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ARTIFICIAL NEURAL NETWORK (ANN) 

 

 

ABSTRACT 

 

 

The main development in this research is worked on the ordering of the training 

patterns and proposed a combined algorithm from existing algorithm for a neural 

network. It found to increase the generalization ability and convergence speed of 

neural network.  

 

Ordering patterns of training data was found to influence the generalization 

ability of neural network. The best ordering patterns to learn the data was the 

sequential ordering plus transitional and rotational order. The results shows that the 

best ordering patterns helps to improve the network generalization ability at least 

twice compare to backpropagation algorithm. The optimal ordering patterns learning 

all the similar patterns of digits before proceeding to another digit. It learned one 

particular digit until expert and move on to another. It was similar with the human 

being learning process. 

  

 Besides, the combined algorithm where combining the momentum and 

adaptation learning rate algorithm into the backpropagation algorithm proved to 

shorten 50% training time compare to backpropagation method. The optimal 

parameter of the momentum constant, learning rate and amplifying factor H are 

found to be 0.1, 0.05 and 1.0 respectively. It proved that the new combined algorithm 

helps in convergence speed of the neural network. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

The human brain is probably the most complex and intelligent system in the world. It 

consists of the basic structural constituents known as neurons. Each neuron has a set 

of simple operations but in a network they exhibit complex global behavior. 

Artificial neural network (ANN) is an engineering approach to imitate the brain’s 

activities. 

 

An artificial neural network (ANN) is composed of a large number of 

processing elements called neurons which are connected by associated weight. The 

input of a neuron is modulated by a weight and then the particular neuron will add up 

these weighted inputs to get the net input. Next, the net input will pass through an 

activation function to determine its output. This behaviour follows closely our 

understanding of how real neurons work. The figure 1.1 has shown the basic 

operation of one neuron. 

 

 
Figure 1.1: Basic operation of neuron 
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Each associated weight is adjusted through the training/learning process to 

improve recognition. Neural networks are able to learn from examples and generalize 

input patterns to output patterns. Neural networks can be applied to a wide variety of 

problems such as pattern recognition, data classification or constrained optimization 

problems. 

 

 

 

1.1.1 Fundamental Feature of Neural Network 

 

A neural network can be distinguished by its network architecture (the connection 

pattern between the neurons), weight-setting method (training algorithm) and the 

activation function used. Different types of network architecture, weight-setting 

method and activation function are used in different types of problems to obtain an 

optimization system.  

 

 

 

1.1.1.1 Network Architecture 

 

Network architecture can be classified into feed-forward networks and 

feedback/recurrent networks.  Feed-forward networks are the networks in which the 

signals flow from the input units to the output units, in a forward direction. It can be 

single-layered or multilayered. The number of layers in the network can be defined 

to be the number of layers of weighted communication links between the slabs of 

neurons. For instances, single-layer network has only one layer of connection 

weights where the input units directly links to output units whereas multilayer 

network requires at least one hidden layer between input and output units. Feed-

forward networks are fully connected between a neuron of one layer to another 

neuron from another layer but neuron in the same layer are not connected each other.  
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Besides, feedback/recurrent networks are the networks, in which there are 

closed-loop signal paths with at least one feedback loop. It has full interconnection 

between all units in the nets included neuron among same layer. Unlike feed-forward 

networks, recurrent networks do not response based purely on the inputs alone, they 

also make use of the internal “memory” kept in the network (resulted from a 

previous state or processing) to generate the outputs. Figure 1.2 shows the simple 

example of network architectures. 

 

 
Figure 1.2: Examples of network architecture 

 

 

 

1.1.1.2 Weight-Setting Method 

 

Weight-setting method can be distinguished to either fixed or adaptive networks. 

