome Street, San Francisco.

Liu, Haijun, Xu, Dong, Shao, Jianling, and Wang, Yifei 2006, 'An RNA

folding algorithm including pseudoknots based on dynamic weighted matching',

Computational Biology and Chemistry, vol. 30, pp. 72-76.

Liu, Q., Ye, X., and Zhang, Y. 2006, 'A Hopfield Neural Network Based

Algorithm for RNA Secondary Structure Prediction', IMSCCS, vol. 1, pp. 10-

16.

Lyngso, R.B. and Pederson, C.N. 2000, 'RNA pseudoknot prediction in energy-

based models', J. Comput. Biol., vol. 7, pp. 409-27.

Mathews, D.H. and Turner, D.H. 2006, 'Prediction of RNA secondary structure

by free energy minimization', Curr Opin Struct Biol, vol. 16, pp. 270-8.

Mathews, D.H., Sabina, J., Zuker, M. and Turner, D.H. 1999, 'Expanded

sequence dependence of thermodynamic parameters improves prediction of

RNA secondary structure', J. Mol. Biol., vol. 288, pp. 911-940.

Meister, G. and Tuschi, T. 2004, 'Mechanisms of gene silencing by double-

stranded RNA', Nature, vol. 431, pp. 343-349.

98

Meyer, I.M. and Miklós, I. 2007, 'SimulFold: Simultaneously Inferring RNA

Structures Including Pseudoknots, Alignments, and Trees Using a Bayesian

MCMC Framework', PLoS Computational Biology, vol. 3, no. 8, pp. 1441-

1454.

Mihalusova, M., Wu, J.Y. and Zhuang, X. 2011, 'Functional importance of

telomerase pseudoknot revealed by single-molecule analysis', PNAS Early

Edition.

Mizoguchi, N., Kato, Y. and Seki, H. 2011, 'A Grammar-Based Approach to

RNA Pseudoknotted Structure Prediction for Aligned Sequences', IEEE

International Conference on Computational Advances in Bio and medical

Sciences, pp. 135-140.

Nussinov, R., Peiczenik, G., Griggs, J.R. and Kleitman, D.J. 1978, 'Algorithms

for Loop Matchings', SIAM J. Appl. Math, vol. 35, pp. 68-81.

Popenda, M., Szachniuk, M., Blazewicz, M., Wasik, S., Burke, E.K.,

Blazewicz, J. and Adamiak, R.W. 2010, 'RNA FRABASE 2.0: an advanced

web-accessible database with the capacity to search the three-dimensional

fragments within RNA structures', BMC Bioinformatics, vol. 11, pp. 231.

Puton T., Rother K., Kozłowski Ł., Tkalińska E. and Bujnicki J.M. n.d.,

CompaRNA: a server for continuous benchmarking of automated methods for

RNA structure predictions. Available from:

<http://iimcb.genesilico.pl/comparna/ >.

Reeder, J., Hӧchsmann, M., Rehmsmeier, M., Voss, B. and Giegerich R. 2006,

'Beyond Mfold: Recent advances in RNA bioinformatics', Journal of

Biotechnology, vol. 124, pp. 41-55.

Reeder, J., Steffen, P. and Giegerich, R. 2007, 'pknotsRG: RNA pseudoknot

folding including near-optimal structures and sliding windows', Nucleic Acids

Research, vol. 35, pp. w320-w324.

99

Ren, J., Rastegari, B., Condon, A. and Hoos, H.H. 2005, 'HotKnots: Heuristic

prediction of RNA secondary structures including pseudoknots', RNA, vol. 11,

pp. 1494-1504.

Rivas, E. and Eddy, S.R. 1999, 'A dynamic programming algorithm for RNA

structure prediction including pseudoknot', J. Mol. Biol., vol. 285, pp. 2053-

2068.

Roy, A., Panigrahi, S., Bhattacharyya, M. and Bhattacharyya, D., 2008,

'Structure, Stability and Dynamics of Canonical and Noncanonical Base Pairs:

Quantum Chemical Studies', J. Phys. Chem. B., vol. 112, pp. 3786-3796.

Sperschneider, J., Datta, A. and Wise, M.J. 2011, 'Heuristic RNA pseudoknot

prediction including intramolecular kissing hairpins', RNA, vol. 17, no. 1, pp.

27-38.

Staple, D.W. and Butcher, S.E. 2005, 'Pseudoknots: RNA Structures with

Diverse Functions', PLoS Biology, vol. 3, no. 6, pp. e213.

Storz, G. 2002, 'An expanding universe of noncoding RNAs', Science, vol. 296,

pp.1260-1263.

