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ABSTRACT 

 

A STUDY ON RNA PSEUDOKNOT PREDICTIONS 

 

LEO YEAN LING 

 

 

 

 

This research proposed an RNA pseudoknot prediction algorithm based on 

stem weight maximization. The proposed algorithm consists of three stem 

searching functions looking for stems in different searching regions. “Section 

search” looks for base pairing in three different regions of the earlier stem 

found. Then, “cross search” will identify regions for cross pairing and search 

for possible base pairing. Finally, “knot search” which look for H-type 

pseudoknots and kissing hairpins that is formed by base pairing between 

individual hairpin and other unpaired regions.  

 

 

 

 

 The resulting secondary structure is represented in a dot-bracket 

representation and could be visualized by VARNA. A total of 232 RNA 

structures have been downloaded from three databases (FRABASE, RNA 

STRAND and CompaRNA). Performance of the proposed algorithm is 
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evaluated by calculating the specificity and sensitivity between the predicted 

structures to the experimental structures obtained from database. In addition, 

execution time of algorithm proposed is recorded as well. Our results show 

that the proposed algorithm can produce reasonably accurate structure in 

practical time frame.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Objectives 

In this research, the author would like to 

i. Predict and identify pseudoknots on various genome. 

ii. Develop new algorithm or optimize existing pseudoknot prediction 

algorithm. 

iii. Compare between structures obtained by pseudoknot prediction 

algorithm and experimentally determined structure.  

 

RNA forms the secondary structure by base pairing among the 

complementary base pairs, G-C, A-U and G-U. RNA secondary structures 

include loops, stems, single strand regions and pseudoknot. Pseudoknots are 

significant in some biological processes (Staple & Butcher 2005). For example, 

researchers found that only those telomerase ribonucleoprotein complexes 

which contain a properly folded pseudoknot are catalytically active 

(Mihalusova, Wu & Zhuang 2011).  
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This research aims to develop an RNA pseudoknot prediction 

algorithm which is able to recognize two types of pseudoknot structure, 

namely H-type pseudoknot and kissing hairpins. Thus far, majority of RNA 

secondary structure algorithms are restricted to predict only the H-type 

pseudoknot. This might due to the high computational requirement of 

predicting kissing hairpins which is formed by the base pairing between two 

loop regions. 

 

Then, the structure predicted will be compared to experimentally 

determined structure. These structures are obtained from the FRABASE 

(Popenda et al. 2010). This database contains only RNA structures determined 

through experimental method like NMR, X-ray diffraction and electron 

microscopy. By comparing RNA structures predicted by the proposed 

algorithm to FRABASE structures, this may provide an indication on how 

good is the performance of the proposed algorithm.   

 

1.2 Research background on RNA secondary structure prediction 

Traditionally, RNA is merely known as a helper in translation. This view has 

changed ever since it is known to be vital in regulation of genes (Valencia-

Sanchez et al. 2006) and as a catalyst in various cellular processes (Vaish, 
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Kore & Eckstein 1998). Therefore, researchers began their study on RNA 

sequences.  

 

 RNA secondary structures are formed by base pairing among 

complementary bases. Then, the interaction among these structures would 

form the tertiary structure of RNA. Since determining tertiary structure by 

experimental method is expensive and time consuming, computational 

methods have been developed for secondary structure prediction because it 

serves as a foundation for the tertiary structure prediction (Mathews & Turner 

2006).  

 

 Dynamic programming approach has been implemented for RNA 

pseudoknot prediction but this approach faced the problems of high time and 

space complexities. The pseudoknot prediction algorithm developed by Elena 

Rivas and Sean R. Eddy has a worst case of       in time complexity and 

      in storage complexity (Rivas & Eddy 1999). The algorithm proposed 

by Uemura et al. has a complexity of       in time and       in space 

(Uemera et al. 1999). Thus, these algorithms can only predict RNA structures 

for short sequences and will fail for long sequences due to insufficient 

memory or lengthy execution time. 
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Besides, various heuristic approaches have been proposed for RNA 

secondary structure prediction including pseudoknots, such as maximum 

weighted matching (Tabaska et al. 1998), iterated loop matching (Tahi, 

Engelen & Rgnier 2003), dynamic weighted matching (Liu et al. 2006), 

HotKnots (Ren et al. 2005), DotKnot (Sperschneider, Datta & Wise 2011), etc. 

Heuristic algorithms usually restrict on predicting specific type of pseudoknot. 

In addition, structure generated by algorithms which involved free energy 

calculation strongly depends on the energy model applied. Also, the amount of 

known pseudoknots is limited. Consequently, lack of sequences available for 

pseudoknot prediction by comparative approach and testing on accuracy of 

algorithms developed. 

 

1.3 Problems of RNA secondary structure prediction 

Pseudoknots are important RNA secondary structure. Numerous approaches 

have been implemented to predict RNA secondary structures including 

pseudoknots. Although various pseudoknot prediction algorithm has been 

proposed but each has its own restrictions or limitations. Below are some of 

the main problems encountered by RNA secondary structure prediction 

algorithm: 

(i) Structure predicted from thermodynamic model is not the native 

structure (Reeder et al. 2006).  
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(ii) Structure predicted from heuristics algorithms is not the optimal 

structure (Liu, Ye & Zhang 2006, Van Batenburg, Gultyaev & 

Pleij 1995). 

(iii) Lack of well-aligned sequences to perform sequence alignment 

(Wilm, Higgins & Notredame 2008). 

(iv) Structure prediction algorithm excluding pseudoknots due to its 

high complexity (Akutsu 2000, Lyngso & Pederson 2000). 

 

This research will focus on the fourth problem stated above.  

 

Due to the difficulties in predicting pseudoknots, it has been excluded 

from most of the RNA secondary structure prediction algorithms developed. 

For those algorithms which implemented dynamic programming to predict 

pseudoknot structures, they faced the problem of high time and space 

complexities. Therefore, pseudoknot prediction algorithm by heuristic 

approach has been proposed. The time and space complexities of heuristic 

algorithms developed are much reduced while compared to dynamic 

programming approach. Hence, this research attempt to propose an algorithm 

which can predict reasonably accurate structure in a practical time frame. 
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1.4 Outline and contributions 

This research is aimed to develop a pseudoknot prediction algorithm. Existing 

pseudoknot prediction algorithms by dynamic programming approach are 

facing the problems of high time and space complexities. Therefore, these 

pseudoknot prediction algorithms are limited to identify the most common 

type of pseudoknot, H-type pseudoknot. In addition, restriction on sequence 

length is imposed as well. Most of the developed pseudoknot prediction 

algorithms are able to handle only short RNA sequences.  

 

In order to develop a pseudoknot prediction algorithm, reviews on 

developed RNA secondary structure prediction algorithms are done. In 

Chapter 2, eleven RNA secondary structure prediction algorithms are 

discussed. The earliest algorithm proposed for RNA structure prediction is 

based on the base pair maximization method (Nussinov et el. 1978). It looks 

for RNA structure with the maximum number of base pairs.  

 

Then, RNA structure prediction is further enhanced by taking into 

consideration the free energy contribution of different structures (Zuker & 

Stiegler 1981, Zuker 1989). Besides, stochastic context-free grammar has been 

implemented for RNA structure prediction as well (Eddy 2005). This method 

predicts the RNA secondary structure according to some production rules. 
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Alternatively, RNA structure prediction by comparative sequence analysis 

method is proposed as well (Meyer & Miklós 2007). It predicts RNA structure 

by looking for conserved regions among RNA sequences. This method 

produces good result but it requires several homologous sequences for 

structure prediction.  

 

Former methods discussed are proposed for RNA secondary structure 

prediction excluding pseudoknot. Here, several approaches proposed for 

pseudoknot prediction are briefly discussed. Tatsuya Akutsu has proposed a 

pseudoknot prediction algorithm by implementing dynamic programming 

technique (Akutsu 2000). This method has high time complexity and it is 

impractical for predicting long RNA sequences. Therefore, Jens Reeder and 

Giegerich proposed the implementation of canonization in predicting 

pseudoknot structures (Reeder, Steffen & Giegerich 2007).  

 

Besides dynamic programming approach, structure prediction based on 

the idea of iteratively forming stable stems is proposed by Ren et al. (Ren et al. 

2005). Another approach proposed for RNA structure prediction is the 

dynamic weighted matching algorithm (DWM) (Liu et al. 2006). It searches 

for stems with maximum compound weight value recursively. Stochastic 

context-free grammar has been modified for pseudoknot prediction as well 

(Mizoguchi, Kato & Seki 2011). This method generates RNA secondary 
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structure by enhanced production rules. Apart from the approaches 

aforementioned, a recent development for pseudoknot prediction including 

kissing hairpins is proposed by Sperschneider J et al. (Sperschneider, Datta & 

Wise 2011). This is a pseudoknot detection algorithm which output several 

near-optimal pseudoknot structures. 

 

In this research, a pseudoknot structure prediction algorithm has been 

developed. The proposed algorithm is developed by extending the DWM 

algorithm (Liu et al. 2006). There are two stages involved in the proposed 

algorithm that is construction of weight matrix and stem searching. Stem 

searching is the core step in structure prediction. Three types of stem 

searching are implemented where each process is looking for stems in 

different searching regions. Details for each stage are presented in Chapter 3.  

 

After structure prediction, analysis on structures predicted by the 

proposed algorithm is presented in Chapter 4. Performance of the proposed 

algorithm is evaluated by structure comparison between predicted structure 

and reference structure. Reference structures are obtained from three online 

databases, FRABASE (Popenda et al. 2010), RNA STRAND (Andronescu et 

al. 2008) and CompaRNA (Puton et al. n.d.). FRABASE is a database which 

collects all RNA structure determined through experimental method. 

Therefore, structures obtained from FRABASE are reliable and appropriate for 
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structure comparison. For RNA STRAND and CompaRNA, majority of the 

RNA structures downloaded are predicted using comparative sequence 

analysis method.  

 

The last chapter concludes this thesis with a discussion about problems 

encountered, contributions and future work. In the proposed algorithm, all 

stem found during the stem searching process will be filtered before listing as 

the potential stems. The characteristics of potential stem can be found in 

Section 3.2.1. Besides, Chapter 5 discusses about some problems arouse while 

developing the proposed algorithm. The main problem of the proposed 

algorithm would be having additional base pairs in the predicted structure. 

Discussion for the problem is presented in Section 5.1 with relevant examples.  

 

Subsequently, contributions and some suggestions for future work are 

presented. This research has developed a pseudoknot prediction algorithm 

which can predict two types of pseudoknot, which are H-type pseudoknot and 

kissing hairpins. In addition, results of structure comparison show that the 

proposed algorithm yields reasonably accurate structure. Among three 

databases, the proposed algorithm achieved highest average SP and SN values 

for the prediction of FRABASE structures (SP-95.60, SN-98.18). Thus, 

structures predicted by the proposed algorithm have high similarity to 

experimentally determined structures. 
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Moreover, the proposed algorithm can handle long RNA sequences. 

Thus far, the proposed algorithm has been tested on RNA sequence with the 

maximum length of 3174nt. For short RNA sequences (<400nt), the proposed 

algorithm can generate the structure of input sequence in a very short time 

frame (0.16s in average). This shows that the proposed algorithm can handle 

long RNA sequences and perform structure prediction in a short duration.   

 

Finally, some suggestions are provided as the future work of the 

research. Since the proposed algorithm faced the problem of having extra base 

pairing in the predicted structure, a post processing might be included so as to 

eliminate these superfluous base pair. Then, the proposed algorithm can be 

further modified for the prediction of triple helix interaction which is a 

complex pseudoknot structure. Besides, free energy calculation can be added 

as the criteria of stem filtration. Consequently, a more stable RNA structure is 

produced. 



 
 

CHAPTER 2 

 

REVIEW ON RNA SECONDARY STRUCTURE PREDICTION 

ALGORITHM 

 

2.1 Ribonucleic acids (RNA) 

 

 

 

 

 

Figure 2.1: Chemical structure of RNA. 

 

RNA is a nucleic acid consists of ribose sugar, nitrogenous base and phosphate 

groups. It plays a central role in various biological functions within cells. RNA 

is traditionally known to be involved in translation of protein. However, 

researchers have found that it is also important in performing other functions 

within cell. They might act as a catalyst of chemical reaction (Doudna & Sech 

2002, Brown 1999). The Ribonuclease P RNA is found to be a ribozyme which 

cleaves the RNA sequences. Besides, RNA also help in the regulation of 

transcription and translation (Storz 2002), modulates protein across expression 

(Meister & Tuschi 2004) and act as a information carrier as well. 
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 The primary structure of RNA is a sequence of nucleotides, namely A 

(Adenine), U (Uracil), C (Cytosine) and G (Guanine). Secondary structure is 

formed when RNA single strand fold onto itself by base pairing among 

complementary nucleotides (Refer to Figure 2.2 for the illustration of RNA 

folding.). Essentially, there are two types of base pairing, Watson-Crick (G-C 

and A-U) and Wobble (G-U). Among these three types of base pair, G-C is the 

most stable base pair, then follow by A-U and the least stable G-U pair. G-C 

contains three hydrogen bonds while A-U and G-U contains two hydrogen 

bonds.  

 

 

 

 

 

Figure 2.2: Folding of RNA sequence. 

 

According to a survey conducted by Roy et al. (Roy et al. 2008), 

occurring percentage of G-C, A-U and G-U pairs in 145 RNA crystal structures 

are 54.04, 17.17 and 6.88 respectively. These three pairs are having higher 

occurrence frequency while compared to other noncanonical base pairs. This 

may due to the stabilization effect of having polar hydrogen bonding between 

bases of Watson-Crick and Wobble base pairs. 
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2.2 Pseudoknot 

Base pairing interactions of RNA sequence form different types of secondary 

structures. These include stems, single stranded regions, bulge loops, interior 

loops, hairpin loops, multiloops and pseudoknots. Figure 2.3 shows different 

types of RNA secondary structures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: RNA secondary structure. 

  

Pseudoknots are functionally important in several known RNAs. It 

plays functional roles in cases such as ribosomal frameshifting (Giedroc, 

Theimer & Nixon 2000), regulation of translation and splicing (Draper, Gluick 

& Schlax 1998), selinocystein biosynthesis, etc. A pseudoknot is an RNA 

structure that is formed when bases within a loop pair with complementary 

bases in another unpair region to form a stem (Refer to Figure 2.3 or Figure 2.5 
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for H-type pseudoknot and kissing hairpins.). Figure 2.4 shows the arc diagram 

of pseudoknot structure. 

 

Figure 2.4: Arc diagram for RNA structure. 