Fixed networks use fixed-weight which set according to the optimal solution for the 

problem, so it does not require any iterative training.  For adaptive networks, there 

are 2 different learning methods to change the weight. They are supervised learning 

and unsupervised learning.  
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1)(xf

Supervised learning incorporates an external teacher. Training is 

accomplished by presenting a sequence of training patterns as inputs and desired 

output is given during training. The weights are then adjusted to allow the network to 

produce answers close to the known correct answers. Supervised training used for 

single-layer networks is Hebb rule or delta rule while backpropagation is used to 

train the multilayer networks. Hebb rule stated that the weight connection between 

two neurons increases when they are both active simultaneously, whereas Delta rule 

adjusts the weights to reduce the difference between the net input and the desired 

output. Backpropagation is a generalized Delta rule where propagating information 

about errors at the output units back to the hidden units and weights adjusted to 

reduce these errors. 

 

Unsupervised learning provided a sequence of input vector but no target 

vectors are specified. The network modifies the weights so that the most similar 

input vectors are assigned to the same output units. Kohonen self-organizing maps 

and competitive learning are example of unsupervised training. 

 

 

 

1.1.1.3 Activation Function 

 

Activation function used in input, hidden and output units are different depends on 

their needs in the particular function. Typically, the same activation function will be 

used for the neurons in the same layer. For input units, identity/ ramp function

, for all x (net input) is used, so that activation of each unit is equal to an 

external input signal. For single-layer nets, threshold function is used as activation of 

output units which  if 

xxf =)(

= θ≥x 0)(, and =xf  if θ<x  where θ  = threshold.  

 

Sigmoid functions (S-shaped curves) are useful activation function for 

multilayer nets especially for backpropagation neural networks, because the simple 

relationship between the value of the function and its derivative at that point reduce 

the computational time during training. Logistic function, also called binary sigmoid 
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function is an S-shaped curve with range 0 to 1. Logistic function, f(x) and its 

derivative, f’(x) are shown as formula 1.1. x represents the net input of the neuron. 

 

                             
)exp(1 x

1)(xf
−+

=      ,      }]{1)[()(' xfxfxf −=  (1.1) 

  

Bipolar sigmoid function with range -1 to 1 which scaled from the logistic 

function also a common function used in backpropagation networks shown as below.  

 

              12)( −
−+

=xf
)exp(1 x

    ,  )](1)][(1[1)(' xfxfxf −+=
2

 (1.2) 

  

Figure below show the common activation function used in neural networks. 

 

 
Figure 1.3: Activation Function  

 

 

Different combination of network architecture, weight-setting method and 

activation function will result in different effect for specific problems. For example, 

a feed-forward multilayer network with bipolar sigmoid activation function trained 

by backpropagation method can used to recognize object (like alphabets).  However, 

there is problem of error convergence for supervised learning, which is the 

minimization of error between the desired and computed unit values. The global 

minimum cannot find accurately throughout the training, therefore fail to 



6 

 

convergence and identify a wrong alphabet.  Besides, to solve more sophisticated 

problems as object recognition, multilayer is powerful than a single-layer networks 

but the training process is difficult and requires longer time.  

 

 

 

1.2 Aims and Objectives 

 

The aim of the project is to study and understand the basic components of neural 

networks, and to advance the current knowledge of this technology. The specific area 

of interest here are the ordering of the training patterns and the learning algorithm of 

neural network. It is the aim of this project to optimize the generalization ability and 

convergence speed of neural network.  

 

The objectives of the project are to develop the training patterns ordering and 

investigate existing learning algorithm for the dynamics of the learning process, and 

use them to make learning faster and more generalizable. 
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Backpropagation algorithm 

 

Minsky and Papert (1988) demonstrated the limitation of the single-layer neural 

networks. The demonstration made people try to find a best solution in a multilayer 

network. However, there are not effective methods to train the hidden layers of the 

multilayer networks. D.E. Rumelhart and J.L. McClelland play a major role to re-

emergence of neural network by proposed a forward backpropagation algorithm to 

train the multilayer neural network. Backpropagation method is also known as the 

generalized delta rule. It is simply a gradient descent method to minimize the total 

square error of the output computed by the networks.  Nowadays, the 

backpropagation algorithm is the most commonly used method to train a multilayer 

feed-forward network. 

