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Abstract: We present a novel and accurate approach to compute the loss of electromagnetic waves propagating
i a Microstrip line. A set of transcendental equation i1s derived by matching the tangential fields with the
surface mmpedance at the dielectric-air and dielectric-conductor interfaces. The propagation constant is obtained
by numerically solving for the root of the equation and substituting the values into the dispersion relation. We
found that the loss predicted by owr method, though appears to be somewhat higher, is nevertheless still
considered to be in agreement with those from the quasi-static method. In our analysis, we also showed that
the phase velocity varies with frequencies mdicating dispersive effect in the microstrip lines. Since the
quasi-static method assumes pure TEM mode of propagation, while our method takes into consideration the
coexistence of TE and TM modes, we attribute the higher loss as due to the presence of the longitudinal fields

and dispersive effect in a lossy microstrip line.
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INTRODUCTION

Microstrip transmission lines have been widely used
in Microwave Integrated Circuits (MIC), such as filters
(Hsu et al, 2005, Ahn et al, 2001,
Hong and Lancaster, 1997), couplers (Brenner, 1967;
Brenner, 1967, Campbell et af, 2003} and mixers
(Wengler, 1992; Tucker and Feldman, 1985), etc. At low
frequencies where the dimensions of the microstrip
structure are much smaller than the wavelengths of the
signals, the fundamental HE, mode resembles closely a
TEM wave (Zysman and Varon, 1969). Thus, electrostatic
approximations such as the conformal mapping technique
(Wheeler, 1964; Wheeler, 1965; Assadourian and Rimai,
1952; Pucel ef ai., 1968; Pucel et al., 1968a) have been
commonly used to analyze the propagation of waves in
the structure. As experimentally  verified in
(Grunberger et al., 1970, Grunberger and Meine, 1971),
however, the solutions of these approximation methods
deviate from the measurement results at high frequencies.
This is because, in reality, the nature of wave propagation

is a superposition of both TE and TM modes and the
presence of the longitudinal fields carmot be neglected at
high frequencies.

Although Mittra and Ttoh have considered the
co-existence of the hybrid modes using the Spectral
Domain Approach (SDA) (Mittra and Itoh, 1971;
Itoh and Mittra, 1973, 1974), they have assumed the
thickness of the strip to be infinitesimally thin. Hence,
their method is only applicable in cases where the
thickness of the strip (t,) 1s much smaller than the height
of the dielectric substrate (s).

In this study, we present a rigorous analysis which
incorporates the finite thickness of the strip and
groundplane of a microstrip structure. In our method, the
superposition of both TE and TM modes are taken mto
account during formulation. A set of transcendental
equation is derived by matching the tangential fields with
the surface impedance at the boundaries of the structure.
By solving for the root of the equation and substituting
the values into the dispersion relation, we are able to
compute the attenuation constant of the propagating

Corresponding Author: Kim Ho Yeap, Faculty of Enginecering and Green Technology, Tunku Abdul Rahman University,
Bandar Barat, 31900 Kampar, Perak, Malaysia



J. Applied Sci., 2011

wave. We will demonstrate that our method gives more
incorporates  the non-TEM
characteristics and dispersive nature of the propagating
mode.

realistic results as 1t

FORMATION

Fields in the substrate: As shown in Fig. 1, the microstrip
structure that we analyze here is assumed to be enclosed
by a pair of perfectly conducting walls at both ends of the
substrate at x = a/2 and -a/2. The width of the substrate a
is taken to approach infinity so that the fields localized at
the strip will not be perturbed by the wall and, thus, the
strip conductor resembles closely to that of an open
microstrip structure.