 

 Among several distinct types of pseudoknots, H-type pseudoknot is the 

simplest and classical pseudoknot (Chen & Chen 2009). It is formed by the 

base pairing between loop and unpair region. For kissing hairpins, it is formed 

by the base pairing between two loop regions. Figure below shows the 

structure of H-type pseudoknot and kissing hairpins.  

 

 

 

 

 

Figure 2.5: H-type pseudoknot (left) and kissing hairpins (right). 

 

 

 

(a) Structure without pseudoknot. 

 

(b) Structure with pseudoknot. 
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2.3 RNA structure representation 

RNA structure predicted can be illustrated in various ways. Usually base 

pairing in RNA structure is represented by drawing a line between the 

corresponding bases as shown in Figure 2.6(a). For this type of RNA structure 

representation, every nitrogenous base is represented using a dot. Sometimes, 

the alphabet (A, C, G, U) representing each base is shown instead of a dot. 

Also, line connecting each type of bases can be different too. G-C pair is 

represented by double line; A-U pair is represented by single line with a dot in 

the middle; G-U pair is represented by single line. Figure 2.6 shows these two 

types of RNA structure representation and the corresponding 3D structure as 

well. 

 

 

Figure 2.6: RNA structure. 

 

   

(a) Each base 

represented by a dot. 

(b) Each base 

represented by its 

corresponding 

alphabet. 

(c) 3D structure 
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 Besides the RNA representations shown in Figure 2.4 and Figure 2.6, 

RNA structure can be illustrated using circular representation as well. For this 

type of representation, nitrogenous bases are arranged in a circular manner. 

Then, base pairing is represented by drawing a line in between the 

corresponding bases. However, circular representation is seldom used. 

 

 

 

(a) Structure generated using 

VARNA. 

 

(b) Structure generated using Matlab. 

Figure 2.7: Circular representation of RNA structure. 

 

Another type of RNA structure representation is the mountain diagram. 

In mountain diagram, unpair bases will form a horizontal line while continuous 

base pairing (stem structure) will form a slope. Another type of similar RNA 

structure representation is the tree representation. For tree diagram, unpair 

bases is represented by single dot while base pairing is represented by dots 

which connect with a straight line going downwards. 
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Figure 2.8: Mountain diagram and tree diagram of RNA structure generated 

using Matlab. 

 

 Lastly, the simplest type of RNA structure representation that is the dot-

bracket representation. This representation is used throughout this research 

because it is simple and easy for storing purpose. In dot-bracket representation, 

base pairings are represented by round brackets („(‟ and „)‟) while unpair bases 

are represented by dots („.‟). Pseudoknot which include cross pairing in 

between stem regions will be represented by square brackets („[‟ and „]‟). 

Figure 2.9 illustrates how an RNA structure is represented in dot-bracket 

format and Figure 2.10 shows the dot-bracket representation of structure shown 

in Figure 2.4. 

 

 
 

 

 

 

 

Figure 2.9: Representation of RNA secondary structure in dot-bracket format. 

           

 

                   (a) Mountain diagram (b) Tree diagram 
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((((..((((((....))))))...)))) 

 

(a) Structure without pseudoknot. 

 

..(((((..[[[.))))).......]]] 

 

(b) Structure with pseudoknot. 

 

Figure 2.10: Dot-bracket representation of RNA structure. 

 

2.4 RNA secondary structure prediction excluding pseudoknot 

This section discusses several methods for RNA secondary structure prediction 

excluding pseudoknot. These methods show how RNA structure is derived 

from its primary sequence. Firstly, base pair maximization is presented because 

this is the earliest method proposed for RNA secondary structure prediction. 

Then, three commonly used methods for RNA structure prediction, free energy 

minimization, stochastic context-free grammar and comparative sequence 

analysis are presented.  

 

2.4.1 Base pair maximization 

In 1978, RNA folding problem is formulated as a matching problem by Prof. 

Ruth Nussinov et al. (Nussinov et el. 1978). She implemented the algorithm 

using dynamic programming technique. Her algorithm aims to maximize the 
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base pairing for a given sequence which obeys planarity conditions as stated 

below: 

(i) No crossing between any two paired nucleotides. 

(ii) No two adjacent nucleotides may be paired. 

This algorithm makes sure that every base-pairing must be adjacent to another 

base pair and this forces the formation of two or more parallel stems. Therefore, 

it focuses on “base-stacking” effects of RNA sequence. However, this 

algorithm doesn‟t consider the stabilizing and destabilizing effect of stem and 

loop respectively.  

 

2.4.2 Free energy minimization 

 

Optimal computer folding of RNA sequences by using thermodynamics is 

proposed by Zuker M and Stiegler P (Zuker & Stiegler 1981). Thermodynamic 

principles indicate that the structure with lowest free energy should be the most 

stable structure. Hence, Zuker‟s algorithm computes the structure with 

minimum free energy by dynamic programming. Free energy is computed by 

summing up the energy contributions of all types of RNA secondary structures. 

The recurrence relation for Zuker‟s algorithm is shown on next page. 

 



20 
 

 

 

 

    

 
   
 
 





































jiVM

jiVBI

jiVjies

jieh

jiV

jkWkiW

jiV

jiW

jiW

jiW

jki

,

,

1,1,

),(

min,

,1,min

,

1,

,1

min),(

 

      

       ajkWkiWjiVM

jiVjijiebijiVBI

jki

jjii
jjii










1,1,1min,

','',',,min,

1

2''
''

 

where 

The dynamic programming implementation involves 2 steps, that is “fill” 

and “traceback”. First, diagonal of matrix is initialized to zero. Then, the “fill” 

step computes and stores minimum folding energy for all fragments of the 

sequence. It incessantly builds up larger segments in a recursive manner by 

iteratively minimize the free energy. This process stops when it reaches the 

(1,N) position in the matrix (which is the upper right most corner). Then, from 

here it obtains the optimal structure by “tracing back” the optimal path which 

 jiW ,  : Minimum free energy from i to j . 

 jiV ,  : Minimum free energy from i to j where i is pair to j . 

 jieh ,  : Energy of the hairpin loop closed by the base pair  ji, . 

 jies ,  : Energy of the stacked pair  ji, and  1,1  ji . 

 ',',, jijiebi  : Energy of the bulge or interior loop that is closed by  ji, . 

 jiVBI ,  : Energy of a bulge or interior loop that involves a base pair 

 ',' ji and is closed by  ji, . 

 jiVM ,  : Energy of multiloop from two smaller structures. 
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leads to that particular value of minimum free energy. This process is shown in 

Figure 2.11 with a simpler recurrence relation shown below (Eddy 2004). 


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Figure 2.11: Dynamic programming algorithm for RNA secondary structure 

prediction. 

 

 

However, Zuker‟s method may produce a minimum free energy 

structure which is not necessarily the native structure. Occasionally, there 

might be more than one structure with equivalent minimum free energy value 

but this method only returns one structure for every input sequence. Therefore, 

he further improved his algorithm by predicting suboptimal structures (Zuker 

1989). He suggests that structures with free energy value fall within a specified 

range (usually 5-10%) from the minimum value should also be considered as 

the potential RNA structure. Although these structures possess free energy 
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value which is slightly higher than optimal structure, they can be topologically 

different from each other. 

 

2.4.3 Stochastic context-free grammar 

Sean R. Eddy has proposed stochastic context-free grammar (SCFG) for RNA 

structure prediction as an alternative to dynamic programming implementation 

(Eddy 2005). SCFG can model nested and long-distance pairwise correlations 

in strings of symbols. Long distance pairwise correlation is one reason why 

pseudoknot is difficult to predict. On the other hand, it generates parse tree 

which is the RNA secondary structure analog of a sequence alignment. Parse 

tree is generated based on the five production rules as listed below.  

 

 

 

 

 

 

 

 

 Every production rules contain non-terminal („S‟) and terminal symbols 

(„a‟, „b‟).  For RNA structure prediction, terminal symbols represent A, U, C or 

G. Leftwise will generate a terminal symbol on the left while rightwise will 

generate a terminal symbol on the right. Pairwise is generating a base pair and 

bifurcation is generating a branch. The following example demonstrates how 

SCFG works in the recognition of CAUCAGGGAAGAUCUCUUG. 

S  aS        : Leftwise 

S  Sa       : Rightwise 

S  aSb        : Pairwise 

S  SS        : Bifurcation 

S  e        : End 
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Example 1   :   Structure prediction by implementing SCFG. 

Sequence  :  CAUCAGGGAAGAUCUCUUG 

1S  Pairwise 

C 2S G Pairwise 

CA 3S UG Bifurcation 

CA 4S 9S UG Pairwise 

CAU 5S A 9S UG Pairwise 

CAUC 6S GA 9S UG Leftwise 

CAUCA 7S GA 9S UG Leftwise 

CAUCAG 8S GA 9S UG Leftwise 

CAUCAGGGA 9S UG Pairwise 

CAUCAGGGAA 10S UUG Pairwise 

CAUCAGGGAAG 11S CUUG Pairwise 

CAUCAGGGAAGA 12S UCUUG Leftwise 

CAUCAGGGAAGAU 13S UCUUG Leftwise 

CAUCAGGGAAGAUCUCUUG End 

 

Parse tree :  
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Structure :  

 

 

 

 

 

 

 

 

 However, there are some limitations for structure prediction by SCFG 

method. SCFG algorithm would require time and memory proportional to at 

least    (  is the length of sequence.) [23]. Thus, this method is only suitable 

for short sequence RNA structure prediction. 

 

2.4.4 Comparative sequence analysis 

RNA secondary structure prediction by comparative sequence analysis requires 

several sequences for evaluating similarity among them. Usually the input 

sequence for structure prediction is known as target sequence while sequence 

used to compare with target sequence will be known as reference sequence. 

Besides, aligning sequences may provide the evolutionary history and 

information of how closely related the sequences are.  

 

C  -  G 

A  -  U 

U  -  A A  -  U 

C  -  G 

A G 

G  -  C 

A  -  U 

U C G 
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 Simple alignment of two sequences is just comparing the bases one at a 

time. If they are identical, then a match score is assigned according to the 

scoring system (Krane & Raymer 2003). Also, there would be a penalty for 

non-identical bases. Besides checking whether the bases are identical, gaps are 

also allowed while aligning sequences. By referring to the example scoring 

system (Refer to the following page), the score of aligning two sequences with 

gaps and without gaps is shown.  

                           
       
         
             

 
 

   

 

 

Alignment without gap penalty : 

Alignment GGCCAUG 

GCAUG 

GGCCAUG 

 GCAUG 

GGCCAUG 

  GCAUG  

Score +1 +2 +4 

 

Alignment with gap penalty (only three examples are shown here) : 

Alignment GGCCAUG 

GC--AUG 

GGCCAUG 

G-C-AUG 

GGCCAUG 

G--CAUG  

Score +2 +3 +3 

 

 

 Since alignment involve gap penalty will generate many possible 

alignments, scoring matrix is used to obtain the alignment with optimum score. 

This can be implemented using dynamic programming as in the case free 

energy minimization method. The recurrence relation for aligning two 
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sequences is shown on next page while scoring matrix and result are shown in 

Figure 2.12. 

           

                 

                            

                           

  

 

 

Score matrix : 

  G C A U G 

 0 -1 -2 -3 -4 -5 

G -1 1 0 -1 -2 -3 

G -2 0 1 0 -1 -1 

C -3 -1 1 1 0 -1 

C -4 -2 0 1 1 0 

A -5 -3 -1 1 1 1 

U -6 -4 -2 0 2 1 

G -7 -5 -3 -1 1 3 

 

Optimal score : 3 

 

Result : 

-G-CAUG 

GGCCAUG 

 

Figure 2.12: Aligning two sequences using dynamic programming. 

 

where  jiS , is the optimal score at position  ji, .  
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Simple alignment can be modified for multiple sequence alignment. 

Multiple sequence alignment will identified the conserve regions among 

sequences and produce the structure with highest similarity while compared to 

reference structures.  Therefore, similar sequences are usually used for 

comparing with target sequence.  

 

There are various implementation of comparative sequence analysis 

such as SimulFold (Meyer & Miklós 2007) and hxmatch (Witwer, Hofacker & 

Stadler 2004). Although results obtained by these two methods are comparable 

to other algorithms, they have some limitations too. Structure prediction by this 

approach requires several sequences for aligning the input sequence. Therefore, 

this method is generally used in prediction of RNA sequences belong to certain 

specific type of RNA in which their common structure is known. For example, 

tRNA always fold into a cloverleaf structure. 

 

2.5 RNA secondary structure prediction with pseudoknot 

In this section, some methods of RNA secondary structure prediction including 

pseudoknots will be discussed.  
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2.5.1 Dynamic programming  

Prediction using dynamic programming is proposed by Akutsu T (Akutsu 

2000). This method only deals with simple pseudoknot (H-type pseudoknot in 

Figure 2.5) using the recurrence relation shown on the following page. 

 

                       

              

              

             
  

 

                       

              

              

             
  

 

              

                                    

                        

                       
  

where            if         is a base pair, otherwise            . 

 

           corresponds to the case where ith and jth nucleotides make a 

base pair. This is illustrated in the Figure 2.13 and the similarly for           

and             
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Figure 2.13: Illustration of the recurrence used in dynamic programming. 

 

Besides, initialization is performed as well. Below is the initialization 

procedure and followed by figure illustrating this process. 

                           

                                 

                                         

for the other     satisfying     or       

 

 

 

 

 

 

 

 

Figure 2.14: Illustration of the initialization process. 

 

                                              

         =                

  +              

         =          

  +              

         =          

  +              

i j j k k i i j k 
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 Then, for each pair        , computes the above scores and obtains the 

score of a pseudoknot whose endpoints are         by :  

                                                             

 

  

 Finally, optimal score  nS ,1  is computed by the following recurrence 

formula: 

                                  

                                     

 

 Akutsu‟s method can predict RNA structure with simple pseudoknots. 

For an input sequence of length n, this algorithm requires  4nO  time 

complexity and it increases with the coverage of types of pseudoknot. 

Therefore, improvement can be done in order to decrease the time complexity 

of this algorithm. Also, there is no established energy function known for 

pseudoknot structure. This is important for evaluating the energy contribution 

of loops and stems in pseudoknot structures. Furthermore, it has not been 

implemented and tested for RNA structure prediction. 

 

2.5.2 pknotsRG 

pknotsRG is an pseudoknot prediction algorithm developed by Jens Reeder and 

Robert Giegerich (Reeder, Steffen & Giegerich 2007). It produces structure 
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with minimum free energy value based on dynamic programming approach. 

This algorithm requires  4nO  time and  2nO  space for structure prediction 

which is much reduced while compared to the algorithm developed by Akutsu 

(Akutsu 2000).  

 

 

 

 

Figure 2.15: Simple pseudoknot which is formed by two stems (a-a’ and b-b’). 