 

 

 

2.1.1 Backpropagation determination 

 

Training a network by backpropagation involves three stages which are the feed-

forward of the input training pattern, the backpropagation of the associated error and 

the adjustment of the weights (Laurene Fausett, 1994).   

 

 For simplicity, assume the multilayer neural network with only one hidden 

layer. At first, the weights between each layer were initialized to small random 
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values. Then, the feed-forward process is carried on. A training pattern is sent to the 

input nodes of the neural network with a desired output value given. Each input unit 

broadcast the signal to the units in the hidden layer. The signal will be modulated by 

the weight. Hidden node will then sum its weighted input signal as well as its 

weighted bias value received. The summed signal passes through an activation 

function to compute its output activation value. Furthermore, the output activation 

value will sent to the units in output layer. The output node processes the signal as 

the hidden node and produces an output value.  

 

 Next, the backpropagation of the associated error is executed. The actual 

output value which produced in the feed-forward process was compared to the 

desired output value. An error function ε  is calculated by subtracted the desired 

output value to the actual output value. Then, the total squared error is found to be

2

2
1 ε=E . To minimize this total square error of the output, a gradient descent 

method is proposed. The gradient descent method set the weight change equal to the 

derivative of E for that particular weight. All the weight changes in the network are 

then calculated.  

 

 After that, the adjustment of the weights is carried on. A learning rate is used 

to determine the weight changes extent in a training time. The learning rate should be 

small, if not oscillating may occur and cause the convergence towards the target 

output failed. The weight changes are modulated by the learning rate and then add to 

the original weights of the neural network to improve the performance of network. 

After adjusting the weights in the network, a new training pattern is sent to the input 

nodes and operations are carried on. The training will complete after pass through all 

the input patterns with the weight modifications done.  Figure below shows the 

process of the backpropagation algorithm. 
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Figure 2.1: Backpropagation algorithm 

 

 

 

2.1.2 Pros and cons and performance improvements 

 

The backpropagation algorithm is found to train a multilayer neural network and 

solve for non-linear problem that are impossible in single-layer neural network. The 

gradient descent method used in this algorithm ensures the convergence of the output 

value towards the desired target.  Besides, there are a number of drawbacks found in 

the backpropagation such as slow convergence rate, large number of hidden nodes 

required and global minimum problem.  

 

 However, this backpropagation had solved many complex problems such as 

pattern recognition and data classification which are impossible by using a single-

layer neural network. The development of the backpropagation method had 

successfully attracting many researchers to work on the neural network to perform an 

intelligent task.  
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2.2 Layer-By-Layer Optimizing Procedures 

 

The multilayer feed-forward network is the most widely used neural model 

nowadays. There have been many training algorithms proposed to train this network 

such as error backpropagation, delta-bar-delta (momentum) algorithm, Scalero’s fast 

new algorithm (S.T. algorithm), Kalman filter, and quasi-Netwon based algorithm. 

These training algorithms shared a number of drawbacks like the slow convergence 

rate, large number of nodes required, local minimum problem, and time-consuming 

in calculating first-order derivations, etc. To conquer these problems, a faster new 

learning algorithm based on layer-by-layer (LBL) optimizing was proposed by Gou-

Jen Wang and Chih-Cheng Chen (1996).  

 

 

 

2.2.1 Layer-By-Layer parameter determination 

 

For simplicity, assume that the neural network contains only one hidden layer. In this 

new training pattern, the optimal solution ( )**
2 , PYW

*
P

 is found initially, where  is the 

optimal weights of an output node and Y  is the optimal output value of the hidden 

layer. These optimal solutions help to minimize the total sum of squared error 

between the desired net-input and the actual net-input.  