Tabaska, J.E., Cary, R.B., Gabow, H.N. and Stormo, G.D. 1998, 'An RNA

folding method capable of identifying pseudoknots and base triples',

Bioinformatics, vol. 14, no. 8, pp. 691-699.

Tahi, F., Engelen, S. and Rgnier, M. 2003, 'A fast algorithm for RNA

secondary structure prediction including pseudoknots', Proceedings of the

Third IEEE Symposium on Bioinformatics and Bioengineering (BIBE'03), pp.

0-7695-1907-5/03.

100

Uemera, Y., Hasegawa, A., Kobayashi, S. and Yokomori, T. 1999, 'Tree

adjoining grammars for RNA structure prediction', Theoret. Comput. Sci., vol.

210, pp. 277-303.

Vaish, N.K., Kore, A.R. and Eckstein, F. 1998, 'Survey and summary Recent

developments in the hammer-head ribozyme field', Nucleic Acids Research, vol.

26, no. 23, pp. 5237-5242.

Valencia-Sanchez, M.A. Liu, J, Hannon, G.J. and Parker, R. 2006, 'Control of

translation and mRNA degradation by miRNAs and siRNAs', Genes Dev., vol.

20, pp. 515-524.

Van Batenburg, F., Gultyaev, A. and Pleij, C. 1995, 'An APL-programmed

genetic algorithm for the prediction of RNA secondary structure', J. Theor.

Biol., vol. 174, pp. 269-280.

Wilm, A., Higgins, D.G. and Notredame, C. 2008, 'R-Coffee: a method for

multiple alignment of non-coding RNA', Nucleic Acids Res., vol. 36, no. 9, pp.

e52.

Witwer, C., Hofacker, I.L. and Stadler, P.F. 2004, 'Prediction of Consensus

RNA Secondary Structures Including Pseudoknots', IEEE Transactions on

Computational Biology and Bioinformatics, vol. 1, no. 2, pp. 66-76.

Zuker, M. and Stiegler, P. 1981, 'Optimal computer folding of large RNA

sequences using thermodynamics and auxiliary information', Nucleic Acids

Res., vol. 9, pp. 133-148.

Zuker, M. 1989, 'On Finding All Suboptimal Folding of an RNA Molecule',

Science, vol. 244, pp. 48-52.

101

APPENDIX A

STEM WEIGHT MAXIMIZATION ALGORITHM

import sys

from math import sqrt

from numpy import *

#~~#

FUNCTIONS #

#~~#

def fill_wMatrix ():

 for i in range (N):

 for j in range (N-i):

 wMatrix[i][i+j] = pairing[seq[i]+seq[i+j]]

 return

def save ():

 outputFile.write(seq_ID)

 predicted = ''

 print >> outputFile, "\tLength = ", len(seq)

 for i in range (len(pre_str)):

 predicted += pre_str[i]

 print >> outputFile, "Pre : ",predicted

 print >> outputFile, "\n"

 print >> outputFile, "-"*73

 return

def bracket (stem, bracket_type):

 for i in range(len(stem)):

 for j in range(stem[i][2]):

 if bracket_type == 1:

 pre_str[stem[i][0]+j] = '('

 pre_str[stem[i][1]-j] = ')'

 else:

 pre_str[stem[i][0]+j] = '['

 pre_str[stem[i][1]-j] = ']'

 return

def unpair_region (loc):

 len_UR = 1

 while (loc+1 < N and pre_str[loc+1] == '.'):

 len_UR += 1

 loc += 1

 return len_UR

def searching_region ():

 loop = []; unpair = []; loc = []

 if pre_str[0] == '.':

 loc.append(0)

 for i in range(N):

 if i!=0:

 if (pre_str[i] == '.'):

 if pre_str[i-1] == '(' or pre_str[i-1] == ')' or pre_str[i-1] == '[' or

pre_str[i-1] == ']':

 loc.append(i)

 for j in range(len(loc)):

 len_UR = unpair_region (loc[j])

 if len_UR >= 3:

 if pre_str[loc[j]-1] == '(' and pre_str[loc[j]+len_UR] == ')':

 if (loc[j]+len_UR-1) - (loc[j]-1) > 5:

 loop.append([loc[j], loc[j]+len_UR-1])

 else:

 unpair.append([loc[j], loc[j]+len_UR-1])

 return loop, unpair

102

def pairing_CS (search_space, row, col, min_len, stem, list_wt, reg):

 count = 0

 if row[1]-row[0] >= col[1]-col[0]:

 SR = col[1]-col[0]

 else:

 SR = row[1]-row[0]

 if reg == 1:

 cond = row[1]-SR

 else:

 cond = col[0]+SR

 for k in range(len(search_space)):

 stem_len = 0; stem_wt = 0

 if reg == 1:

 if search_space[k][0] > cond:

 count += 1

 else:

 if search_space[k][1] < cond:

 count += 1

 for l in range(SR+1-count):

 if (wMatrix[search_space[k][0]+l][search_space[k][1]-l] >= 3):

 stem_len += 1

 stem_wt += wMatrix[search_space[k][0]+l][search_space[k][1]-l]

 else:

 if stem_len >= min_len:

 stem.append([(search_space[k][0]+l)-stem_len, (search_space[k][1]-

l)+stem_len, stem_len])

 list_wt.append(stem_wt)

 stem_len = 0; stem_wt = 0

 if ((search_space[k][0]+l) == row[1] or (search_space[k][1]-l) == col[0]):

 if stem_len >= min_len:

 stem.append([(search_space[k][0]+l)-(stem_len-1), (search_space[k][1]-

l)+(stem_len-1), stem_len])

 list_wt.append(stem_wt)

 stem_len = 0; stem_wt = 0

 return stem, list_wt

def potential_stem (row, col, min_len, stem, list_wt):

 stem_len = 0

 stem_wt = 0

 for i in range(((col-row)/2)+2):

 if wMatrix[row+i][col-i] >= 3:

 stem_len += 1

 stem_wt += wMatrix[row+i][col-i]

 else:

 if stem_len >= min_len:

 loop_size = ((col-i) - (row+i))+1

 if stem_len == min_len:

 if loop_size >= 3:

 stem.append([row+i-stem_len, col-i+stem_len, stem_len])

 list_wt.append(stem_wt)

 else:

 if loop_size >= 3:

 stem.append([row+i-stem_len, col-i+stem_len, stem_len])

 list_wt.append(stem_wt)

 else:

 if loop_size > 0:

 stem.append([row+i-stem_len, col-i+stem_len, stem_len-1])

 list_wt.append(stem_wt-wMatrix[row+i-1][col-i+1])

 else:

 if stem_len > 4:

 stem.append([row+i-stem_len, col-i+stem_len, stem_len-2])

 list_wt.append(stem_wt-wMatrix[row+i-1][col-i+1]-

wMatrix[row+i-2][col-i+2])

 stem_len = 0

 stem_wt = 0

 return stem, list_wt

def diagonal_search (LB, UB, min_len):

 stem = []

 list_wt = []

 stem, list_wt = potential_stem(LB, UB, min_len, stem, list_wt)

 for i in range(UB-LB-4):

 stem, list_wt = potential_stem(LB, UB-i-1, min_len, stem, list_wt)

 stem, list_wt = potential_stem(LB+i+1, UB, min_len, stem, list_wt)

 return stem, list_wt

def cross_pairing (reg1, reg2, min_len):

 stem = []; list_wt = []

 stem1 = []; list_wt1 = []

 stem2 = []; list_wt2 = []

 potential_stem = []; potential_len = []

 search_space1 = []; search_space2 = []

103

 if reg1[0] < reg2[0]:

 row = reg1

 col = reg2

 else:

 row = reg2

 col = reg1

 for i in range(row[1]-row[0]-1):

 search_space1.append([row[0]+i,col[1]])

 for j in range (col[1]-col[0]-1):

 search_space2.append([row[0],col[1]-j])

 search_space2.remove(search_space2[0])

 stem1, list_wt1 = pairing_CS(search_space1, row, col, min_len, stem1, list_wt1, 1)

 stem2, list_wt2 = pairing_CS(search_space2, row, col, min_len, stem2, list_wt2, 2)

 stem = stem1+stem2

 list_wt = list_wt1+list_wt2

 if stem == []:

 return

 else:

 for k in range(len(list_wt)):

 if list_wt[k] == max(list_wt):

 potential_stem.append(stem[k])

 potential_len.append(stem[k][2])

 selected_stem = potential_stem[potential_len.index(min(potential_len))]

 if (min_len == 1):

 stem_cross.append(selected_stem)

 else:

 stem_knot.append(selected_stem)

 return selected_stem

def section_search (LB, UB):

 selected_stem = []; potential = []; stem_len = []

 if UB-LB < 6:

 return

 stem, list_wt = diagonal_search(LB, UB, 3)

 if stem == []:

 return

 priority = 0

 for i in stem:

 if i[0] == 0 and i[1] == N-1:

 stem_section.append(i)

 selected_stem = i

 priority += 1

 if priority == 0:

 for j in range (len(list_wt)):

 if list_wt[j] == max(list_wt):