 

pkntosRG is designed to speed up the prediction of RNA secondary 

structure with simple pseudoknot (H-type pseudoknot) by the implementation 

of three canonization rules:  

(i) Both strand in a stem must have the same length (|a| = |a’| and |b| 

= |b’|). Therefore, no bulge is allowed in the stem structure. 

(ii) Both stems involved in pseudoknot structure (a, a’ and b, b’) 

must have the maximal extend. 

(iii) If two stems would overlap, their boundary is fixed at an arbitrary 

point between them. 
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First rule is to confirm that no bulge can be found in the stem involved 

in forming pseudoknot structure. Second rule will ensure that base pairings of 

stems involved in pseudoknot structure are having the maximal extend. This is 

due to energy model which strongly favors helix extension. Last rule is to draw 

the border between two stems facing each other and competing for the same 

bases. 

 

This algorithm considers the class of simple recursive pseudoknot 

which is further restricted by three rules of canonization, canonized simple 

recursive pseudoknot (csr-PK). The implementation of canonization reduced 

the search space and expedites the process of structure prediction while 

compared to the algorithm developed by Rivas and Eddy (pknotsRE) which 

considers general classes of pseudoknots ( pknotsRG –       time and       

space, pknotsRE -       time and       space). In addition, evaluation of the 

coverage of csr-PK on known pseudoknot structures has been done as well. 

Results show that 135 out of 172 simple recursive pseudoknots are included in 

the class csr-PK (78.49%). 

 

pknotsRG has been tested on RNA sequences obtained from 

Pseudobase. Results show that it is good in predicting RNA structure for short 

sequences. While predicting RNA structure for longer sequences (>400nt), the 

minimum free energy structure predicted diverged from experimentally 
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determined structure. Besides, this algorithm requires lengthy execution time 

for structure prediction. 

 

2.5.3 HotKnots 

HotKnots is a heuristic algorithm developed for RNA secondary structure 

prediction including pseudoknots. This algorithm predicts RNA structure based 

on the idea of iteratively forming stable stems (Ren et al. 2005). 

 

 This algorithm begins with the generation of simple stem-like 

substructures which are termed as „hotspots‟. A set of hotspots will be 

computed as the basis for developing RNA structure by adding substructure 

one at a time into the partially formed structure. HotKnots maintained multiple 

partially formed structures and it considers several different addition of 

substructure in an attempt to produce a tree of candidate structures. Then, 

standard energy model is used to determine which structures at nodes of the 

tree have the lowest free energies. Besides, the energy model is also used to 

determine how to prune the tree of partial structures, so that more alternatives 

are explored from the most promising partial structures. 

 

 HotKnots has been tested on 43 RNA sequences. The length of test 

sequences can be divided into two categories, short (28-108 nt) and long (210-
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400 nt). HotKnots outperformed the other software available (ILM, pknotsRE, 

STAR and pknotsRG-mfe) while predicting structure for short sequences. For 

structure prediction using long sequences, performance of HotKnots is better 

than the other software except STAR. However, HotKnots achieved higher 

sensitivity value than STAR on five out of twelve sequences in the long 

category.  

 

 Although performance of HotKnots is comparable to the other software 

available, it can be further improved by modifying the search technique. A 

more advanced search technique can reduce the execution time of the 

algorithm. In addition, better energy model can be used for structure 

determination and selection so as to increase its performance. 

 

2.5.4 Dynamic weighted matching (DWM) 

Dynamic weighted matching algorithm is another method being implemented. 

Liu et al. used a dynamic weight related with stem length and a recursive 

algorithm to predict RNA secondary structures including pseudoknots. This is 

done by searching the stem structure with maximum weight summation step-

by-step (Liu et al. 2006).  The space complexity of this algorithm is  2nO  and 

the time complexity is less than  nnO log3
.  
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 In this algorithm, RNA structure prediction is regarded as an 

optimization problem. The author introduced “compound weight” as the 

optimization criterion. This means that the algorithm looks for structure with 

maximum whole weight value as the predicted RNA secondary structure. The 

compound weight means addition of constant weight and dynamic weight 

which is defined as below while given a section of stem,  kjiStm ,, . 

 

    kwwwwW GUAUGC

k

l

jikji 





3

11

0

1,1,,
 

 

  

 The first term on the right hand side of equation is the constant weight 

whereas the following term is the dynamic weight. Constant weight is the sum 

of weight for every base pair in stem. Dynamic weight is a product of average 

weight and square root of stem length. A double recursive algorithm is used to 

search the stems with maximum weight sum and potential pseudoknot.  

 

 This algorithm works according to two main principles. First is the 

whole weight sum maximization and secondly is first-near-last far principle. 

The second principle means that juxtapose stems are considered first and 

nested stems are second (Refer to Figure 2.16 for juxtapose and nested stems.). 

According to van Batenburg et al. (Van Batenburg, Gultyaev & Pleij 1995), it 

seems like this principle produces better result because it yields structures 

i : 5‟-end initial site. 

j : 3‟-end terminal site. 

k : Stem length. 

where 
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which are closer to real structures. On the whole, this algorithm performed well 

for tRNA sequences but not ideal for ncRNA due to increase of sequence 

length and longer distance interaction.  

 

 

 

Figure 2.16: Juxtapose and nested stems. 

 

This method is able to predict pseudoknot structure and it is found to be 

quite fast in structure prediction. The result shows that it is good in tRNA 

structure prediction with an average value of 95.08 for SN and 95.34 for SP. 

Although high SP and SN values are achieved, DWM algorithm has only been 

tested on 8 tRNA sequences downloaded from GenBank database. 

 

2.5.5 CyloFold 

CyloFold is an RNA secondary structure prediction algorithm that is not 

restricted in terms of pseudoknot complexity (Bindewald, Kluth & Shapiro 

2010). It is developed by Eckart Bindewald, Tanner Kluth and Bruce A. 

Shapiro. This algorithm is based on simulation of folding process in a coarse-

grained manner by choosing stems based on established energy rules. 
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 CyloFold starts with generating a list of stems structure which 

contained at least three base pairs. Then, it continues with the folding 

simulation by picking stems from the list generated with a Boltzmann-weighted 

probability. Each chosen stem is represented by a very coarse-grained 3D 

representation in a virtual 3D workspace.  

 

Stem structure is represented by a cylinder that is capped with a half-

sphere on both ends. Single strand regions between stems are represented as 

constraints for the maximum distance between the ends of the capped cylinders. 

Then, every newly chosen capped cylinder will be placed into the 3D 

simulation space at a random position such that the distance-constraints are 

fulfilled. The distance constraints are a function of single-stranded sequence 

lengths between connected stems. In addition, steric feasibility of structure is 

check during the folding process. Once no more stems can be placed, a 

simulation run is completed and output from CyloFold is the overall best 

scoring structure generated by fifty simulation runs. 

 

 CyloFold has been tested on two datasets. First dataset consists of 26 

RNA sequences in which their tertiary structure is available in the Protein Data 

Bank; Second dataset consists of 241 RNA sequences obtained from 

Pseudobase. Comparison among structures generated by CyloFold and other 
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existing software (pknotsRG, HotKnots and UNAfold) shows that CyloFold 

outperformed the others in term of the MCC score for both datasets. 

 

 This algorithm simulate the RNA folding process and produce the RNA 

secondary structure by selecting stems with a probability assigned according to 

their free energy contribution. Therefore, the structure prediction of CyloFold 

depends on the energy model employed. Furthermore, fifty simulation runs is 

required for the structure prediction of an input sequence. Thus, it might 

acquire lengthy execution time for structure prediction of longer RNA 

sequences due to the compute-intensive approach.  

 

2.5.6 Stochastic multiple context-free grammar  

Stochastic multiple context-free grammar (SMCFG) developed by Nobuyoshi 

Mizoguchi, Yuki Kato and Hiroyuki Seki is a grammatical approach for 

ncRNA structure prediction including pseudoknots (Mizoguchi, Kato & Seki 

2011). In SMCFG, the right-hand side of a production rule is denoted by 

function application form. For example, a rule aXbS   can be expressed by 

)(1 XfS   where 1f  is the function defined by axbxf ][1  ( x is an arbitrary 

sequence of terminal symbols) (Mizoguchi, Kato & Seki 2011).  
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 This method assigned application probability to each production rule by 

the referring to the aligned multiple sequences. Application probability is 

defined as the product of the transition probability and the paired or unpaired 

probability. Then, it uses the CYK algorithm to predict the consensus 

secondary structure according to the grammar shown below: 

 

Type Rule Function 

E    ,vW   

S   yv WJW      2121, xxxxJ   

D   yv WSKW       2121 ,, xxxxSK   

LU1   yLv WUPW i

1      21211 ,, xxxxUP iL
i 

  

RU1   yRv WUPW j

1      
21211 ,, xxxxUP jR

j 


  

LU 2   yLv WUPW k

2      21212 ,, xxxxUP kL
k 

  

RU 2   yRv WUPW l

2      lR xxxxUP l 

21212 ,,   

PL   yLv WBPW ji
      

2121 ,, xxxxBP jiL
ji 


  

PR   yRv WBPW lk
      lkR xxxxBP lk 

2121 ,,   

PC   yCv WBPW li
      liC xxxxBP li 

2121 ,,   

 

Example 2 demonstrates the generation of simple RNA pseudoknot 

structure by using the grammar aforementioned.  

 

Example 2   :   Sequence derivation using MCFG. 

Sequence  :  GCGAAGCGCGUUG 

Structure :  
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Sequence derivation : 

     ,,1 GUPW G

Lv   

    GGGUPW G

Lv ,,2    

    GUAGGGBPW AU

Cv ,,   

    GUUAAGGUAGBPW AU

Cv ,,   

    GUUGAAGGUUAGGUPW G

Rv ,,2   

    GUUGGAAGCGUUGAAGBPW GC

Lv ,,   

    GUUGCGAAGCGGUUGGAAGCBPW CG

Lv ,,   

    GUUGGCGAAGCGCGUUGCGAAGCGBPW GC

Lv ,,   

   GUUGGCGAAGCGCJWv , GCGAAGCGCGUUG 

 

 

For SMCFG, it is developed for ncRNA structure prediction. It requires 

the input file with aligned multiple sequences for the calculation of application 

probability. Therefore, structure generated by SMCFG depends on the 

sequence alignment of input sequences. This algorithm has been tested on 

ncRNA sequences comprise from eight different families. Although the overall 

performance of SMCFG is almost comparable to existing pseudoknot 

prediction algorithm (hxmatch and Pair-SMCFG), it achieved low performance 

while predicting ncRNA from certain family of ncRNA sequences Mizoguchi, 

Kato & Seki 2011). 
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2.5.7 DotKnot 

DotKnot is an pseudoknot detection algorithm which identifies two types of 

pseudoknot, that is H-type pseudoknot and intramolecular kissing hairpins 

(Sperschneider, Datta & Wise 2011). This algorithm is developed by Jana 

Sperschneider, Amitava Datta and Michael J. Wise.  

 

 This algorithm assembles pseudoknots in a constructive fashion from 

the secondary structure probability dot plot calculated by RNAfold (Hofacker 

et al. 1994). RNAfold is an RNA secondary structure prediction algorithm 

which output the minimum free energy structure and base pairing probability 

matrix. Firstly, a set of promising stems is obtained by setting a low-probability 

threshold (      ) so as to discover the potential pseudoknot stems. These 

stems are stored in a dictionary,   . The properties of stems are as follows: 

(i) Contain at least 3 base pairs. 

(ii) Absolute percentage increase or decrease of stack probabilities for 

subsequent base pairs in a stem must be lower than a certain 

threshold,  . 

(iii) Stem weight calculated using simple stacking model,        must 

be lower than 0.0 kcal/mol. 

(iv) Stem weight calculated using free energy model proposed by 

Turner group (Mathews et al. 1999),   must be lower than 4.0 

kcal/mol. 
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Then, maximum weight independent set (MWIS) calculations is used to 

assemble noncrossing secondary structure elements. MWIS calculation is 

performed on a list of sorted endpoints for all stems. It will penalize long bulge 

or internal loops and ensure that confidence of stems is at least      . These 

restrictions reduced the search space and expedite the algorithm while handling 

long sequences. Those stems which contained bulge or internal loops are stored 

in a dictionary (  
 ) while stems which formed multiloops are stored in a 

different dictionary (  
 ).  

 

Stems from    and   
  are used to construct core H-type pseudoknots in 

which their energies are evaluated by advanced energy models. Restrictions on 

the structure of core H-type pseudoknots are: 

(i) At most one interrupted stem is allowed. 

(ii) The maximum and minimum length for each loop region is listed 

in Table 2.1. 

Table 2.1: Restrictions on loop length of core H-type pseudoknot. 

Loop Location in Figure 2.15 
Minimum loop 

length 

Maximum loop 

length 

   u 1 100 

   v 0 50 

   w 2 100 

 

(iii) For interrupted stems with more than 10 base pairs,  

   must contain at least 2nt while    must contain at least 6nt. 
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Subsequently, those core H-type pseudoknots with low energy value 

will be selected for constructing recursive pseudoknots. Each loop region ( 

  ,    and   ) is allowed to fold into any secondary structure elements. These 

structures can be found in   ,   
  and   

 . Then, the loop entropy of recursive 

pseudoknots is recalculated using effective loop length. The effective loop 

length of a pseudoknot loop with internal structure elements is the number of 

unpaired nucleotides outside those internal structure elements plus the number 

of internal structure elements. Finally, those pseudoknots which fulfilled the 

following two criteria will be stored in a dictionary,    before the removal of 

false positive pseudoknots by using MWIS calculations. 

(i) Free energy,        < -5.25 kcal/mol. 

(ii) Normalized pseudoknot free energy,            ,    denotes 

the length of pseudoknot   .  

 

After obtained H-type pseudoknots, kissing hairpin structures are 

constructed by referring to the list of H-type pseudoknot structures stored in a 

specific manner. The free energy value for kissing hairpins is estimated by 

adding the stacking energies, including dangling ends for the three stems 

involved in kissing hairpins structure plus a length-dependent value for the 

loop entropies. Properties of stems involved in the formation of kissing 

hairpins are as follows: 

(i)             kcal/mol and       kcal/mol. 

(ii) Confidence sum >      . 
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(iii) Normalized kissing hairpins free energy,            . 

 

 This algorithm is designed for identifying 2 types of pseudoknot 

structures, H-type pseudoknot and intramolecular kissing hairpins. Kissing 

hairpins are restricted to be shorter than 400nt in order to improve the runtime 

of algorithm. Besides, it provides a number of near-optimal H-type pseudoknot 

and kissing hairpin candidates as well.  