*
2w

 

At first, the desired output value is used to deduce the desired net-input value 

of an output node, which is the value just before the activation function is applied. It 

can be easily gotten by inverting the activation function for output node. Then this 

desired net-input value is used together with the output/activation values of the 

hidden layer to calculate the optimal weights,  between the hidden and output 

layer. Next, the weight  and the desired net-input are used to determine the 

optimal output, of the hidden layer.  

*
2w

*
2w

*
PY

 

After solving for the weight in the last-layer of the network, we go to the 

preceding layer and use the  as a desired output for the hidden layer and then the *
PY
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desired net-input for hidden layer can be found by inversing the activation function 

as before. The weight between the input and hidden layer can be determined with 

the same procedure as . Here,  is the only unknown that needs to be solved in 

order to minimize the sum of squared error since the input layer activation value is 

fixed by the training pattern.  

*
1w
*
2w *

1w

 

 One extra work has to be done if  goes beyond the range of activation 

function. For instance, bipolar sigmoid function has the output values which limited 

from -1 to 1. If the output value is greater than 1 or less than -1, which not achievable 

in this function, then it makes the inversion of the activation function unreachable. 

To overcome this problem, Gou-Jen Wang and Chih-Cheng Chen (1996) proposed to 

truncate those  which are beyond the limitation to meet the upper or lower bound. 

With these  pinned to the limits, recalculate other to maintain the minimization 

of sum of squared error.  

*
PY

*
PY

*
PY *

PY

 

 

 

2.2.2 Pros and cons and performance improvements  

 

The advantage of the LBL algorithm is that the optimal pair ( )**
2 , PYW  found help the 

network converge in shorten time. Besides, LBL can zoom into the optimal solution 

in one step per layer without the need of iterative gradient descent method. The 

algorithm uses a technique similar to the Kalman filter to reduce the complexity in 

calculating matrix inverse of high dimensions. The author discovered that replacing 

the sigmoid function in the output layer by the identity function in their simulation 

example did not result in any degradation of performance. 

 

In contrast to the advantage of this algorithm, the LBL has some 

disadvantages. First, it does not solve for the global minimum solution, but just 

accelerating convergence. Generally, the solution is incremental, but not global as it 

relies on front layer random weights as the starting point to determine , therefore it 

will face the local minimum problem and the optimal solution depends on the 

*
2w
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starting points. The initial parameters setting are important in this algorithm. Second, 

the computation time per iteration increase exponentially as the total number of node 

increases. If the number of node increases continuously for more complicated 

problem, LBL method may require longer computational time than other techniques.  

 

 The LBL algorithm makes a great improvement to the backpropagation 

method by performing one step zooming to get the optimal solution. The simulation 

results in the paper (Gou-Jen Wang & Chih-Cheng Chen, 1996) showed that the LBL 

produce a fastest convergence speed compared to other algorithm in the carried 

experiments. LBL may lead to a very small sum of squared error in the shorten time 

due to optimal solution is achieved in only one step. 

 

 

 

2.3 Improved Algorithm and Architecture Networks 

 

2.3.1 Improved backpropagation determination 

 

In pattern recognition, the backpropagation algorithm showed that there is a state in 

which neural networks can learn no more patterns, in spite of there being large errors. 

This neural network state is called a learning standstill. In this state, the connection 

weights cannot be corrected, even though the output layer has a large error value. For 

instances, consider that a binary sigmoid function is used. A learning standstill 

occurs when all value on one layer are nearly 1 or 0. The binary sigmoid function 

curve is nearly flat or horizontally at value close to 0 or 1, therefore the changes of 

connection weights are invisible or close to zero. Thus, the neural network learns no 

more patterns. 

 

 In order to evade the learning standstill, Yamada K., Kami H., Tsukumo J. 

and Temma, T. (1989) proposed an improved learning algorithm where the slant 

parameter of the activation function is controlled. Initially, a serious error is judged. 

If the error greater than a threshold value (0.5 is used in this paper), then the slant 

parameter is enlarged double to make the curve more diagonal, so that output values 

on any layer are far from 0 and 1. Then all output values for every layer are 
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recalculated. Process is repeated until the error judged is less than the threshold value. 