 potential.append(stem[j])

 stem_len.append(stem[j][2])

 if len(potential) == 1:

 stem_section.append(potential[0])

 else:

 stem_section.append(potential[stem_len.index(min(stem_len))])

 selected_stem = stem_section[len(stem_section)-1]

 if selected_stem != []:

 d, e, f = selected_stem

 section_search(LB, d-1)

 section_search(d+f, e-f)

 section_search(e+1, UB)

 return

def cross_search ():

 loop, unpair = searching_region()

 count = len(unpair)

 while len(unpair) > 1:

 reg1 = []; reg2 = []

 region1 = unpair[0]

 region2 = unpair[count-1]

 if region1 != region2:

 for i in stem_section:

 if region1[0] < i[1] and region1[0] > i[0]:

 reg1.append(i)

 if region2[0] < i[1] and region2[0] > i[0]:

 reg2.append(i)

 if reg1 == reg2:

 if (region1[0] == 0 or region1[0] == 1) and (region2[1] == N-2 or region2[1]

== N-1):

 stem = cross_pairing(region1, region2, 3)

 else:

 stem = cross_pairing(region1, region2, 1)

 if stem != None:

 unpair.remove(region1)

 unpair.remove(region2)

 count = len(unpair)

 else:

 count -= 1

 else:

 count -= 1

104

 else:

 unpair.remove(region1)

 count = len(unpair)

 return

def knot_search ():

 loop, unpair = searching_region()

 count1 = 0; count2 = 0

 for i in unpair:

 if (i[1]-i[0])+1 < 5:

 unpair.remove(i)

 if (len(loop) > 0 and len(unpair) > 0):

 region1 = loop[0]

 region2 = unpair[0]

 else:

 return

 while (len(loop) > 0 and len(unpair) > 0):

 stem = cross_pairing(region1, region2, 3)

 if stem != None:

 loop.remove(region1)

 try:

 value = loop.index(region2)

 except ValueError:

 value = -1

 if value >= 0:

 loop.remove(region2)

 else:

 unpair.remove(region2)

 if (len(loop) > 0 and len(unpair) > 0):

 region1 = loop[0]

 region2 = unpair[0]

 count1 = 0

 count2 = 0

 else:

 if (count1+1 < len(loop)):

 region1 = loop[count1+1]

 region2 = unpair[count2]

 count1 += 1

 else:

 if (count2+1 < len(loop)):

 region1 = loop[count2]

 region2 = loop[count2+1]

 count2 += 1

 else:

 loop.remove(loop[0])

 if (len(loop) > 0 and len(unpair) > 0):

 region1 = loop[0]

 region2 = unpair[0]

 count1 = 0

 count2 = 0

 return

#~~#

MAIN #

#~~#

wGC = 11; wAU = 8; wGU = 3

pairing = {'AA':0, 'AC':0, 'AU':wAU, 'AG':0,

 'CA':0, 'CC':0, 'CU':0, 'CG':wGC,

 'GA':0, 'GC':wGC, 'GU':wGU, 'GG':0,

 'UA':wAU, 'UC':0, 'UU':0, 'UG':wGU}

inputFile = open('input.txt','r')

allData = inputFile.readlines()

inputFile.close()

outputFile = open('bracket.txt','w')

count_file = 0; stem_section = []; stem_cross = []; stem_knot = []

print 'Total sequence : ',len(allData), '\n'

for data in allData:

 stem_section = []; stem_cross = []; stem_knot = []

 seq_ID = data.split()[0]

 seq = (data.split()[1]).upper()

 N = len(seq)

 pre_str = ['.']*N

 wMatrix = (array([0]*(N**2))).reshape(N,N)

 count_file += 1

 print 'Seq ', str(count_file).ljust(4), ': ', seq_ID

 fill_wMatrix()

 section_search(0,N-1)

 bracket(stem_section, 1)

 cross_search()

 bracket(stem_cross, 1)

 knot_search()

 bracket(stem_knot, 2)

 save()

outputFile.close()

105

APPENDIX B-1

Result for FRABASE dataset

ID
Length

(nt)