 

 Results show that DotKnot performed better than pknots, FlexStem and 

RNAfold while predicting RNA structures with pseudoknots. It can predict 

kissing hairpins correctly and achieve highest MCC score for most test 

sequences. For pseudoknot-free test set, MCC score of DotKnot is comparable 

to pknotsRG and RNAfold which implement dynamic programming method 

for structure prediction (pknotsRG-0.59, RNAfold-0.57, DotKnot-0.55, 

HotKnots-0.55, FlexStem-0.52).   



 
 

CHAPTER 3 

 

STEM WEIGHT MAXIMIZATION ALGORITHM 

 

This chapter presents an algorithm which predicts RNA secondary 

structure based on stem weight maximization. Stem is an important RNA 

structure as it is made up by continuous base stacking which stabilize the RNA 

structure. Base stacking of Watson-Crick base pairs (G-C and A-U) are more 

preferable than Wobble base pair (G-U). Hence, the proposed algorithm always 

select the stem which possess more preferable base pairs by referring to the 

stem weight value calculated.  

 

Figure 3.1 shows the general view of stages involved in the proposed 

algorithm. At the end of this chapter, Example 6 which illustrates the overall 

structure prediction of stem weight maximization algorithm is  presented. 
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Figure 3.1: Flow chart of the proposed algorithm. 

 

 The proposed algorithm begins with the construction of weight matrix. 

The weight matrix constructed will be used for stem searching in which 

selected stem is the one with highest stem weight value. Stem searching is 

subdivided into three stages. Each stage will search for stems in different 

regions. Searching regions for "section search" are those remaining unpaired 

regions of previously found stem (Refer to Figure 3.4 for the searching regions 

of "section search".). Subsequently, the proposed algorithm will continue with 

"cross search" which searches for base pairing in the unpaired regions after 

"section search" (Refer to Figure 3.7 for determining searching regions of 

"cross search".). Finally, the "knot search" will search for pseudoknots if there 

are valid regions for the formation of pseudoknots (Refer to section 3.2.3 for 

the details of "knot search"). 

 

 

Construction of weight matrix 

Knot search 

Cross search 

Stem searching 

Section search 
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3.1 Construction of weight matrix 

In this research, sequences used for structure prediction are obtained from 

FRABASE (Popenda et al. 2010), RNA STRAND (Andronescu et al. 2008) 

and CompaRNA (Puton et al. n.d.). Sequences downloaded from these 

databases include various types of RNA such as tRNA, ribosome and 

Ribonuclease P RNA.  

 

The proposed algorithm begins with the construction of weight matrix 

which will be used for stem searching in the following stage. Weight matrix is 

a two dimensional matrix used to store the weight value assigned for each base 

pair. The proposed algorithm includes three types of base pair (G-C, A-U and 

G-U). These three types of base pair are assigned with a value each as its 

weight that is 11, 8 and 3 respectively (Liu et al. 2006). Higher value is 

assigned for Watson-Crick base pairs (G-C and A-U) due to their stabilization 

effect towards the RNA structure. Wobble pair (G-U) is assigned with lower 

weight value because it is thermally less stable than Watson-Crick base pairs. 

For other combination of base pairs, they are assigned with the value zero.  
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Given an input sequence of length N , a weight matrix of size NN   is 

created,   NNwMatrix . First, construction of weight matrix begins with the 

initialization of diagonal to zero value. Then, fill up the matrix according to the 

base pair‟s weight value as follows: 

 















0

3

8

11

, nm aawMatrix  

m  and n  refer to the row and column of weight matrix. ma
 
refers to the 

nucleotide at row m  while na  refers to the nucleotide at column  n .  

 

 

Example 1   :   Construction of weight matrix. 

Input sequence   :   GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU 

Length ( N )   :   32 

Matrix created  :     NNwMatrix  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, if ma = G and na = C or vice versa. 

, if ma = A and na = U or vice versa. 

, if ma = G and na = U or vice versa. 

, otherwise. 
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 Example 1 shows the construction of weight matrix for the input 

sequence, GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU. Input 

sequence has the length of 32, therefore dimension of weight matrix created 

should be   3232wMatrix . Subsequently, initialize the diagonal with value 

zero and start to fill up weight matrix at the position   310wMatrix  which is 

circled in Example 1. At this position, G is paired with U, thus it is filled with 

the value „3‟. The process of filling up weight matrix continues until all 

position which satisfies the condition of nm  is filled with the corresponding 

weight value. The completed weight matrix would be an upper triangular 

matrix.  

 

3.2 Stem searching 

After construction of weight matrix, the next step would be searching for stem. 

Stem searching is looking for continuous base pairing of nucleotides which 

form a stem (Refer to Figure 3.2 for the structure of stem in weight matrix.). In 

the weight matrix, stem is the continuous regions which contained nonzero 

entries diagonally.  

 

The stem searching process is divided into three stages, which search 

for stem in different regions: 

(i) Section search 
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(ii) Cross search 

(iii) Knot search 

 These three searching processes are dependent. The first search (section search) 

must be completed before carry on to the next search (cross search) and finally 

the last search (knot search).  

 

 “Section search” is searching for stem in three different regions (Refer 

to Figure 3.4 for the illustration of searching regions.). It will select the stem 

with maximum stem weight value from each region. “Cross search” will 

identify possible base pairing in the unpaired region (Refer to Figure 3.8 for 

determining searching region of “cross search”.). “Knot search” is the final 

stage of stem searching. It will search for pseudoknot structures in between 

loop and unpaired regions. 

 

In the proposed algorithm, “section search” and “knot search” consider 

only those stems which possess stem length greater than 2nt. In addition, loop 

length of stems found in “section search” must be greater than 2nt as well. For 

“cross search”, it is searching for possible base pairing in the bulge and internal 

loop regions. Hence, the stem length is set to be not greater than 2nt in this case. 

Besides, it will search for possible stem if there exists a pair of unpair regions 

which are located at the beginning and ending of input sequence. Here, the 
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minimum stem length is 3nt. The following subsections will discuss about each 

of these searching stages in detail.   

 

3.2.1 Section search 

“Section search” is the first stage of stem searching. It searches for stems 

which possess maximum stem weight value in the specified regions of weight 

matrix constructed. The stem weight value is the summation of successive base 

pairing diagonally in the weight matrix.  

 

 Since the formation of Watson-Crick base pairs stabilize the RNA 

secondary structure, “section search” begins with identifying the stems with 

maximum stem weight value from the entire weight matrix constructed in the 

earlier stage. Stems are marked by the regions perpendicular to the diagonal 

with continuous non-zero entries in the weight matrix. In Figure 3.2, it shows 

all possible stems for the input sequence, 

GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU.  
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Figure 3.2: Stems found in the weight matrix. Valid stems are highlighted in 

green and blue color while invalid stem is highlighted in yellow color. 

 

In “section search”, stem and loop length of stems must be greater than 

2nt. For those stems which do not possess loop length greater than 2nt, the 

proposed algorithm will unpair the innermost base pairing of nucleotides in 

order to form a valid stem. Thus, the stem length is deducted by one. For 

example, two innermost base pairs of stem (highlighted in red color) 

highlighted in blue color has been unpaired in order to become valid stems 

with loop length of 4nt. The stem weight of this stem is 22 which can be 

obtained by summing up the values involved in the stem formation (8, 3 and 11 

diagonally). 
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In Figure 3.2, the stem highlighted in yellow color is invalid because its 

loop length is less than 3nt. The proposed algorithm cannot unpair the 

innermost base pair and make it become valid stem due to its stem length 

which is equal to the minimum value, 3. Figure 3.3 illustrates the process of 

stem modification aforementioned. 

 

 

 

 

 

 

Figure 3.3: Stem adjustment when loop size is less than 3nt. 

 

Details for “section search” are as follows: 

1. Search for valid stems within the specified region in weight matrix. The 

initial searching region for “section search” is the entire weight matrix. 

2. Calculate the weight of each valid stem and store them into a list. The 

stem weight, w  of a stem with length k  is obtained by summing up 

those weight values recorded in the weight matrix, starting at the first 

position with nonzero entry as follows: 

 
k

knkmwMatrixw ),(  

Loop size = 1 

Stem length = 3 

Loop size = 1 

Stem length = 5 

 

Discarded! Stem length is 

equal to the minimum 

value, 3.  

Loop size = 3 

Stem length = 4 

The innermost base pair is 

removed.  
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Note that stem is enclosed by neighboring entries with zero weight 

value that is both  1,1  nmwMatrix  and  1,1  knkmwMatrix  

are zero.  

 

3. Stem selection. 

a) If stem which involved base pairing between the first and last 

nucleotides of input sequence exist, select it. 

b) Else, select the stem with maximum stem weight value from the 

list of stem weight. If there are several stems which possess the 

maximum stem weight value, select the one with the shortest 

stem length. 

4. Divide the selected stem into three regions and repeat step 1-3 for each 

region. 

 

First stem for any input sequence would be the one with the highest 

stem weight value found within the entire weight matrix. Then this stem will be 

divided into three regions and “section search” continues looking for stem with 

similar properties in each region. Before searching for stem in each region, 

searching regions of at least 6nt must be fulfilled because minimum six 

nucleotides are required to form a stem with at least three base pairs in length. 
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Figure 3.4 shows three regions of stem. Region 1 is the unpair region 

before the stem while region 3 is the unpair region after the stem. Region 2 is 

the loop region of the stem. For each stem found, “section search” will divide it 

into three regions and continue to search for new stem in each region 

recursively. This process continues until no more stem can be found. 

 

 

 

 

 

 

Figure 3.4: Three regions of a stem. 

 

During the first stem searching process of “section search”, if there is a 

stem which includes base pairing between the first and last nucleotides of input 

sequence, it will be selected and stored in stem_section without further 

evaluation. This is due to the preference of the proposed algorithm which 

favors nested stems rather than juxtapose stems. Observations from the 

experimental structure obtained from FRABASE shows that RNA structure 

preferred nested stems while compared to juxtapose stems (64 structures with 

nested stem structures; 7 structures with juxtapose stem structures.). Figure 3.5 

shows the configuration of nested stems and juxtapose stems. 
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(a) Juxtapose stem 

 

 

(b) Nested stem 

Figure 3.5: Juxtapose and nested stems. 

 

When there are several stems with maximum stem weight value, the 

proposed algorithm will select the one which possess the shortest stem length 

(Refer to Figure 3.6 for the illustration of stem selection.). Consequently, RNA 

structure predicted by the proposed algorithm contains more Watson-Crick 

base pairs (G-C and A-U) which stabilize the structure.  

 

 

 

 

 

Figure 3.6: Stem selection while both stems are having equal stem weight 

value, 30. Stem on the left is selected due to its shorter stem length, 3. 
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Every selected stem will be stored as a triplet, [i, j, k]. i 

indicates the starting position of stem, j is the ending position and k is the 

length of stem. Position of i, j and k can be found in Figure 3.4. For “section 

search”, the proposed algorithm will discard those stems which do not possess 

stem length and loop length of at least three base pairs and three nucleotides 

respectively. All triplet of stems found in “section search” are stored in a list 

named stem_section. 

 

 

Example 2   :   Stem searching of “section search”. 

Input sequence : AAUAGGGCCUAAGCCCCUUUGGCCCAUGGGAGCCA 

Stem found (stem_section) : [[4, 24, 5], [10, 18, 3],  

                        [26, 34, 3]] 

Length ( N ) : 35 

Weight matrix  :    

 

 

 

Region 3 : 25-34 
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“Section search” starts with finding the first stem with maximum stem 

weight value in weight matrix. In Example 2, first stem found is [4, 24, 5] 

with weight value 55 (11+11+11+11+11). The maximum stem weight value is 

obtained by summing up those values highlighted with red circle in the weight 

matrix. Then, this stem is divided into three regions. Region 1 ranges from 0-3, 

Region 2 ranges from 9-19 and Region 3 ranges from 25-34. These three 

regions can be found in the stem diagram (lower left corner) of Example 2. 

Also, these three regions are highlighted with red triangle in the weight matrix.  

 

Then, “section search” continues searching for stem in each of the three 

regions. The second stem found is [10, 18, 3] (circled in blue) and three 

regions of this stem are highlighted using blue triangle. These three blue 

triangles are invalid regions for stem searching because none of them fulfilled 

the minimum length of searching region, 6nt. As a result, “section search” does 

not perform stem searching in these regions. After that, “section search” carry 

on its stem searching process in Region 3 of first stem, [4, 24, 5]. Here, it 

found another stem, [26, 34, 3] (circled in green). Subsequently, no more 

stem can be found and “section search” halt at this point.  

 

 

Example 3   :   Stem searching of “section search” involving base pairing of 

                        first and last nucleotide. 
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Input sequence : GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU 

Stem found (stem_section) : [[0, 31, 3], [7, 21, 3]] 

Length ( N ) : 32 

Weight matrix  :    

 

 

Example 3 shows the process of “section search” which involved base 

pairing of starting and ending nucleotides. In step 3(a) (Refer to page 49.), 

"section search" will check on all valid stems before select the one with 

maximum stem weight value during first run. Therefore, the first stem being 

selected in Example 3 is [0, 31, 3] (circled in red) instead of 

[14,31,7]( highlighted in yellow color).  
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Since the stem found begins at the position „0‟ and ends at the position 

„31‟, this means that the next search do not involve Region 1 and Region 3. 

Hence, “section search” continue to search for stems in Region 2, which is the 

area ranges from 3 to 28 (Region bounded with red triangle in Example 3.). 

Stem found in this region is [7, 21, 3] (circled in blue). After this, 

“section search” continue with stem searching in regions bounded with blue 

triangle. No stem can be found in any of these regions, therefore “section 

search” stop at this moment. 

 

 Although “section search” and DWM are similar but the process of 

stem selection is different. DWM algorithm selects stem with the maximum 

whole weight value which is the compound weight (Refer to section 2.5.4 for 

the detail of DWM). For the proposed algorithm, it searches for potential stem 

before the calculation of stem weight instead of compound weight for DWM 

algorithm. Besides, stem length and loop size must be at least 3nt in order to be 

a potential stem. 

 

3.2.2 Cross search 

“Cross search” is searching for stem with maximum stem weight value as well. 

It differs from “section search” in the searching region. “Cross search” looks 

for stem in the unpaired regions. “Unpaired region” refers to the region which 

contained unpaired nucleotides excluding hairpin loop. Unpaired regions can 
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be determined by exploring the dot bracket representation of  

stem_section (Refer to Figure 3.7 for searching of unpaired regions for 

“cross search”.) . The minimum size of unpaired region is set to be at least 3nt.  

 

 

 

 

...((((....(((....)))..(((...))).....))))....(((....)))..... 