After solving this learning standstill problem, the slant parameter is set to initial 

value again. 

 

 

 

2.3.2 Three distinct architecture neural networks 

 

In order to investigate the neural network ability to extract feature for characters, to 

discriminate between features and to classify them into correct classes, three distinct 

architecture neural network are used to observe these conditions in the paper 

(Yamada K., Kami H., Tsukumo J. & Temma, T., 1989).   

 

First one is globally-connected neural network, into which a grey level 

character images as input. It is a basic multilayer neural network, in which each 

hidden unit is connected to all inputs units. Second is locally-connected neural 

network, into which a grey level character images as input, but each hidden unit is 

connected to input units included in a local area of a character. Each local area in the 

network should not define too closely since the feature extraction is self-organized, 

so it may cause oversensitive to positions for the local features. Last one is feature 

input neural network, into which contour feature vectors to be extracted from 

character are input. Figure 2.2 shows the architecture of these 3 neural networks.  
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Figure 2.2: Three distinct architecture neural networks  

 

 

 In the globally-connected neural network, each hidden unit can response to a 

global feature of a character, so they extract feature in the entire area of a character. 

However, locally-connected extract feature of a character locally and recognize a 

character by combining local features. From these different extraction methods, 

locally-connected network was found that can perform extraction of the global 

feature more flexibly than the globally-connected network, because it can find a 

global feature, even if the local feature positions are relatively changed. 

 

Unlike the grey level input images of globally-connected and locally-

connected structure, the feature vectors extracted from a character is inputted to the 

feature input neural network. A contour feature is calculated based on the direction 

and curvature for a character contour. This feature is a kind of conventional pattern 

recognition method used as inputs to a neural network, and whose classification 

process is carried out by a neural network.   
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2.3.3 Pros and cons and performance improvements  

 

The improvement performance in this paper is that the improved backpropagation 

algorithm is evaded a learning standstill. This improved algorithm is effective for 

letting a neural network learn all the trained patterns, which cannot be learned by 

backpropagation, and to hasten learning speed by three times. By using this 

improved algorithm, the simulation graphs show in the paper (Yamada K et al., 1989) 

proved that the greater the number of hidden units, the higher the recognition rate can 

achieve.  

 

The next improvement performance is the locally-connected structure had the 

higher recognition rate compared to globally-connected structure. The reason is that 

if parts of character change slightly, other hidden units in the locally-connected 

networks respond to the changed parts and their combination often enables the 

character to be recognized correctly, but the globally-connected neural network may 

fail to extract the same feature. These considerations prove that it is important to 

construct an innate structure in a neural network, in order to improve the feature 

extraction ability.  

 

On the other hand, there are some disadvantages of the improved algorithm. 

When the number of hidden node is small, the recognition rate of the improved 

algorithm is lower than the standard backpropagation algorithm. It showed that this 

improved algorithm is not so suitable for the applications where a small number of 

hidden nodes required. Then, for the feature-input structure, where it is impossible to 

recognize a character correctly, the feature vectors may be confused with other 

categories. Furthermore, the feature extracted is not always optimal for a recognition 

target, so it will affect the discrimination of the neural network and produce the mis-

recognized results. 
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2.4 Adaptation Learning Rate Algorithm 

 

Backpropagation algorithm solved the problem of training the weight of a hidden 

neuron by using gradient descent method. This gradient method uses a fixed learning 

rate. Learning rate denotes the weights changing extent. In case, if the learning rate 

set to be larger, the learning speed is faster but it may cause the oscillating problems. 

In contrast, if the learning rate is smaller, the learning process is more stable but the 

learning speed will be slower. A fixed learning rate sets to gain a balance between 

the learning rate and the learning progress stability, which is normally small. It 

causes a slow convergence rate. Chao Yang and Ruzhi Xu (2009) had proposed a 

new adaptation learning rate algorithm in this paper to increase the convergence 

speed with no oscillating in the learning progress. 