Proposed

algorithm
Hotknots pknotsRG DotKnot Cylofold

SP SN SP SN SP SP SP SN SP SN

17RA 21 100 75 100 100 100 100 100 75 100 75

1A60 44 89.29 96.15 92.86 100 89.29 89.29 89.29 96.15 89.29 96.15

1A9L 38 100 100 100 100 100 100 100 100 100 100

1AFX 12 100 100 100 100 100 100 100 100 100 100

1AJF 18 100 100 100 100 100 100 100 100 100 100

1AJU 30 100 100 100 100 100 100 100 100 100 100

1AQO 29 100 91.67 100 91.67 100 100 100 100 100 91.67

1ARJ 29 100 100 100 100 100 100 100 100 100 100

1ATO 19 100 100 100 100 100 100 100 100 100 100

1ATV 17 100 100 100 100 100 100 100 100 100 100

1ATW 15 100 100 100 100 100 100 100 100 100 100

1BN0 20 100 100 100 100 100 100 100 100 100 100

1BVJ 23 100 100 100 100 100 100 100 100 100 62.5

1BYJ 27 100 100 100 100 100 100 100 88.89 100 88.89

1CQ5 43 84.62 100 91.67 100 80 80 84.62 100 80 72.73

1D0T 21 100 100 100 100 100 100 100 75 100 75

1DDY 35 72.22 81.25 72.22 81.25 72.22 72.22 68.75 68.75 72.22 81.25

1E95 36 100 100 100 100 100 100 100 100 100 100

1EBQ 29 100 100 100 100 100 100 100 100 100 100

1EBR 30 100 100 100 100 81.82 81.82 100 80 81.82 90

1EHZ 76 85.42 97.62 95.24 95.24 95.24 95.24 69.57 76.2 95.24 95.24

1EOR 22 100 100 100 100 100 100 100 100 100 100

1ESY 19 100 100 85.71 100 100 100 85.71 100 100 66.67

1F1T 38 100 100 100 100 100 100 100 84.62 100 84.62

1F7F 27 77.27 94.44 81.82 100 81.82 81.82 81.82 100 81.82 100

1FEQ 17 100 100 100 100 100 100 100 100 100 100

1FQZ 27 85.71 100 100 100 42.86 42.86 100 100 42.86 50

1FYO 27 100 100 100 100 100 100 100 88.89 100 88.89

1HLX 20 87.5 100 87.5 100 87.5 87.5 87.5 100 87.5 100

1HWQ 30 90 100 90 100 90 90 90 100 90 100

1I3X 19 100 100 100 100 100 100 100 100 100 100

1IE1 22 100 100 100 100 100 100 100 100 100 100

1J4Y 17 85.71 100 85.71 100 85.71 85.71 85.71 100 85.71 100

1JUR 22 100 100 100 100 100 100 100 100 100 100

1JTW 16 100 100 100 100 100 100 100 80 100 100

1JTJ 23 100 100 100 100 100 100 100 100 100 100

1JP0 21 100 71.43 100 100 100 100 100 71.43 100 71.43

1K4A 14 100 100 100 100 100 100 100 100 100 100

1K4B 14 100 100 100 100 100 100 100 100 100 100

1K5I 23 100 100 100 100 100 100 100 100 100 100

1K6G 22 100 100 100 100 100 100 100 100 100 100

1K6H 22 100 100 100 100 100 100 100 100 100 100

1KAJ 32 72.73 100 72.73 100 72.73 72.73 100 100 72.73 100

1KKS 24 100 100 100 100 100 100 68.75 91.67 100 100

1KP7 30 100 100 100 100 80 80 100 77.78 80 88.89

1L1W 29 100 100 100 100 100 100 100 100 100 100

1L2X 28 88.89 100 88.89 100 88.89 88.89 88.89 100 88.89 100

1LC6 24 100 100 100 100 100 100 100 100 100 100

1LDZ 30 90 100 90 100 90 90 90 100 90 100

1LUU 17 100 100 100 100 100 100 100 100 100 100

1LVJ 31 100 100 100 100 100 100 100 100 100 100

1MFJ 20 100 100 100 100 100 100 100 100 100 100

1MFK 23 100 100 100 100 94.44 94.44 100 100 94.44 94.44

1MNX 42 85.71 100 100 100 100 100 100 100 100 100

1MT4 24 100 100 100 100 100 100 100 100 100 100

1N8X 36 100 100 100 100 100 100 100 100 100 100

1NC0 24 100 100 100 100 100 100 100 100 100 100

1NEM 23 100 100 100 100 100 100 100 100 100 100

1NZ1 24 100 100 100 100 100 100 100 100 100 100

1OQ0 15 100 100 100 100 100 100 100 100 100 83.33

1OW9 23 100 100 100 100 100 100 100 100 100 100

1P5N 34 72.73 100 80 100 80 80 66.67 75 80 100

1PJY 22 100 100 100 100 100 100 100 100 100 100

1Q8N 38 100 100 100 100 100 100 100 84.62 100 84.62

1QD3 29 100 100 100 100 100 100 100 100 100 100

1R2P 34 89.29 96.15 92.86 100 92.86 92.86 92.86 100 92.86 100

106

ID
Length

(nt)