 

 

 

Figure 3.7: Determine unpaired regions for “cross search”. 

 

Unpaired regions are stored in a list, S . Each region is represented 

using two values which indicate the starting and ending positions of region. 

After determined the unpaired regions, “cross search” will begin the stem 

searching process. In general, the stem searching of “cross search” is 

summarized as follows: 

1. Select the first region, 0S  and last region, 1)( SlenS  from S .  

2. Determine the validity of regions selected in step 1.  

a) Ensure that the first region is not identical with the second 

region. If both regions are identical, remove the first region 

from S  and repeat step 1. 

Valid 

Valid 

OR 

Invalid due to length of 2. 

Invalid because these are loop regions. 

Invalid pair of unpaired regions because green region on the left fall in between red bracket. 

pair. 
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b) Search for those stems which enclosed the first region and store 

them into a list. Repeat this step for the second region. 

c) Check whether the list of stems for both regions are identical. 

 If both lists are identical, proceed with step 3 

 Else, change the second region to 2)( SlenS . Repeat step 2 

for the pair of newly selected regions. 

3. Search for base pairing in between both regions. 

a) If stems can be found, select the one with maximum stem 

weight value and remove both selected regions from S . Then, 

repeat step 1. 

b) Else, change the second region to 2)( SlenS . Repeat stem 2 for the 

pair of newly selected regions. Otherwise, remove the first 

region from S  and repeat step 1. 

 

“Cross search” begins by selecting the first and last regions from the list

S . For every pair of dissimilar selected regions, “cross search” will determine 

whether they are valid for stem searching by compiling a list of stems for each 

region. The list contains those stems which enclosed by the selected region. If 

both lists are not identical, the second region which is the last region in S  will 

be changed to the next region before it, 2)( SlenS .  
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Subsequent to the existence of valid regions for stem searching, “cross 

search” will search for stems in between the regions and select the one which 

possess maximum stem weight value. If the pair of valid regions include first 

and last nucleotides of input sequence, the minimum length of stem is set to be 

at least 3nt while less than 3nt otherwise. The proposed algorithm discards 

short stems which formed by base pairing involving the beginning and ending 

of input sequence because isolated base pairs destabilize the RNA structure. 

Figure 3.8 shows two examples of stem found by “cross search”. 

 

1BYJ 1EBR 

 

 

GGCGUCACACCUUCGGGUGAAGUCGCC 

((((.(.((((....))))..).)))) 

GGUGGGCGCAGCUUCGGCUGACGGUACACC 

((((..((((((....)))).))...)))) 

 

Figure 3.8: Base pairing found by “cross search”. 

 

 



 
 

64 
 

 

Example 4   :   Stem searching of “cross search”. 

Input sequence : GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU 

Stem found : stem_section - [[0, 31, 3], [7, 21, 3]]  

         stem_cross - [[4, 28, 2]] 

Dot-bracket representation of stem_section : 

(((....(((.........))).......))) 

Length ( N ) : 32 

Valid regions : [[3, 6], [22, 28]]  

Weight matrix  :    

 

 

Example 4 shows the stem searching for “cross search”. Those stems 

found in “section search” are stored in stem_section ([[0, 31, 3], 

[7, 21, 3]]). Thus, the proposed algorithm continues with “cross search” 

by determining the valid regions ([3, 6], [22, 28]) before stem 
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searching. A stem is found in these two regions, that is [4, 28, 2]. Then, 

“cross search” stop because no more valid regions are available for stem 

searching.  

 

3.2.3 Knot search 

“Knot search” which is the final stage of stem searching, will identify the 

existence of pseudoknot structures which are found to be functionally 

important in some cellular activities (Draper, Gluick & Schlax 1998). The 

proposed algorithm can identify two types of pseudoknot which are H-type 

pseudoknot and kissing hairpins. H-type pseudoknot is form by the base 

pairing between hairpin loop and unpaired region. Kissing hairpins is form by 

the base pairing between two hairpin loops.  

 

 Hence, this stage begins with identifying suitable regions for forming 

pseudoknot structures. “Knot search” requires two types of valid regions which 

are loop regions and unpaired regions. Loop regions are stored in loop while 

unpaired regions are stored in unpair. These two regions are determined by 

exploring the dot-bracket representation of stems found in previous stem 

searching processes (“section search” and “cross search”). Stems found in 

“knot search” are stored in stem_knot. Figure below illustrates how to 

determine the searching regions for “knot search”. 
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(((...((((...))))..(((......)))....))).. 

 

 

 

Figure 3.9: Determine searching regions for knot search. 

 

By observing those experimentally determined structures obtained from 

FRABASE, all pseudoknots are found in large hairpin loop regions. Therefore, 

the proposed algorithm will not consider small loop regions while searching for 

pseudoknot structures. In the proposed algorithm, the loop length for 

pseudoknot structures formation must be at least 6nt. In addition, unpaired 

regions which contain less than 5nt are excluded as well.  

 

If both loop regions, L  and unpaired regions, S  are available, “knot 

search” will search for potential pseudoknot structures as follows: 

1. Search for H-type pseudoknot. 

a) Select 0L  and 0S  from L  and S  respectively. 

b) If stems can be found, select the one with maximum stem 

weight value as the pseudoknot structure. Remove selected 

regions from L  and S . Then, return to step 1. 

c) Else, select the next region in S  and repeat previous step. 

Invalid due to length of 3 (3<6). 

Invalid due to length of 2 (2<3). 

Valid OR 
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2. Search for kissing hairpins. 

a) Select iL from L  in which 0LLi  . 

b) If stems can be found, select the one with maximum stem 

weight value as the pseudoknot structure. Remove selected 

regions from L . Then, repeat step 1. 

c) Else, return to step 2(a) by selecting the other loop region as iL . 

3. Remove 0L  from L and repeat step 1. 

 

First, “knot search” will identify potential H-type pseudoknot structures. 

Therefore, it selects first region from L and second region from S  to search for 

pseudoknot structure. When no more unpaired regions are available for 

constructing H-type pseudoknot, “knot search” will continue by selecting the 

next region in L  as the second region. Hence, it is looking for kissing hairpins. 

The proposed algorithm prefers H-type pseudoknot due to its higher occurrence 

while compared to kissing hairpin structures. Among 15 FRABASE structures 

with pseudoknots, 11 of them are found to be H-type pseudoknot. Figure 3.10 

shows two examples of pseudoknot structures found. 
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1YG4 1D0T 

  

AGUGGCGCCGACCACUUAAAAACACCGG 

(((((..[[[.))))).........]]] 

AGUGGCGCCGACCACUUAAAAACAACGG 

(((((..[[[.))))).........]]] 

Figure 3.10: Pseudoknots found by “knot search”. 

 

 

Example 5   :   Stem searching of “knot search”. 

Input sequence   :   GGGCGACGCAGAAAAGAGGUGCACUUAUCUUU 

Stem found : stem_section - [[0, 31, 3], [7, 21, 3]]  

         stem_cross - [[4, 28, 2]] 

Dot-bracket representation of stem found in previous stem searching processes :  

(((.((.(((.........))).....))))) 

Length ( N )   :   32 

Valid regions   :   loop – [[10, 18]], unpair – [[22, 26]] 

Weight matrix    : 

 



 
 

69 
 

Example 5 illustrates the stem searching of “knot search”. “Knot search” 

found the stem, [13, 25, 3] in the valid regions and stored it into 

stem_knot. This is a H-type pseudoknot because it involves base pairing 

between a loop ([10, 18]) and unpaired region ([22, 26]). In “knot search”, 

when a stem is found, the corresponding regions involved in base pairing will 

be removed from their corresponding list in which it is obtained. Subsequently 

“knot search” keeps on searching for stems if valid regions are available.  

 

Once the stem searching process has been completed, the proposed 

algorithm will revise the dot-bracket representation by adding in the 

pseudoknot structures obtained by “knot search”. Pseudoknot structures which 

involved cross pairing of previously found stems will be represented using 

square bracket („[„ and „]‟). The bottom left figure of Example 5 shows the 

final structure obtained. 



 
 

 
 

 

Example 6   :   Structure prediction of the proposed algorithm. 

 

Input sequence   :   GAAGAAGGGGAAAAAGGAAGUGAGCCUUUAAGGACUCAAAAUCUUACGCCCUUC 

Section search  :  stem_section - [[0, 53, 4],[12,28,5],[30,44,4]]  

Structure  :  ((((........(((((.......))))).((((.......)))).....)))) 

Weight matrix  :   
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Cross search  :  stem_cross - [[6, 49, 2]]  

Valid regions  :  [[4, 11],[45,49]] 

Structure  :  ((((..((....(((((.......))))).((((.......))))...)))))) 

Weight matrix  : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7
1
 



 
 

 
 

Knot search  :  stem_knot - [[20, 37, 4]]  

Valid regions  :  loop – [[17, 23],[34,40]], 

           unpair – [[8,11],[17, 23],[34,40],[45,47]] 

Structure  :  ((((..((....(((((...[[[[))))).((((]]]]...))))...)))))) 

Weight matrix  : 
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Figure 3.11: RNA structure predicted in Example 6. 
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CHAPTER 4 

 

ANALYSES 

 

This chapter discusses the performance of stem weight maximization algorithm 

presented in Chapter 3. RNA structures are obtained from three databases 

(FRABASE, RNA STRAND and CompaRNA). Performance of the proposed 

algorithm is evaluated by calculating the specificity and sensitivity values. Then, 

execution time of the proposed algorithm is recorded as well while predicting 

structures of RNA STRAND and CompaRNA.   

 

4.1 FRABASE 

This section will discuss about the performance of the proposed algorithm by 

testing on 110 sequences downloaded from FRABASE (Popenda et al. 2010). 

The length of these sequences are range between 12 – 76 nt. Structures of these 

sequences are obtained through experimental method like NMR (97 structures), 

X-ray diffraction (12 structures) and electron microscopy (1 structure).  
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4.1.1 General performance  

Table 4.1 shows the total of specificity (SP) and sensitivity (SN) obtained by the 

proposed algorithm. The table listed the total of SP and SN values fall in each 

category (Refer to Appendix B for the complete result.). Since all value obtained 

are higher than 70%, the category defined in the table starts with the range 70-

79%. The SP and SN values in percentage form are calculated using the 

formulae shown below: 

                             
100




FPTP

TP
SP

      
100




FNTP

TP
SN

 

TP is the amount of correctly predicted base pairs; FP is the amount of 

incorrectly predicted base pairs; FN is the amount of known base pairs which 

have not been correctly predicted. SP indicates the proportion of known base 

pairs that have been correctly predicted. SN value shows the ability of algorithm 

in identifying known base pairs. Higher SP and SN values indicate better 

structure prediction by having higher similarity between database structure and 

predicted structure. The structure determined through electron microscopy (2J28) 

is not shown in Table 4.1. The SP and SN values for 2J28 are 100 for both. 

 

Table 4.1: Total of SP and SN in each category (FRABASE). 

Category 

(%) 

NMR X-ray diffraction Total 

SP % SN % SP % SN % SP SN 

70 - 79 5 5.2 2 2.1 2 16.7 0 0 7 2 

80 - 89 9 9.3 2 2.1 8 66.7 1 8.4 17 3 

90 - 99 8 8.2 8 8.2 1 8.3 7 58.3 9 15 

100 75 77.3 85 87.6 1 8.3 4 33.3 76 89 

Total 97 12 109 
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Majority of sequences obtained 100% for both SP and SN values. For SP 

value, there are 76 sequences achieved 100%. This is about 70% from the total 

sequences. Meanwhile, there are 89 sequences which achieved 100% for SN 

value (82%). Among these sequences, a total of 73 are perfect prediction 

(achieved 100% for both SP and SN). This means that structure predicted from 

the proposed algorithm are exactly the same with structure downloaded from 

FRABASE. Generally, total sequences with high (≥80%) SP value is 102 (94%) 

and 107 (98%) for SN value.  

 

From Table 4.1, there are 97 structures determined through NMR 

method and 12 structures determined through X-ray diffraction method. From 

the table, it shows that the proposed algorithm performed better for structures 

determine through NMR method while compared to those structures determine 

through X-ray diffraction method. Majority of SP and SN values are fall in the 

category of 100% for NMR structure prediction.  

 

Among the 110 sequences downloaded, there are 15 sequences with 

pseudoknot structures in which 7 are determined by NMR method while those 

remaining are determined by X-ray diffraction method. Table 4.2 shows the total 

of SP and SN values in each category. In general, performance of the proposed 

algorithm in pseudoknot prediction is quite good because majority of SP and SN 

values obtained are high (≥80%). 



 
 

77 
 

Table 4.2: Total of SP and SN in each category for pseudoknot structures 

(FRABASE). 

Category 

(%) 

NMR X-ray diffraction Total 

SP SN SP SN SP SN 

70 – 79 2 0 1 0 3 0 

80 – 89 1 1 7 1 8 2 

90 – 99 1 1 0 4 1 5 

100 3 5 0 3 3 8 

Total 7 8 15 

 

4.1.2 Performance of the proposed algorithm compared to other algorithms 

Results obtained by the proposed algorithm are compared with four pseudoknot 

prediction algorithms, HotKnots, pknotsRG, DotKnot and CyloFold. HotKnots 

is a heuristics algorithm based on the idea of iteratively forming stable stems. It 

explores many alternative secondary structures and selects the one with 

minimum free energy value (Ren et al. 2005). pknotsRG is a pseudoknot 

prediction algorithm which predicts the minimum free energy RNA structure 

based on Turner energy rules (Reeder, Steffen & Giegerich 2007, Mathews et al. 

1999). DotKnot is a pseudoknot detection algorithm (Sperschneider, Datta & 

Wise 2011). CyloFold is simulating a folding process in the coarse-grained 

manner by selecting helices based on established energy rules (Bindewald, 

Kluth & Shapiro 2010).  

 

MCC (Matthew’s Correlation Coefficient) is calculated in order to know 

the performance of various algorithms. MCC is defined as below: 
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If one of the four summation inside the square root is equal to zero, then 

denominator is arbitrarily set to one. MCC value ranges from -1 to +1. Number 

which closer to +1 means better prediction and +1 indicates perfect prediction.  

 

Table 4.3 summarizes the overall performance of the proposed algorithm 

and three other algorithms while Table 4.4 shows the total of SP and SN in each 

category for all of them. Generally, performance of the proposed algorithm is 

good although its MCC score is slightly lower than HotKnots. The minimum 

value for SP is 72.22% and 71.43% for SN (Refer to Appendix B-1 for the 

minimum SP and SN values of the other algorithms.). The minimum SP value 

achieved is the highest value while compared to the other algorithms. 

 

Table 4.3: Performance of the proposed algorithm, Hotknots, pknotsRG, 

DotKnot and CyloFold (FRABASE). 