 

 

 

2.4.1 Adaptation learning rate determination 

 

Adaptation learning rate algorithm (Chao Yang & Ruzhi Xu, 2009) make the 

learning rate changes as the error value calculated changes, through the whole 

learning progress of a neural network. In this new algorithm, the training method is 

same as the backpropagation algorithm, and the only improvement in this algorithm 

is replaced the fixed learning rate by an adaptation learning rate. This new adaptation 

learning rate algorithm can be expressed as equation 2.1.   

 

                             ( )Eho ⋅= expηη   (2.1) 

 

where 

E = mean square error when one iteration is finished 

η = learning rate for the next iteration 

oη = initial learning rate, oη > 0 

h = amplifying factor, h > 0 
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 Initially, a learning rate is selected as a very small value. Therefore, when the 

error value close to zero, the learning rate turns to its initial rate due to and 

only if the initial rate is very small to guarantee no oscillating in the later period of 

the learning progress. In the first stage of the learning progress, the error value is 

larger so the learning rate is enlarged by the adaptive algorithm equation to 

accelerate the convergence speed. As the learning proceeds, the error is getting 

smaller and the amplified rate is reduced exponentially. Then, at the end of the 

training process, where the error value is close to zero, the learning rate turns to the 

initial rate. This expression was accelerated the learning speed in the starting of 

training progress and performed a small step improvement towards the target at the 

end of training, as the fixed learning rate.  It had descended the error value faster in 

the condition of the stability of learning progress.  

1)0exp( =

 

Another important parameter in this algorithm is h, the amplifying factor. The 

parameter h can control the amplified extent, therefore if the value is not properly set, 

the learning rate turns to be too large to cause the oscillating happens. The error 

value can be calculated from the backpropagation method.  

 

 

 

2.4.2 Pros and cons and performance improvements  

 

The advantage of the adaptation learning rate algorithm is that it can be easily 

expressed by getting the fixed learning rate multiply with an exponential function of 

the error, so it can easily plugged into the backpropagation algorithm to get widely 

used (Chao Yang & Ruzhi Xu, 2009). This new algorithm helps to improve the 

convergence speed. It minimizes the error value faster, and at the same time 

maintaining the stability of the learning progress. Besides, this algorithm is able to 

zoom towards the desired target at the beginning of training and moving a small 

steps to approach the target at the end of training. 

 

 The disadvantage of this new algorithm is the parameter setting of h, the 

amplifying factor is not taught clearly. From the formula 2.1, we know that setting 
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h>0 but there did not state any proper range for this parameter. The large value of h 

will turn the amplified rate to be too large and cause an oscillating problem. 

 

 The improvement of this paper is used a new equation for the learning rate 

rather than just using a fixed learning rate. The expression ( Eho ⋅ )= expηη  used will 

increase the convergence speed of the backpropagation algorithm. The simulation 

experiment showed that the adaptation learning rate converge faster than the fixed 

learning rate at the beginning of the training process, and when the error is reduced 

to a very small value, which smaller than 0.1,  then the convergence speed is slowed 

down and close to the fixed learning rate. 

 

 

 

2.5 Synthesis Algorithm by Growing Layers Using Training Results 

 

The nature of the neural network architecture is a very important consideration when 

it is concerned about the optimal trainability and generalization. However, 

backpropagation algorithm has no prior knowledge about the number of required 

hidden layers and neurons. An additional investigation is required to carry on before 

starting a backpropagation algorithm.  

 

At present, there are two approaches to determine the optimal network 

architecture. The first approach is starting with a large number of hidden nodes and 

then cut down the network whenever it is possible. Second is generated the required 

neural network architecture dynamically as part of the learning process. It starts with 

a small network and grows the additional neurons or layers only when it is necessary. 