Proposed

algorithm
Hotknots pknotsRG DotKnot Cylofold

SP SN SP SN SP SP SN SP SN SP

1R7W 34 100 100 100 100 100 100 100 100 100 100

1RAW 37 100 100 75 75 75 75 75 75 75 75

1RFR 30 100 100 100 100 100 100 100 100 100 100

1RNK 34 91.67 100 91.67 100 91.67 91.67 91.67 100 91.67 100

1S34 23 100 100 100 100 100 100 100 100 100 66.67

1SY4 24 100 100 100 100 100 100 100 100 100 100

1TJZ 22 100 100 100 100 100 100 100 100 100 100

1TXS 38 100 100 100 100 100 100 100 100 100 100

1U3K 38 100 100 100 100 100 100 100 100 100 100

1XHP 32 100 100 100 100 100 100 100 100 66.67 54.55

1XSG 27 100 100 100 100 100 100 100 100 100 100

1XSH 27 86.36 95 90.91 100 90.91 100 90.91 100 90.91 100

1YG4 28 100 100 100 100 100 100 100 100 100 100

1YNC 31 95.45 95.45 100 100 100 100 95.45 95.45 100 100

1YNG 31 95.45 95.45 100 100 100 100 95.45 95.45 93.33 63.64

1YSV 27 100 100 100 100 100 100 100 100 100 100

1Z2J 45 100 100 100 100 100 100 100 100 100 100

1ZC5 41 100 100 100 100 100 100 100 100 100 100

2A43 26 87.5 100 87.5 100 87.5 100 87.5 100 87.5 100

2A9L 38 100 100 100 100 100 100 100 100 100 100

2AHT 27 100 100 100 100 100 100 100 100 100 100

2AP0 28 100 100 100 100 100 100 100 100 100 100

2F88 34 92.86 100 92.86 100 92.86 100 92.86 100 92.86 100

2HNS 22 100 100 100 100 100 100 100 100 100 100

2JUK 22 100 100 100 100 100 100 100 100 100 100

2JXV 33 100 100 100 100 100 100 100 100 100 100

2K5Z 29 100 81.82 100 81.82 100 100 100 81.82 100 81.82

2K63 29 75 100 100 100 100 100 100 100 100 100

2KE6 48 94.74 100 94.74 100 92.11 97.22 94.74 100 93.75 83.33

2KEZ 24 100 100 100 100 100 100 100 100 100 100

2KFC 37 75 83.33 62.5 83.33 75 83.33 62.5 83.33 100 55.56

2KUW 48 100 100 100 100 97.37 97.37 100 100 100 84.21

2KUV 48 100 100 100 100 97.37 97.37 100 100 100 84.21

2KX8 42 96.88 96.88 100 100 100 100 100 100 100 100

2L2J 42 100 100 100 100 100 100 100 100 100 100

3EGZ 64 83.33 97.22 100 88.89 97.06 91.67 93.75 83.33 97.06 91.67

437D 28 88.89 100 88.89 100 88.89 100 88.89 100 88.89 100

1D6K 37 81.82 100 100 100 81.82 100 100 100 100 100

1I6U 37 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33

1QA6 58 75 90 93.33 93.33 76.67 76.67 76.67 76.67 91.67 73.33

2J28 74 100 100 100 96.3 100 100 100 100 97.5 72.22

1TN2 76 85.42 97.62 95.24 95.24 54.76 54.76 69.57 76.19 78 92.86

1YFG 75 89.58 97.73 86.36 86.36 86.36 86.36 86.36 86.36 97.62 93.18

4TNA 76 85.42 97.62 95.24 95.24 54.76 54.76 69.57 76.19 95.24 95.24

Average 31 95.60 98.18 96.86 98.70 95.16 97.02 95.59 95.59 95.79 93.66

Max. 76 100 100 100 100 100 100 100 100 100 100

Min. 12 72.22 71.43 62.5 75 54.76 54.76 62.5 68.75 42.86 50.00

APPENDIX B-2

Result for RNA STRAND dataset

ID
Length

(nt)

Proposed algorithm pknotsRG DotKnot

SP SN
Execution

time (s)
SP SN

Execution

time (s)
SP SN

Execution

time (s)