 Average value 

 SP SN MCC 

Proposed algorithm 95.60 98.18 0.9122 

HotKnots 96.86 98.70 0.9396 

pknotsRG 95.16 97.02 0.8994 

DotKnot 95.59 95.79 0.8884 

CyloFold 95.79 93.66 0.8594 
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Table 4.4: Total of SP and SN in each category for the proposed algorithm, 

Hotknots, pknotsRG, DotKnot and CyloFold (FRABASE).  

Category 

(%) 

Proposed 

algorithm 
HotKnots pknotsRG DotKnot CyloFold 

SP SN SP SN SP SN SP SN SP SN 

40-49 0 0 0 0 0 0 0 0 1 0 

50-59 0 0 0 0 3 3 0 0 0 3 

60-69 0 0 1 0 1 1 7 1 1 5 

70-79 7 2 3 1 5 2 2 10 4 7 

80-89 17 3 8 5 9 5 10 10 10 11 

90-99 9 15 14 7 14 8 11 5 16 10 

100 77 90 85 97 78 91 80 84 78 74 

Total 110 
 

 

4.2 RNA STRAND 

RNA STRAND is a database which collects known RNA secondary structures 

from various databases (Andronescu et al. 2008). 30 RNA structures with 

pseudoknot are downloaded from this database. The source of these sequences is 

Ribonuclease P Database (Brown 1999) in which structures are obtained by 

comparative sequence analysis method. The length for these structures is range 

between 229 - 457 nt.  

 

4.2.1 General performance 

Figure 4.1 shows the performance of the proposed algorithm in predicting RNA 

STRAND structures. It shows the difference between SP and SN values of the 

proposed algorithm in predicting 30 structures downloaded from the database. 

Majority of the difference between these two values are always negative. This 
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shows that SP values are higher than SN values for most of the cases. This 

indicates that the proposed algorithm obtained higher value of FN while 

compared to FP for this dataset.  

 

 

Figure 4.1: Difference of SN and SP values (SN – SP) for 30 structures 

downloaded from RNA STRAND. 

 

The highest peak in Figure 4.1 is 27.63. This value corresponds to the 

difference between SN and SP of ASE_00017. The SP value is much lower than 

SN in this case due to high FP value obtained. A large segment (75nt) of 

ASE_00017 which contained no base pairs is the main cause of the high FP 

value obtained. 
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4.2.2 Performance of the proposed algorithm compared to pknotsRG and 

         DotKnot 

The average values of SP and SN of the proposed algorithm in predicting RNA 

STRAND structures are 74.62% and 72.51% respectively. Table 4.5 shows that 

most of the SP and SN values for the proposed algorithm and DotKnot fall in the 

category 70 – 79% while 80 – 89% for pknotsRG. The average SP and SN 

values for pknotsRG (SP - 81.33%, SN - 80.03%) and DotKnot (SP - 79.28%, 

SN - 76.15%) are higher than the proposed algorithm for this dataset. 

 

Table 4.5: Total of SP and SN in each category for the proposed algorithm, 

pknotsRG and DotKnot (RNA STRAND). 

Category 

(%) 

Proposed algorithm pknotsRG DotKnot 

SP SN SP SN SP SN 

40 – 49 1 0 1 0 1 0 

50 – 59 0 0 0 0 0 1 

60 – 69 3 12 0 1 0 1 

70 – 79 19 16 7 10 14 20 

80 – 89 7 2 20 19 15 8 

90 – 99 0 0 2 0 0 0 

 

 

Although performance of the proposed algorithm is not as good as 

pknotsRG and DotKnot, but the execution time of the proposed algorithm is 

much lower than both of them. This is illustrated in Figure 4.2. The average 

execution time of the proposed algorithm is 1.80s whereas pknotsRG and 

Dotknot required 16.19s and 16.23s respectively on the whole. 
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Figure 4.2: Execution time of the proposed algorithm, pknotsRG and DotKnot 

(RNA STRAND). 

 

4.3 CompaRNA 

CompaRNA is a server which performs benchmarking of various RNA structure 

prediction algorithm (Puton et al. n.d.). The complete pseudoknot dataset of 

CompaRNA has been downloaded. This dataset contained 92 RNA structures 

with pseudoknot. The length of these structures ranges between 27 - 3174 nt.  
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4.3.1 General performance 

Figure 4.3 shows the box plot for SP and SN values achieved by the proposed 

algorithm. From the box plot, it can be observed that there are some outliers for 

SP while no outliers are found for SN. The minimum value achieved by the 

proposed algorithm is 19.57% for SP and 48.51% for SN. For maximum value, 

both SP and SN values achieved 100%.  

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.3: Box plot for SP and SN values achieved by the proposed algorithm 

(CompaRNA). 

 

For this dataset, length of sequences can be classified into 3 categories, 

that is short (             ), middle  (                ) and long  

(                ). The average performance of the proposed algorithm 

for each of these categories is summarized in Table 4.6. Table 4.6 shows that 

SN SP 
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performance of the proposed algorithm decrease significantly from short to 

middle category. This shows that the proposed algorithm perform better in the 

structure prediction of short sequences. For longer sequences which range 

between 1400-3200nt, the performance of the proposed algorithm has not much 

difference. This indicates that performance of the proposed algorithm is quite 

stable for structure prediction of longer sequences. 

 

Table 4.6: Performance of the proposed algorithm in predicting RNA sequences 

with various length. 

Category Length (nt) 
Average value 

SP SN 

Short 25 - 400 73.3 83. 2 

Middle 1400 - 1800 61.0 71.3 

Long 2700 - 3200 62.2 71.4 

 

 

 Additionally, performance of the proposed algorithm in terms of 

execution time required for structure prediction is recorded as well. Generally, 

execution time of the proposed algorithm increased exponentially with length of 

sequences. Figure 4.4 shows the execution time of the proposed algorithm while 

predicting sequences obtained from STRAND. The figure shows that execution 

time increased significantly for every increase of sequence length by 1000nt. 
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Figure 4.4: Execution time required for the structure prediction of CompaRNA 

structures. 

 

4.3.2 Performance of the proposed algorithm compared to pknotsRG 

Table 4.7 summarized the performance of the proposed algorithm and pknotsRG. 

Although total SP values which fall in the category of 100% is higher for 

pknotsRG, but performance of the proposed algorithm is better than pknotsRG 

on the whole. The average SP and SN values achieved by the proposed 

algorithm are 68.54% and 78.31% respectively. For pknotsRG, the average SP 

and SN values achieved are 59.63% and 61.04% respectively.  
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Table 4.7: Performance of the proposed algorithm and pknotsRG (CompaRNA). 

Category (%) 
Proposed algorithm  pknotsRG 

SP SN SP SN 

10 – 19 1 0 1 1 

20 – 29 1 0 6 3 

30 – 39 3 0 7 6 

40 – 49 5 1 28 16 

50 – 59 10 1 14 28 

60 – 69 31 16 6 7 

70 – 79 22 37 3 13 

80 – 89 10 24 12 8 

90 – 99 2 9 3 8 

100 7 4 12 2 

 

4.4 Comparison among three databases 

Here, discussion will focus in the comparison of  performance of the proposed 

algorithm while predicting structures downloaded from three different databases. 

Since the length of sequences obtained from CompaRNA is ranged between 27 -

3174nt while the maximum length of sequences obtained from FRABASE and 

RNA STRAND are 76nt and 457nt respectively, the range of sequence length 

included in this section would be 12 - 457nt. 

 

   From Figure 4.5 and Figure 4.6, performance of the proposed algorithm 

is the best while predicting FRABASE structures. For SP values, performance of 

the proposed algorithm in predicting CompaRNA structures is not consistent due 

to the bigger fluctuation of SP values achieved. Conversely, majority of SP 

values achieved for predicting RNA STRAND structures are more consistent by 

ranging between 68.5 - 87.5%.  
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 Generally, SN values achieved for structure prediction are more 

consistent while compared to SP values. SN values achieved are ranged within 

60-100 with two exceptional cases which are 48.51% and 53.7%. On the whole, 

performance of the proposed algorithm in ascending order is as follow: 

CompaRNA (SP-68.54%, SN-78.31%), RNA STRAND (SP-74.62%, SN-

72.51%) and FRABASE (SP-95.60%, SN-98.18%).  

 

Figure 4.5: SP values achieved for predicting structures obtained from RNA 

STRAND, CompaRNA and FRABASE. 
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Figure 4.6: SN values achieved for predicting structures obtained from RNA 

STRAND, CompaRNA and FRABASE.  



 
 

CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

During the development of the pseudoknot prediction algorithm, various 

problems have been encountered. In this chapter, some unsolved problems are 

outlined and discussed. The main problem of the proposed algorithm is having 

extra base pairs. These extra base pairs generally occurred at the starting 

position of stem and pseudoknot structure.  Besides, contributions and future 

works are presented as well. 

 

5.1 Superfluous base pair 

Basically, there are three problems found in structure prediction by the 

proposed algorithm. First, structure predicted will contain extra base pairs 

while compared to FRABASE structure. These extra base pairs are in fact valid 

pairing but they are found to be not paired in the database. Some examples of 

structure which contained extra base pairs are shown in Figure 5.1. 
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Figure 5.1: Extra base pairing found in structure predicted by the proposed 

algorithm. 

 

 Besides, pseudoknots found in FRABASE always form by a base 

pairing only. In the proposed algorithm, “knot search” does not consider stem 

with length smaller than 3nt. As a result, pseudoknots predicted by the 

proposed algorithm always contained additional base pairs and it might not 

form within the same regions as in FRABASE structure. This is shown in 

Figure 5.2. 

FRABASE structure Predicted structure 
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Figure 5.2: Extra base pairing found in pseudoknot predicted by the proposed 

algorithm. 
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 Furthermore, the proposed algorithm favors stem with maximum stem 

weight value. Thus, it might produce structure which is different from 

FRABASE structure. This case is observable while FRABASE structure is 

having lots of base pairs with stem length less than 3nt. Figure 5.3 shows that 

RNA structure might contain a few stems which is short in length whereas the 

proposed algorithm does not prefer these stems. Therefore, structure predicted 

is diverse from FRABASE structure. Table 5.1 shows the total occurrence of 

problems discussed in this section. 

 

Figure 5.3: Problems of stem weight maximization implemented by the 

proposed algorithm. 
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Table 5.1:  Total occurrence of various problems. 

 

 

 

 

 

 

 

5.2 Contributions 

This research has developed an RNA pseudoknot prediction algorithm by 

extending the DWM algorithm (Liu et al. 2006). Stem selection criteria of the 

proposed algorithm is different from DWM algorithm. The proposed algorithm 

prefers stem with maximum stem weight value. In addition, stems which does 

not fulfilled those criteria discussed in Section 3.2.1 are filtered out before the 

calculation of stem weight.  

 

Moreover, the proposed algorithm can predict two types of pseudoknot 

structures that is H-type pseudoknot and kissing hairpins. Currently, majority 

of pseudoknot prediction algorithms developed are target on the common type 

of pseudoknot that is H-type pseudoknot whereas the proposed algorithm can 

predict an additional type of pseudoknot, kissing hairpins.  

 

Problems Total 

Extra base pairing 20 

Pseudoknot 7 

Stem selection 6 

Short stem 2 
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 In Chapter 4, the proposed algorithm is shown to produce reasonably 

accurate structures. Comparison of structures predicted by the proposed 

algorithm with FRABASE structures produced high SP and SN values. This 

shows that structures predicted by the proposed algorithm have high similarity 

with experimentally determined RNA structures.  

 

 In addition, the proposed algorithm can handle long sequences and 

perform structure prediction in a short time frame. Hitherto, the maximum 

length of RNA sequences that has been tested on the proposed algorithm is 

3174nt. For sequences up to 1500nt, it requires about 5 minutes for structure 

prediction. From Figure 4.2, it shows that the execution time of the proposed 

algorithm is much reduced while compared to pknotsRG and DotKnot.  

 

 In this research, performance of the proposed algorithm is evaluated by 

structure comparison between predicted structure and database structure. 

FRABASE is one of the databases used for evaluating the performance of the 

proposed algorithm. This database contains only RNA structures determined 

through experimental like NMR, X-ray diffraction and electron microscopy. 

Therefore, comparison with structures obtained from FRABASE provides a 

reliable indication on how well is the performance of the proposed algorithm.
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5.3 Future work 

Since the proposed algorithm always contain extra base pairing in pseudoknot, 

therefore implementation of post processing for removing these extra base 

pairs might be considered as a way to overcome this problem.  

 

 Besides, the proposed algorithm can be modified for the prediction of 

triple helix interaction which is another type of pseudoknot as well. Triple 

helix interaction is formed when base pairing occurs in between the loop 

regions of H-type pseudoknot. Figure below shows the structure of triple helix 

interaction. 