In a lossless microstrip line, the boundary condition
requires that the tangential electric fields E, and the normal
derivative of the tangential magnetic fields d8H/da, to
vanish at the boundary of the conductor. Here, a, 1s the
normal direction to the conductor wall. Due to the finite
conductivities of the strip and groundplane, however,
both E, and 8H,/8a, do not decay to zero at the boundary.
However, F, and 8H/da, at the boundary of a highly
conducting strip and groundplane are very small and are
only slightly perturbed from the lossless solution. For a
microstrip structure having equivalent surface impedance
at the boundary of the strip-substrate and
groundplane-substrate interfaces, respectively, the skin
depth of the fields penetrating into the conductor are the
same. Hence, applying the boundary conditions for the
fundamental HE, mode of the microstrip line at the
substrate-conductor interface and solving Helmholtz’s
homogeneous equation in  Cartesian  coordinate
(Pozar, 2005), the longitudnal fields can be derived
as:

E,=E, cos[%x}cos(kyy) (1)

H, :Hdsin[ngsjn(kyy) (2)

where, E, and H, are constant coefficients of the fields;
while k; is the transverse wavenumber in the y direction.
The usual wave factor in the form of exp[j(wt - k,z)] is
omitted. Here, w 1s the angular frequency and k, 1s the
propegation constant. k, 13 a complex variable which
comprises a phase constant B, and an attenuation
constant (3., and can be expressed as:

K, =B; - jay 3
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Fig. 1: The cross section of a microstrip structure

The transverse field components E, and H, can be
derived by substituting the longitudinal fields mto
Maxwell’s source-free curl equations:

VxE - jouE )]
VxH= jueE (5)

where, 1 and € are the permeability and permittivity of the
dielectric substrate,
Eq. 1 and 2 mto 4 and 5 and expressing the transverse
field components in terms of B, and H,, we obtain:

respectively. Hence, substituting

o wm[?}m@y) ©

E, j(k’kxE“—z(kaHd)sjn[EX]sm(k y) (M
h a ¥
where, I =k + k>

Derivation of the transcendental equation: At the
boundary of the conductors, the tangential fields are

related through the swface impedance Z, by
(Tham et al., 2003; Yeap et al., 2009):
7,-— (8)

s

(a,xH,)

For the strip and groundplane fabricated using the
same material and having the same thicknesses, the
surface impedance are equivalent. Hence, the swface
impedance Z, can be expressed n terms of the constitutive
relations as (Kerr, 1999):

. a.Z —ik, .
exp(ikt,) + ————exp(-jkL,)
7 =£ oz, + ik, (9)
® a, " oz, —jk, L
exp(ik,t,) mexp( ikt,)

EE|
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explii,t, )+ exp( i)

7 3% azﬁ (10)
2 g c7Z —
¢ | expii L) Z"+ gxp(Jkgtg)
E n

where, 7, 1s the intrinsic impedance of free space, o, and
0, the conductivities, t,and tthe thicknesses, and k and
k, the wavenumbers in the strip and groundplane,
respectively.

The total surface impedance 7, of the microstrip
structure can be computed by integrating Eq. 8 from
x=a2to -a/2 at y=¢/2 and -s/2, respectively. From
Eq. 8, Z,=-E/H, = E/H, aty = +s/2. Thus, we have:

Ex{y=s/2) E,({y=—/2)
sz(y S72) +I Ry /2

wil

—zjz y=5/2) dx+2j2(y s/ 2)dx + (1L

—af2

ZJng(y=—s/2)dx
0

a2 _ an _
J-Hx(yfsJ’Z)dXJrJ- H, (y ﬂ/Z)dX

B (y=58/2) oy B {y=—s/2)
wil 1 all 1
=2_[ dx+2 dx + (12)
Z.(y=8/2) anZ (y=3/2)
al 1
v Ze(y=-5/2)

Here, we assume that the tangential fields at the air
region decay almost instantaneously. Thus, Z, =2 in
Eq. 8 at the substrate-air boundary.

Substituting the field equations Eq. 1, 2, 6 and 7 into
11 and 12, we obtain:

{szgt {ky ZHEE o

{(w— a)Z, —az, - Wz, — 12 ok, tan{ ﬂ

{Jznkz CO{ ﬂH = .

et

Z‘"\ ZSE

Equations 13 and 14 admit nontrivial solution only in
case where the determinant is zero. Thus, by letting
the determinant of the coefficients E, and H;
vanish, we the following transcendental
equation:

obtain

(a—w)+1+W7 2ok {7EZ+
2, L, 2, o [k SJ a | "
? (1s)
B }
j2onik t
g . SS+J an( |:J2ﬁkz}
€ a h?