Mezard’s tiling algorithm is an algorithm which adds the hidden layers and neurons 

in each layer only when necessary, at will until convergence and system error 

reduced to zero after the network is fully trained. However, this tiling algorithm only 

suitable used for one output neuron problems. In this paper, Yu X., Loh N.K. and 

Miller W.C. (1993) proposed a synthesis algorithm to generalize the tiling algorithm 

to several output neurons and improve the method of selection for the target output 

values of the ancillary neurons. 
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2.5.1 Synthesis algorithm determination 

 

At first, the new synthesis algorithm is started with a simple architecture where only 

have X input nodes and Y output nodes. A pocket algorithm is used to train this 

network until the convergence reached. It stores the best weight vector so far in a 

“pocket” while continuing to learn. In this new algorithm, the activation function of 

each neuron can be hard limiting such as step function instead of sigmoid function. 

Once the convergence is reached, the training patterns are classified into groups 

according to the values of actual output patterns. If each group corresponds to only 

one target value where actual the output pattern equals to the corresponding target 

output pattern, the resultant trained neural network represents the final required 

architecture. Otherwise, the number of different target output values in each group is 

counted and then the maximum number of different target output, M is set. Then, 

number of ancillary neurons, N= are added to the layer.  M2log

 

Next, the target values of these added ancillary neurons are defined such that 

those input patterns in each group corresponding to different final target values must 

have different output values. Yu X. et al. (1993) stated that the ancillary neurons had 

to define correctly in order to ensure any two patterns in a layer with distinct target 

outputs have distinct internal representations. After defining the target value of 

ancillary neurons, the pocket algorithm is repeated again. The verification process is 

repeated until each group corresponds to only one target value, and then this layer is 

considered completed and proceeds to the next layer. This next layer used the 

previous layer with X+N nodes as input and Y output nodes as the original target 

output patterns. Then the algorithm continues with the operation defined previously 

until the correct target output pattern produced. This synthesis algorithm is 

guaranteed to converge since the subsequent layers decrease in size.   
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2.5.2 Pros and cons and performance improvements 

 

The advantage of the synthesis algorithm is the network architecture is generated 

dynamically during the learning process, so there is unnecessary to estimate the 

number of layers and hidden neurons before training. From the simulation results 

carried by Yu X. et al. (1993) showed that the learning speed is faster than 

backpropagation algorithms and the system error is equal to zero when the neural 

network is fully trained. Besides, this algorithm can classify both linear separable 

and linear non-separable families, whereas the backpropagation algorithm will fail 

sometimes. In advance, it uses a hard limit activation function instead of continuous 

sigmoid function. Hence, it is suited for a VLSI implementation. 

 

 Disadvantage of this synthesis algorithm is that it does not generate 

architecture with the fewest number of neurons possible. As the number of output 

nodes increases, the selections of the target output values for the ancillary neurons 

may be difficult. Besides, the training patterns need to classify into groups according 

to the values of the actual output pattern. It may take a longer time for a larger 

number of training patterns, and make this algorithm not reliable.  

 

The improvement in this synthesis algorithm is a neural network can generate 

the network architecture without estimating the number of hidden layers and hidden 

neurons as what the backpropagation method does. Besides, the synthesis algorithm 

produces a zero error neural network while the minimization of the backpropagation 

method is not guaranteed to converge to an absolute minimum with zero error.
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Research Methodology 

 

In order to test the ordering effects of the training patterns and improve the training 

algorithm of the neural network, digit recognition was chosen as a sample problem in 

this research. A supervised learning was used in this research, so that the optimal 

ordering patterns could be developed. Supervised learning was accomplished by 

presenting a series of training patterns to neural network, each with an associated 

target output vector. Hence, data should be collected with associated target before 

develop the neural network program. 