ASE_00001 262 76.92 80 0.53 78.48 82.67 12.561 71.79 74.67 2.49

ASE_00002 267 71.52 77.4 0.56 76.97 80.14 11.11 75.97 80.14 2.64

ASE_00003 294 70 65.88 0.81 83.13 81.17 8.052 79.07 80 12.05

ASE_00004 310 74.44 69.01 0.9 82.18 85.57 14.652 82.45 79.9 24.49

ASE_00005 341 79.21 68.38 1.684 84.84 77.78 17.085 89.25 70.94 24.33

ASE_00006 309 69.1 66.13 0.94 80.1 84.41 12.482 79.78 76.34 20.85

ASE_00007 346 80.41 70.91 1.75 85.44 80 14.854 84.85 76.36 23.46

ASE_00008 344 81.73 77.27 1.81 85.86 77.27 15.322 86.06 81.36 20.55

ASE_00009 229 75.76 74.63 0.37 93.65 88.06 4.948 88.64 87.31 2.53

ASE_00011 294 74.39 71.76 0.87 78.16 80 9.02 75.88 75.88 12.8

ASE_00012 385 81.28 77.64 1.78 85.34 80.49 20.829 80.93 77.64 28.5

ASE_00013 294 70.51 64.71 0.81 81.82 84.71 8.442 77.06 77.06 10.24

ASE_00014 330 82.86 82.08 1.44 80.09 81.6 13.715 80.66 80.66 52.76

ASE_00015 294 77.27 70 1.03 73.33 77.65 9.066 79.07 80 11.37

ASE_00017 320 41.12 68.75 0.94 48.42 71.88 7.429 42.59 53.91 7.5

ASE_00018 402 87.5 78.36 2.65 92.75 85.82 23.215 85.83 81.34 44.04

ASE_00019 294 71.6 68.24 1.01 8146 85.29 6.399 79.88 77.06 11.14

ASE_00020 385 78.02 71.83 1.81 84.27 82.94 18.504 83.61 78.97 8.42

ASE_00021 457 78.93 69.06 3.31 84.35 77.5 33.416 82.39 73.13 17.15

ASE_00022 408 71.67 69.35 3.06 78.99 75.81 22.632 77.59 72.58 13.07

ASE_00023 411 76.89 79.92 3.21 84.25 84.25 24.09 80.88 86.61 16.92

ASE_00026 346 76.29 67.27 1.72 81.98 82.73 12.04 80.09 78.64 6.15

ASE_00028 412 68.5 69.05 2.22 82.66 81.35 22.282 78.57 74.21 13.884

ASE_00029 408 72.01 79.1 3.12 84.65 79.1 22.201 76.03 75.41 10.52

ASE_00030 414 82.54 71.72 2.56 88.89 82.76 29.009 87.7 76.21 22.98

ASE_00031 417 70.68 74.6 3.84 82.94 82.94 25.19 75.82 73.41 21.77

ASE_00032 401 68.94 77.12 3.06 80.63 75.85 25.17 74.77 67.8 12.45

ASE_00033 361 80.73 72.73 2.21 85.44 72.73 17.74 79.73 73.14 14.02

1
0
7

ID
Length

(nt)

Proposed algorithm pknotsRG DotKnot

SP SN
Execution

time (s)
SP SN

Execution

time (s)
SP SN

Execution

time (s)

ASE_00035 376 74.15 74.15 2.28 71.1 65.68 13.984 80.84 73.31 7.61

ASE_00037 345 73.53 68.18 1.84 76.92 72.73 10.41 80.73 70.45 10.25

Average 349 74.62 72.51 1.80 81.33 80.03 16.19 79.28 76.15 16.23

Max. 457 87.50 82.08 3.84 93.65 88.06 33.42 89.25 87.31 52.76

Min. 229 41.12 64.71 0.37 48.42 65.68 4.95 42.59 53.91 2.49

1
0
8

109

APPENDIX B-3

Result for CompaRNA dataset

ID Length (nt) SP SN Execution time (s)