In the transcendental equation, k, is the unknown to
be numerically solved for, since k, can be expressed in
term of k, using the dispersion relation in Eq. 16 given
below:

k, =gk ~(n/a) &/ 16

where, k; is the wavenumber in the dielectric substrate.

To compute our results, the Powell Hybnid
root-searching algorithm in a NAG routine is used to find
the root of k. The returned values of k;, depend entirely
on the values of the imtial guesses given for the search.
Since the fundamental mode of the microstrip line 1s the
HE, mode, suitable guesses for k; are clearly values close
to zero. Tt is worthwhile noting that the solution did not
always converge to the required mode. It was often
necessary to refine imtial values slightly m order to force
convergence to the comrect mode. The attenuation
constant ¢, can be obtained by substituting k_ into Eq. 16
and extracting the imagimary part of k, in Eq. 3.

RESULTS AND DISCUSSION

In order to validate our formulation, we have
calculated the attenuation constant using the
transcendental equation in Eq. 15 based on two sets of
microstrip parameters arbitrarily chosen from the results
by Pucel ef al. (1968). Both the strip and groundplane of
the microstrip line 1s made of copper. The attenuation
curve as a function of frequency f for rutile substrate with
a dielectric constant €, = 105 is depicted in Fig. 2 and for
alumina substrate with €, = 9.35 i Fig. 3. For the rutile
substrate, we have taken w = s = 508.0 um, and t, = t, =
8.382 pm. For the alumina substrate, we have taken w =
3048 mm, 8 = 1.27 mm, and t, = t, = 990.6 ym. The
attenuation constants are compared with those obtained
by Pucel efal (1968) (PMH), derived using the quasi-
static methods (Wheeler, 1965, Wheeler, 1964,
Assadourian and Rimai, 1952) and Wheeler’s incremental
inductance method (Wheeler, 1942). As illustrated in
Fig. 2 and 3, the attenuation curves predicted by our
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Fig. 2: The loss in a microstrip line with rutile substrate
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Fig. 3: The loss in a microstnip line with alumina substrate
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Fig. 4 The phase velocity of waves propagating in a
microstrip line with rutile substrate

method are somewhat higher but still considered in
agreement with those obtained using PMH’s method.
Close inspection on theresults shown in (Pucel et al.,
1968), however, we observe that the measurement results
showed higher loss than those predicted by PMH's
equation as well. PMH’s equation is a quasi-static method
which assumes pure TEM mode of propagation; whereas
our method 1s a full-wave analysis which takes into
account the coexistence of TE and TM meoedes. Hence, the
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Fig. 5: The phase velocity of waves propagating in a
microstrip line with alumina substrate

results suggest strongly that our method gives more
accurate prediction of loss.

Next, we have also computed the phase velocity
v, = /P for the microstrip limes with rutile and alumina
substrates, respectively. As can be clearly seen in Fig. 4
and 5, the phase velocities vary with frequencies,
indicating that the lossy microstrip line is dispersive in
nature. In the electrostatic solutions, the phase velocity
1s approximated as (Pozar, 2005):

A —— (17)

13
Ve

where, ¢ 18 the velocity of light in free space and € ;15 a
constant variable known as the effective dielectric
constant. It is apparent that v in Eq. 17 is independent of
the variation in frequency since both ¢ and €. are
constant variables. Thus, the dispersive effect fails to be
accounted for using the quasi-static methods.

CONCLUSION

As a conclusion, we have presented a new and
fundamental  method to compute the propagation
constant of waves 1na microstrip transmission line. A
set of transcendental equation is derived by integrating
the total surface impedance at the boundary of the
substrate. The phase and attenuation constants can be
calculated by numerically solving for the root of the
equation and substituting the value into the dispersion
relation.

We have validated our results by comparing with
those obtained using quasi-static PMH’s equation.
Although considered to be in agreement with PMH’s
results, we observe that the attenuation constants
predicted by our method are somewhat higher. Since our
method incorporates the superposition of hybrid modes,
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we attribute such discrepancies to the existence of the
longitudinal fields and dispersive effect m our results.
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