 

 

 

 

 

 

 

Figure 5.4: Triple helix interaction. 
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APPENDIX A 

 

STEM WEIGHT MAXIMIZATION ALGORITHM 

 

import sys 

from math import sqrt 

from numpy import * 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

#                       FUNCTIONS                        # 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

 

def fill_wMatrix ():     

    for i in range (N): 

        for j in range (N-i): 

            wMatrix[i][i+j] = pairing[seq[i]+seq[i+j]]             

    return 

 

 

def save (): 

    outputFile.write(seq_ID) 

    predicted = '' 

    print >> outputFile, "\tLength = ", len(seq) 

    for i in range (len(pre_str)): 

        predicted += pre_str[i] 

    print >> outputFile, "Pre : ",predicted 

    print >> outputFile, "\n" 

    print >> outputFile, "-"*73 

    return 

 

 

def bracket ( stem, bracket_type ): 

    for i in range(len(stem)): 

        for j in range(stem[i][2]): 

            if bracket_type == 1: 

                pre_str[stem[i][0]+j] = '(' 

                pre_str[stem[i][1]-j] = ')' 

            else: 

                pre_str[stem[i][0]+j] = '[' 

                pre_str[stem[i][1]-j] = ']' 

    return 

 

 

def unpair_region ( loc ): 

    len_UR = 1 

    while ( loc+1 < N and pre_str[loc+1] == '.' ): 

        len_UR += 1 

        loc    += 1     

    return len_UR 

 

 

def searching_region ():     

    loop = []; unpair = []; loc = [] 

    if pre_str[0] == '.': 

        loc.append(0)         

    for i in range(N): 

        if i!=0: 

            if ( pre_str[i] == '.' ): 

                if pre_str[i-1] == '(' or pre_str[i-1] == ')' or pre_str[i-1] == '[' or 

pre_str[i-1] == ']': 

                    loc.append(i)                     

    for j in range(len(loc)): 

        len_UR = unpair_region ( loc[j] ) 

        if len_UR >= 3: 

            if pre_str[loc[j]-1] == '(' and pre_str[loc[j]+len_UR] == ')': 

                if (loc[j]+len_UR-1) - (loc[j]-1) > 5: 

                    loop.append( [loc[j], loc[j]+len_UR-1] ) 

            else: 

                unpair.append( [loc[j], loc[j]+len_UR-1] ) 

 

    return loop, unpair   
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def pairing_CS ( search_space, row, col, min_len, stem, list_wt, reg ): 

    count = 0 

    if row[1]-row[0] >= col[1]-col[0]: 

        SR = col[1]-col[0] 

    else: 

        SR = row[1]-row[0] 

    if reg == 1: 

        cond = row[1]-SR 

    else: 

        cond = col[0]+SR         

    for k in range(len(search_space)): 

        stem_len = 0; stem_wt = 0 

        if reg == 1: 

            if search_space[k][0] > cond: 

                count += 1 

        else: 

            if search_space[k][1] < cond: 

                count += 1 

        for l in range(SR+1-count): 

            if ( wMatrix[search_space[k][0]+l][search_space[k][1]-l] >= 3 ): 

                stem_len += 1 

                stem_wt  += wMatrix[search_space[k][0]+l][search_space[k][1]-l] 

            else: 

                if stem_len >= min_len: 

                    stem.append( [(search_space[k][0]+l)-stem_len, (search_space[k][1]-

l)+stem_len, stem_len] ) 

                    list_wt.append( stem_wt ) 

                stem_len = 0; stem_wt = 0 

        if (  (search_space[k][0]+l) == row[1] or (search_space[k][1]-l) == col[0] ): 

            if stem_len >= min_len: 

                stem.append( [(search_space[k][0]+l)-(stem_len-1), (search_space[k][1]-

l)+(stem_len-1), stem_len] )             

                list_wt.append( stem_wt ) 

            stem_len = 0; stem_wt = 0 

    return stem, list_wt 

 

 

def potential_stem ( row, col, min_len, stem, list_wt ): 

    stem_len = 0 

    stem_wt  = 0 

    for i in range(((col-row)/2)+2): 

        if wMatrix[row+i][col-i] >= 3: 

            stem_len += 1 

            stem_wt  += wMatrix[row+i][col-i] 

        else: 

            if stem_len >= min_len: 

                loop_size = ((col-i) - (row+i))+1 

                if stem_len == min_len: 

                    if loop_size >= 3: 

                        stem.append([row+i-stem_len, col-i+stem_len, stem_len]) 

                        list_wt.append(stem_wt) 

                else: 

                    if loop_size >= 3: 

                        stem.append([row+i-stem_len, col-i+stem_len, stem_len]) 

                        list_wt.append(stem_wt) 

                    else: 

                        if loop_size > 0: 

                            stem.append([row+i-stem_len, col-i+stem_len, stem_len-1]) 

                            list_wt.append(stem_wt-wMatrix[row+i-1][col-i+1]) 

                        else: 

                            if stem_len > 4: 

                                stem.append([row+i-stem_len, col-i+stem_len, stem_len-2]) 

                                list_wt.append(stem_wt-wMatrix[row+i-1][col-i+1]-

wMatrix[row+i-2][col-i+2]) 

            stem_len = 0 

            stem_wt  = 0 

    return stem, list_wt 

 

 

def diagonal_search ( LB, UB, min_len ):     

    stem    = [] 

    list_wt = [] 

    stem, list_wt = potential_stem( LB, UB, min_len, stem, list_wt ) 

    for i in range(UB-LB-4): 

        stem, list_wt = potential_stem( LB, UB-i-1, min_len, stem, list_wt ) 

        stem, list_wt = potential_stem( LB+i+1, UB, min_len, stem, list_wt ) 

    return stem, list_wt 

 

 

def cross_pairing ( reg1, reg2, min_len ): 

    stem  = []; list_wt  = [] 

    stem1 = []; list_wt1 = [] 

    stem2 = []; list_wt2 = [] 

    potential_stem = []; potential_len = [] 

    search_space1 = []; search_space2 = [] 
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    if reg1[0] < reg2[0]: 

        row = reg1 

        col = reg2 

    else: 

        row = reg2 

        col = reg1 

    for i in range( row[1]-row[0]-1 ): 

        search_space1.append([row[0]+i,col[1]]) 

    for j in range ( col[1]-col[0]-1 ): 

        search_space2.append([row[0],col[1]-j]) 

    search_space2.remove(search_space2[0]) 

    stem1, list_wt1 = pairing_CS( search_space1, row, col, min_len, stem1, list_wt1, 1 ) 

    stem2, list_wt2 = pairing_CS( search_space2, row, col, min_len, stem2, list_wt2, 2 ) 

    stem            = stem1+stem2 

    list_wt         = list_wt1+list_wt2     

    if stem == []: 

        return 

    else: 

        for k in range( len(list_wt) ): 

            if list_wt[k] == max(list_wt): 

                potential_stem.append(stem[k]) 

                potential_len.append(stem[k][2]) 

        selected_stem = potential_stem[potential_len.index(min(potential_len))] 

        if ( min_len == 1 ): 

            stem_cross.append(selected_stem) 

        else: 

            stem_knot.append(selected_stem) 

    return selected_stem 

             

 

def section_search ( LB, UB ): 

    selected_stem = []; potential = []; stem_len = [] 

    if UB-LB < 6: 

        return    

    stem, list_wt = diagonal_search( LB, UB, 3 ) 

    if stem == []: 

        return 

    priority = 0 

    for i in stem: 

        if i[0] == 0 and i[1] == N-1: 

            stem_section.append(i) 

            selected_stem = i 

            priority += 1 

    if priority == 0: 

        for j in range (len(list_wt)): 

            if list_wt[j] == max(list_wt): 

                potential.append(stem[j]) 

                stem_len.append(stem[j][2]) 

        if len(potential) == 1: 

            stem_section.append(potential[0]) 

        else: 

            stem_section.append(potential[stem_len.index(min(stem_len))]) 

        selected_stem = stem_section[len(stem_section)-1] 

    if selected_stem != []: 

        d, e, f = selected_stem   

        section_search( LB, d-1 ) 

        section_search( d+f, e-f ) 

        section_search( e+1, UB ) 

    return 

     

 

def cross_search ():     

    loop, unpair = searching_region() 

    count    = len(unpair) 

    while len(unpair) > 1: 

        reg1 = []; reg2 = [] 

        region1 = unpair[0] 

        region2 = unpair[count-1]         

        if region1 != region2: 

            for i in stem_section: 

                if region1[0] < i[1] and region1[0] > i[0]: 

                    reg1.append(i) 

                if region2[0] < i[1] and region2[0] > i[0]: 

                    reg2.append(i) 

            if reg1 == reg2: 

                if (region1[0] == 0 or region1[0] == 1) and (region2[1] == N-2 or region2[1] 

== N-1): 

                    stem = cross_pairing( region1, region2, 3 ) 

                else: 

                    stem = cross_pairing( region1, region2, 1 ) 

                if stem != None: 

                    unpair.remove(region1) 

                    unpair.remove(region2) 

                    count = len(unpair) 

                else: 

                    count -= 1 

            else: 

                count -= 1 



 
 

104 
 

        else: 

            unpair.remove(region1) 

            count = len(unpair) 

    return 

     

 

def knot_search (): 

    loop, unpair = searching_region() 

    count1 = 0; count2 = 0 

    for i in unpair: 

        if (i[1]-i[0])+1 < 5: 

            unpair.remove(i) 

    if ( len(loop) > 0 and len(unpair) > 0 ): 

        region1 = loop[0] 

        region2 = unpair[0] 

    else: 

        return 

    while ( len(loop) > 0 and len(unpair) > 0 ): 

        stem    = cross_pairing( region1, region2, 3 ) 

        if stem != None: 

            loop.remove(region1) 

            try: 

                value = loop.index(region2) 

            except ValueError: 

                value = -1 

            if value >= 0: 

                loop.remove(region2) 

            else: 

                unpair.remove(region2) 

            if ( len(loop) > 0 and len(unpair) > 0 ): 

                region1 = loop[0] 

                region2 = unpair[0] 

            count1  = 0 

            count2  = 0 

        else: 

            if ( count1+1 < len(loop) ): 

                region1 = loop[count1+1] 

                region2 = unpair[count2] 

                count1 += 1 

            else: 

                if ( count2+1 < len(loop) ): 

                    region1 = loop[count2] 

                    region2 = loop[count2+1] 

                    count2 += 1 

                else: 

                    loop.remove(loop[0]) 

                    if ( len(loop) > 0 and len(unpair) > 0 ): 

                        region1 = loop[0] 

                        region2 = unpair[0] 

                    count1 = 0 

                    count2 = 0 

 

    return 

 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

#                          MAIN                          # 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

 

wGC = 11; wAU = 8; wGU = 3 

pairing = {'AA':0,   'AC':0,   'AU':wAU, 'AG':0, 

           'CA':0,   'CC':0,   'CU':0,   'CG':wGC, 

           'GA':0,   'GC':wGC, 'GU':wGU, 'GG':0, 

           'UA':wAU, 'UC':0,   'UU':0,   'UG':wGU} 

inputFile  = open('input.txt','r') 

allData    = inputFile.readlines() 

inputFile.close() 

outputFile = open('bracket.txt','w') 

count_file = 0; stem_section = []; stem_cross = []; stem_knot = [] 

print 'Total sequence : ',len(allData), '\n' 

for data in allData: 

    stem_section  = []; stem_cross = []; stem_knot = [] 

    seq_ID        = data.split()[0] 

    seq           = (data.split()[1]).upper() 

    N             = len(seq) 

    pre_str       = ['.']*N 

    wMatrix       = (array([0]*(N**2))).reshape(N,N)     

    count_file   += 1 

    print 'Seq ', str(count_file).ljust(4), ': ', seq_ID 

    fill_wMatrix() 

    section_search(0,N-1) 

    bracket( stem_section, 1 ) 

    cross_search() 

    bracket( stem_cross, 1 ) 

    knot_search() 

    bracket( stem_knot, 2 ) 

    save() 

outputFile.close() 
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APPENDIX B-1 

 

Result for FRABASE dataset 

 

ID 
Length 

(nt) 

Proposed 

algorithm 
Hotknots pknotsRG DotKnot Cylofold 

SP SN SP SN SP SP SP SN SP SN 

17RA 21 100 75 100 100 100 100 100 75 100 75 

1A60 44 89.29 96.15 92.86 100 89.29 89.29 89.29 96.15 89.29 96.15 

1A9L 38 100 100 100 100 100 100 100 100 100 100 

1AFX 12 100 100 100 100 100 100 100 100 100 100 

1AJF 18 100 100 100 100 100 100 100 100 100 100 

1AJU 30 100 100 100 100 100 100 100 100 100 100 

1AQO 29 100 91.67 100 91.67 100 100 100 100 100 91.67 

1ARJ 29 100 100 100 100 100 100 100 100 100 100 

1ATO 19 100 100 100 100 100 100 100 100 100 100 

1ATV 17 100 100 100 100 100 100 100 100 100 100 

1ATW 15 100 100 100 100 100 100 100 100 100 100 

1BN0 20 100 100 100 100 100 100 100 100 100 100 

1BVJ 23 100 100 100 100 100 100 100 100 100 62.5 

1BYJ 27 100 100 100 100 100 100 100 88.89 100 88.89 

1CQ5 43 84.62 100 91.67 100 80 80 84.62 100 80 72.73 

1D0T 21 100 100 100 100 100 100 100 75 100 75 

1DDY 35 72.22 81.25 72.22 81.25 72.22 72.22 68.75 68.75 72.22 81.25 

1E95 36 100 100 100 100 100 100 100 100 100 100 

1EBQ 29 100 100 100 100 100 100 100 100 100 100 

1EBR 30 100 100 100 100 81.82 81.82 100 80 81.82 90 

1EHZ 76 85.42 97.62 95.24 95.24 95.24 95.24 69.57 76.2 95.24 95.24 

1EOR 22 100 100 100 100 100 100 100 100 100 100 

1ESY 19 100 100 85.71 100 100 100 85.71 100 100 66.67 

1F1T 38 100 100 100 100 100 100 100 84.62 100 84.62 

1F7F 27 77.27 94.44 81.82 100 81.82 81.82 81.82 100 81.82 100 

1FEQ 17 100 100 100 100 100 100 100 100 100 100 

1FQZ 27 85.71 100 100 100 42.86 42.86 100 100 42.86 50 

1FYO 27 100 100 100 100 100 100 100 88.89 100 88.89 

1HLX 20 87.5 100 87.5 100 87.5 87.5 87.5 100 87.5 100 

1HWQ 30 90 100 90 100 90 90 90 100 90 100 

1I3X 19 100 100 100 100 100 100 100 100 100 100 

1IE1 22 100 100 100 100 100 100 100 100 100 100 

1J4Y 17 85.71 100 85.71 100 85.71 85.71 85.71 100 85.71 100 

1JUR 22 100 100 100 100 100 100 100 100 100 100 

1JTW 16 100 100 100 100 100 100 100 80 100 100 

1JTJ 23 100 100 100 100 100 100 100 100 100 100 

1JP0 21 100 71.43 100 100 100 100 100 71.43 100 71.43 

1K4A 14 100 100 100 100 100 100 100 100 100 100 

1K4B 14 100 100 100 100 100 100 100 100 100 100 

1K5I 23 100 100 100 100 100 100 100 100 100 100 

1K6G 22 100 100 100 100 100 100 100 100 100 100 

1K6H 22 100 100 100 100 100 100 100 100 100 100 

1KAJ 32 72.73 100 72.73 100 72.73 72.73 100 100 72.73 100 

1KKS 24 100 100 100 100 100 100 68.75 91.67 100 100 

1KP7 30 100 100 100 100 80 80 100 77.78 80 88.89 

1L1W 29 100 100 100 100 100 100 100 100 100 100 

1L2X 28 88.89 100 88.89 100 88.89 88.89 88.89 100 88.89 100 

1LC6 24 100 100 100 100 100 100 100 100 100 100 

1LDZ 30 90 100 90 100 90 90 90 100 90 100 

1LUU 17 100 100 100 100 100 100 100 100 100 100 

1LVJ 31 100 100 100 100 100 100 100 100 100 100 

1MFJ 20 100 100 100 100 100 100 100 100 100 100 

1MFK 23 100 100 100 100 94.44 94.44 100 100 94.44 94.44 

1MNX 42 85.71 100 100 100 100 100 100 100 100 100 

1MT4 24 100 100 100 100 100 100 100 100 100 100 

1N8X 36 100 100 100 100 100 100 100 100 100 100 

1NC0 24 100 100 100 100 100 100 100 100 100 100 

1NEM 23 100 100 100 100 100 100 100 100 100 100 

1NZ1 24 100 100 100 100 100 100 100 100 100 100 

1OQ0 15 100 100 100 100 100 100 100 100 100 83.33 

1OW9 23 100 100 100 100 100 100 100 100 100 100 

1P5N 34 72.73 100 80 100 80 80 66.67 75 80 100 

1PJY 22 100 100 100 100 100 100 100 100 100 100 

1Q8N 38 100 100 100 100 100 100 100 84.62 100 84.62 

1QD3 29 100 100 100 100 100 100 100 100 100 100 

1R2P 34 89.29 96.15 92.86 100 92.86 92.86 92.86 100 92.86 100 
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ID 
Length 