2KFC_0_A 36 75 93.75 0
2RP0_23_A 27 77.78 100 0

2WDJ_0_A 2809 62.77 70.03 2777

2WH3_0_W 76 35.19 86.36 0.06
2WH4_0_A 2889 65.41 73.78 2739.63

2WWL_0_A 1530 67.95 73.43 248.26

2WWQ_0_B 2904 63.92 69.28 2475.8
2X9R_0_V 75 66.67 85.71 0.06

2X9T_0_A 1509 55.85 68.85 314.47

2X9U_0_A 2901 67.17 76.19 2852
2ZM5_0_C 74 70.37 86.36 0.06

2ZM5_0_D 69 59.57 77.78 0.06

2ZM6_0_A 1511 58.45 65.1 311
2ZUF_0_B 76 86 97.73 0.06

2ZZN_0_C 71 91.3 95.45 0.06

3A2K_0_D 77 85 77.27 0.03
3A3A_0_A 86 100 93.33 0.09

3ADC_0_C 88 100 93.33 0.06

3ADC_0_D 92 100 93.94 0.09
3ADD_0_D 88 100 93.94 0.09

3CXC_0_0 2754 66.34 73.71 2046.04

3DS7_0_A 67 85.42 89.13 0.03
3E1A_0_A 75 77.08 97.37 0.06

3FIC_0_Y 68 76.19 80 0.03

3FIH_0_Y 76 85.42 97.62 0.06
3FIN_0_A 2855 61.95 70.31 2714.75

3FO4_0_A 63 84.09 88.1 0.03

3FU2_0_B 31 100 100 0
3FU2_0_C 31 100 100 0

3FWO_0_A 2770 48.04 62.96 2244.88

3G8S_0_S 138 61.7 80.56 0.19
3G8T_0_P 140 61.32 83.33 0.16

3G8T_0_R 141 65.09 84.15 0.16

3G9C_0_P 140 62.5 81.08 0.19
3G9C_0_Q 141 70.21 82.5 0.16

3G9C_0_R 140 60.64 81.43 0.16
3G78_0_A 389 72.97 68.64 2.12

3G96_0_S 139 60.64 81.43 0.22

3GCA_0_A 33 62.5 71.43 0
3GER_0_A 67 85.42 89.13 0.03

3GES_0_A 67 85.42 89.13 0.03

3GOG_0_A 65 84.78 88.64 0.06
3GX2_0_A 95 80 85.71 0.09

3GX6_0_A 94 76.67 88.46 0.09

3GX7_0_A 94 78.33 83.93 0.09
3HHN_0_E 137 78.75 70 0.19

3HL2_0_E 82 68 73.91 0.06

3HUW_0_A 1500 53.56 64.74 307.48
3HUX_0_A 2768 64.79 71.73 2374.39

3HUZ_0_A 2780 54.91 64.6 2437.1

3I1M_0_A 1534 65.28 71.02 245.03
3I1P_0_A 2844 61.34 66.71 2231.61

3I1R_0_A 2855 65.31 70.86 2277.6

3I8F_0_A 2909 72.09 76.05 2809.19
3I8G_0_A 1516 71.89 77.34 311.38

3I8H_0_A 1515 71.27 77.02 309.6

3I8I_0_A 2913 68.97 72.24 2852.43
3I9B_0_A 1517 71.78 77.23 313.06

3I9C_0_A 2885 71.87 76.04 2749.54

110

ID Length (nt) SP SN Execution time (s)

3I9D_0_A 1532 68.99 74.58 316.56

3I9E_0_A 2886 73.02 76.48 2770.08

3I55_0_0 2755 61.8 68.98 1651.73

3I56_0_0 2754 65.11 74.68 1639.47
3IGI_0_A 387 79.52 70.76 1.75

3IIN_0_B 198 47.12 48.51 0.34

3IRW_0_R 92 65.38 68 0.09
3IVK_0_C 128 83.33 89.29 0.16

3IVN_0_A 69 77.27 73.91 0.06

3IWN_0_A 94 70.69 70.69 0.06
3JYV_0_7 70 52.17 70.59 0.03

3JYV_0_A 1759 46.26 73.35 548.37

3JYX_0_5 3174 32.53 73.38 5050.45
3K1V_0_A 29 100 100 0.03

3KIQ_0_w 77 19.57 64.29 0.06

3KIT_0_A 2849 66.82 73.49 2623.55
3KNI_0_A 2804 53.33 64.83 2486.86

3KNJ_0_A 1502 42.95 64.99 300.52

3KNJ_0_W 75 34.09 53.7 0.06
3KNJ_0_Y 76 28.26 76.47 0.03

3KNK_0_A 2803 49.94 66.9 2477.28

3KNL_0_A 1500 56.85 67.13 321.27
3KNM_0_A 2789 66.67 76.46 2421.37

3KNN_0_A 1497 53.63 68.21 289.97

3KNO_0_A 2776 64.62 74.69 2395.73
3L0U_0_A 73 70.37 86.36 0.06

3L3C_0_P 136 69.05 78.38 0.16

3L3C_0_Q 139 72.34 82.93 0.22
3L3C_0_R 140 72.34 82.93 0.19

3L3C_0_S 139 55.43 79.69 0.19

3LA5_0_A 71 91.3 84 0.06
3MR8_0_A 1505 69.11 75.37 331.5

3MRZ_0_A 2880 65 70 2777.02

Average 1034.5 68.54 78.31 360.61
Max. 3174 100 100 5050.45

Min. 27 19.57 48.51 0