(nt) 

Proposed 

algorithm 
Hotknots pknotsRG DotKnot Cylofold 

SP SN SP SN SP SP SN SP SN SP 

1R7W 34 100 100 100 100 100 100 100 100 100 100 

1RAW 37 100 100 75 75 75 75 75 75 75 75 

1RFR 30 100 100 100 100 100 100 100 100 100 100 

1RNK 34 91.67 100 91.67 100 91.67 91.67 91.67 100 91.67 100 

1S34 23 100 100 100 100 100 100 100 100 100 66.67 

1SY4 24 100 100 100 100 100 100 100 100 100 100 

1TJZ 22 100 100 100 100 100 100 100 100 100 100 

1TXS 38 100 100 100 100 100 100 100 100 100 100 

1U3K 38 100 100 100 100 100 100 100 100 100 100 

1XHP 32 100 100 100 100 100 100 100 100 66.67 54.55 

1XSG 27 100 100 100 100 100 100 100 100 100 100 

1XSH 27 86.36 95 90.91 100 90.91 100 90.91 100 90.91 100 

1YG4 28 100 100 100 100 100 100 100 100 100 100 

1YNC 31 95.45 95.45 100 100 100 100 95.45 95.45 100 100 

1YNG 31 95.45 95.45 100 100 100 100 95.45 95.45 93.33 63.64 

1YSV 27 100 100 100 100 100 100 100 100 100 100 

1Z2J 45 100 100 100 100 100 100 100 100 100 100 

1ZC5 41 100 100 100 100 100 100 100 100 100 100 

2A43 26 87.5 100 87.5 100 87.5 100 87.5 100 87.5 100 

2A9L 38 100 100 100 100 100 100 100 100 100 100 

2AHT 27 100 100 100 100 100 100 100 100 100 100 

2AP0 28 100 100 100 100 100 100 100 100 100 100 

2F88 34 92.86 100 92.86 100 92.86 100 92.86 100 92.86 100 

2HNS 22 100 100 100 100 100 100 100 100 100 100 

2JUK 22 100 100 100 100 100 100 100 100 100 100 

2JXV 33 100 100 100 100 100 100 100 100 100 100 

2K5Z 29 100 81.82 100 81.82 100 100 100 81.82 100 81.82 

2K63 29 75 100 100 100 100 100 100 100 100 100 

2KE6 48 94.74 100 94.74 100 92.11 97.22 94.74 100 93.75 83.33 

2KEZ 24 100 100 100 100 100 100 100 100 100 100 

2KFC 37 75 83.33 62.5 83.33 75 83.33 62.5 83.33 100 55.56 

2KUW 48 100 100 100 100 97.37 97.37 100 100 100 84.21 

2KUV 48 100 100 100 100 97.37 97.37 100 100 100 84.21 

2KX8 42 96.88 96.88 100 100 100 100 100 100 100 100 

2L2J 42 100 100 100 100 100 100 100 100 100 100 

3EGZ 64 83.33 97.22 100 88.89 97.06 91.67 93.75 83.33 97.06 91.67 

437D 28 88.89 100 88.89 100 88.89 100 88.89 100 88.89 100 

1D6K 37 81.82 100 100 100 81.82 100 100 100 100 100 

1I6U 37 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 

1QA6 58 75 90 93.33 93.33 76.67 76.67 76.67 76.67 91.67 73.33 

2J28 74 100 100 100 96.3 100 100 100 100 97.5 72.22 

1TN2 76 85.42 97.62 95.24 95.24 54.76 54.76 69.57 76.19 78 92.86 

1YFG 75 89.58 97.73 86.36 86.36 86.36 86.36 86.36 86.36 97.62 93.18 

4TNA 76 85.42 97.62 95.24 95.24 54.76 54.76 69.57 76.19 95.24 95.24 

Average 31 95.60 98.18 96.86 98.70 95.16 97.02 95.59 95.59 95.79 93.66 

Max. 76 100 100 100 100 100 100 100 100 100 100 

Min. 12 72.22 71.43 62.5 75 54.76 54.76 62.5 68.75 42.86 50.00 

 



 
 

APPENDIX B-2 

 

Result for RNA STRAND dataset 

 

ID 
Length 

(nt) 

Proposed algorithm pknotsRG DotKnot 

SP SN 
Execution 

time (s) 
SP SN 

Execution 

time (s) 
SP SN 

Execution 

time (s) 

ASE_00001 262 76.92 80 0.53 78.48 82.67 12.561 71.79 74.67 2.49 

ASE_00002 267 71.52 77.4 0.56 76.97 80.14 11.11 75.97 80.14 2.64 

ASE_00003 294 70 65.88 0.81 83.13 81.17 8.052 79.07 80 12.05 

ASE_00004 310 74.44 69.01 0.9 82.18 85.57 14.652 82.45 79.9 24.49 

ASE_00005 341 79.21 68.38 1.684 84.84 77.78 17.085 89.25 70.94 24.33 

ASE_00006 309 69.1 66.13 0.94 80.1 84.41 12.482 79.78 76.34 20.85 

ASE_00007 346 80.41 70.91 1.75 85.44 80 14.854 84.85 76.36 23.46 

ASE_00008 344 81.73 77.27 1.81 85.86 77.27 15.322 86.06 81.36 20.55 

ASE_00009 229 75.76 74.63 0.37 93.65 88.06 4.948 88.64 87.31 2.53 

ASE_00011 294 74.39 71.76 0.87 78.16 80 9.02 75.88 75.88 12.8 

ASE_00012 385 81.28 77.64 1.78 85.34 80.49 20.829 80.93 77.64 28.5 

ASE_00013 294 70.51 64.71 0.81 81.82 84.71 8.442 77.06 77.06 10.24 

ASE_00014 330 82.86 82.08 1.44 80.09 81.6 13.715 80.66 80.66 52.76 

ASE_00015 294 77.27 70 1.03 73.33 77.65 9.066 79.07 80 11.37 

ASE_00017 320 41.12 68.75 0.94 48.42 71.88 7.429 42.59 53.91 7.5 

ASE_00018 402 87.5 78.36 2.65 92.75 85.82 23.215 85.83 81.34 44.04 

ASE_00019 294 71.6 68.24 1.01 8146 85.29 6.399 79.88 77.06 11.14 

ASE_00020 385 78.02 71.83 1.81 84.27 82.94 18.504 83.61 78.97 8.42 

ASE_00021 457 78.93 69.06 3.31 84.35 77.5 33.416 82.39 73.13 17.15 

ASE_00022 408 71.67 69.35 3.06 78.99 75.81 22.632 77.59 72.58 13.07 

ASE_00023 411 76.89 79.92 3.21 84.25 84.25 24.09 80.88 86.61 16.92 

ASE_00026 346 76.29 67.27 1.72 81.98 82.73 12.04 80.09 78.64 6.15 

ASE_00028 412 68.5 69.05 2.22 82.66 81.35 22.282 78.57 74.21 13.884 

ASE_00029 408 72.01 79.1 3.12 84.65 79.1 22.201 76.03 75.41 10.52 

ASE_00030 414 82.54 71.72 2.56 88.89 82.76 29.009 87.7 76.21 22.98 

ASE_00031 417 70.68 74.6 3.84 82.94 82.94 25.19 75.82 73.41 21.77 

ASE_00032 401 68.94 77.12 3.06 80.63 75.85 25.17 74.77 67.8 12.45 

ASE_00033 361 80.73 72.73 2.21 85.44 72.73 17.74 79.73 73.14 14.02 

1
0
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ID 
Length 

(nt) 

Proposed algorithm pknotsRG DotKnot 

SP SN 
Execution 

time (s) 
SP SN 

Execution 

time (s) 
SP SN 

Execution 

time (s) 

ASE_00035 376 74.15 74.15 2.28 71.1 65.68 13.984 80.84 73.31 7.61 

ASE_00037 345 73.53 68.18 1.84 76.92 72.73 10.41 80.73 70.45 10.25 

Average 349 74.62 72.51 1.80 81.33 80.03 16.19 79.28 76.15 16.23 

Max. 457 87.50 82.08 3.84 93.65 88.06 33.42 89.25 87.31 52.76 

Min. 229 41.12 64.71 0.37 48.42 65.68 4.95 42.59 53.91 2.49 
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APPENDIX B-3 

 

Result for CompaRNA dataset 

 

ID Length (nt) SP SN Execution time (s) 

2KFC_0_A 36 75 93.75 0 
2RP0_23_A 27 77.78 100 0 

2WDJ_0_A 2809 62.77 70.03 2777 

2WH3_0_W 76 35.19 86.36 0.06 
2WH4_0_A 2889 65.41 73.78 2739.63 

2WWL_0_A 1530 67.95 73.43 248.26 

2WWQ_0_B 2904 63.92 69.28 2475.8 
2X9R_0_V 75 66.67 85.71 0.06 

2X9T_0_A 1509 55.85 68.85 314.47 

2X9U_0_A 2901 67.17 76.19 2852 
2ZM5_0_C 74 70.37 86.36 0.06 

2ZM5_0_D 69 59.57 77.78 0.06 

2ZM6_0_A 1511 58.45 65.1 311 
2ZUF_0_B 76 86 97.73 0.06 

2ZZN_0_C 71 91.3 95.45 0.06 

3A2K_0_D 77 85 77.27 0.03 
3A3A_0_A 86 100 93.33 0.09 

3ADC_0_C 88 100 93.33 0.06 

3ADC_0_D 92 100 93.94 0.09 
3ADD_0_D 88 100 93.94 0.09 

3CXC_0_0 2754 66.34 73.71 2046.04 

3DS7_0_A 67 85.42 89.13 0.03 
3E1A_0_A 75 77.08 97.37 0.06 

3FIC_0_Y 68 76.19 80 0.03 

3FIH_0_Y 76 85.42 97.62 0.06 
3FIN_0_A 2855 61.95 70.31 2714.75 

3FO4_0_A 63 84.09 88.1 0.03 

3FU2_0_B 31 100 100 0 
3FU2_0_C 31 100 100 0 

3FWO_0_A 2770 48.04 62.96 2244.88 

3G8S_0_S 138 61.7 80.56 0.19 
3G8T_0_P 140 61.32 83.33 0.16 

3G8T_0_R 141 65.09 84.15 0.16 

3G9C_0_P 140 62.5 81.08 0.19 
3G9C_0_Q 141 70.21 82.5 0.16 

3G9C_0_R 140 60.64 81.43 0.16 
3G78_0_A 389 72.97 68.64 2.12 

3G96_0_S 139 60.64 81.43 0.22 

3GCA_0_A 33 62.5 71.43 0 
3GER_0_A 67 85.42 89.13 0.03 

3GES_0_A 67 85.42 89.13 0.03 

3GOG_0_A 65 84.78 88.64 0.06 
3GX2_0_A 95 80 85.71 0.09 

3GX6_0_A 94 76.67 88.46 0.09 

3GX7_0_A 94 78.33 83.93 0.09 
3HHN_0_E 137 78.75 70 0.19 

3HL2_0_E 82 68 73.91 0.06 

3HUW_0_A 1500 53.56 64.74 307.48 
3HUX_0_A 2768 64.79 71.73 2374.39 

3HUZ_0_A 2780 54.91 64.6 2437.1 

3I1M_0_A 1534 65.28 71.02 245.03 
3I1P_0_A 2844 61.34 66.71 2231.61 

3I1R_0_A 2855 65.31 70.86 2277.6 

3I8F_0_A 2909 72.09 76.05 2809.19 
3I8G_0_A 1516 71.89 77.34 311.38 

3I8H_0_A 1515 71.27 77.02 309.6 

3I8I_0_A 2913 68.97 72.24 2852.43 
3I9B_0_A 1517 71.78 77.23 313.06 

3I9C_0_A 2885 71.87 76.04 2749.54 
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ID Length (nt) SP SN Execution time (s) 

3I9D_0_A 1532 68.99 74.58 316.56 

3I9E_0_A 2886 73.02 76.48 2770.08 

3I55_0_0 2755 61.8 68.98 1651.73 

3I56_0_0 2754 65.11 74.68 1639.47 
3IGI_0_A 387 79.52 70.76 1.75 

3IIN_0_B 198 47.12 48.51 0.34 

3IRW_0_R 92 65.38 68 0.09 
3IVK_0_C 128 83.33 89.29 0.16 

3IVN_0_A 69 77.27 73.91 0.06 

3IWN_0_A 94 70.69 70.69 0.06 
3JYV_0_7 70 52.17 70.59 0.03 

3JYV_0_A 1759 46.26 73.35 548.37 

3JYX_0_5 3174 32.53 73.38 5050.45 
3K1V_0_A 29 100 100 0.03 

3KIQ_0_w 77 19.57 64.29 0.06 

3KIT_0_A 2849 66.82 73.49 2623.55 
3KNI_0_A 2804 53.33 64.83 2486.86 

3KNJ_0_A 1502 42.95 64.99 300.52 

3KNJ_0_W 75 34.09 53.7 0.06 
3KNJ_0_Y 76 28.26 76.47 0.03 

3KNK_0_A 2803 49.94 66.9 2477.28 

3KNL_0_A 1500 56.85 67.13 321.27 
3KNM_0_A 2789 66.67 76.46 2421.37 

3KNN_0_A 1497 53.63 68.21 289.97 

3KNO_0_A 2776 64.62 74.69 2395.73 
3L0U_0_A 73 70.37 86.36 0.06 

3L3C_0_P 136 69.05 78.38 0.16 

3L3C_0_Q 139 72.34 82.93 0.22 
3L3C_0_R 140 72.34 82.93 0.19 

3L3C_0_S 139 55.43 79.69 0.19 

3LA5_0_A 71 91.3 84 0.06 
3MR8_0_A 1505 69.11 75.37 331.5 

3MRZ_0_A 2880 65 70 2777.02 

Average 1034.5 68.54 78.31 360.61 
Max. 3174 100 100 5050.45 

Min. 27 19.57 48.51 0 

 