 

Initially, creating a completed neural network that does digit recognition 

would be too comprehensive for a research of this size, therefore it is necessary to 

place some restrictions on it. In data collecting process, 4 digits which are 0, 1, 2, and 

3 were collected as training samples. The collected images included distinct scaled 

and skewed patterns. Each digit collected 100 sample images and the dimension of 

image size was set to 8x8. These restrictions help to simplify the testing on data 

ordering issues. Some of the ordering patterns were deal with digits interleaving, 

hence considering 4 different digits in the data set may create enough interleaving 

patterns and it is not too complicated as using whole chain of digit from 0-9. Besides, 

using only 4 digits and small dimension size may help to shorten the training time of 

the neural network, and at the end save time for research progress. 
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 In advance, this data set was collected from ASCII Art Generator software. 

ASCII Art Generator can convert digit from different font style into an image, such 

as Time New Roman, Arial and etc. Furthermore, the software also provided free 

draw function to the user. Hence, data could also be collected by drawing the digits 

directly on the software and converted it into image.  

 

Next, neural network program was developed. The developed network 

consisted of 64 (8x8) input nodes and 4 output nodes. Since the program is interested 

in the classification of the digits, so 4 grandmother output nodes are used where one 

and only one output node responds to a certain character. This neural network was 

implemented in C++ programming as stated by the supervisor and it can compile 

easily in Visual Studio 6.0.  

 

By Homik-Stinchcombe-White theorem, one hidden layer neural network is 

sufficient to approximate any measureable mapping from a finite dimensional vector 

to another, provided sufficiently many hidden nodes in the layer. Hence, a multilayer 

feed-forward neural network with one hidden layer was developed in the research. 

This neural network was chosen to be globally-connected, in which each hidden unit 

is connected to all inputs units. Figure 3.1 shows the globally-connected neural 

network. Although locally-connected neural network was performed better than 

globally-connected neural network (Yamada K., Kami H., Tsukumo J. & Temma, T., 

1989), but the local area in such a network must define precisely to avoid 

oversensitive which would lead the system to a terrible performance. Therefore, 

globally-connected architecture was chosen as the network architecture.  

 

 
Figure 3.1: Globally-connected neural networks 
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A proposed algorithm was developed based on the investigation of existing 

supervised learning algorithm. The most universal algorithm implement in a neural 

network is backpropagation algorithm. However, it required a long training time due 

to slow convergence rate and large number of hidden node used. To overcome these 

drawbacks, many new algorithms were published. Momentum algorithm (M. Tanvir 

Islam & Yoichi Okabe, 2003) and adaptation learning rate algorithm (Chao Yang & 

Ruzhi Xu, 2009) are the techniques used to speed up the training process of 

backpropagation algorithm. 

 

 Momentum is basically a technique which enlarges the weight movement if 

there is a same direction change as previous step whereas keeps a small step for the 

different direction changes. It helps to improve the convergence speed in training 

process. Moreover, adaptation learning rate is the technique where the learning rate 

is exponentially proportional to the mean square error. It means that the learning rate 

are enlarged at the beginning of the training process, and then becomes smaller and 

smaller until hold as the initial learning rate at the end. It improves the convergence 

speed as what momentum algorithm does.  

 

Both algorithms can apply easily into an existing backpropagation program 

by changing the weight-updating formula only. Hence, the proposed algorithm is a 

combination of backpropagation with momentum and adaptation learning rate 

method to increase the speed of convergence. Analysis was carried out to estimate 

the optimal value of the constant parameter in momentum and adaptation learning 

rate method to shorten the training time. Figure 3.2 below shows how the proposed 

algorithm formula comes from the existence formulas. 
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Figure 3.2: Derivation of proposed algorithm 

 

 

Furthermore, bipolar sigmoid function was used as the activation function in 

the proposed algorithm. This function was slanting than binary sigmoid function. 

Thus, the slant modification method (Yamada K. et al., 1989), in which modifies the 

slant parameter of binary sigmoid function to evade learning standstill condition, can 

be ignored in this new methodology development.  

 

 After built the neural network program, analysis on the ordering of training 

patterns was carried out. First, the ordering of training patterns was developed and 

then divided into certain characteristics. Each ordering characteristic was executed 5 

times and average result was calculated to keep away from bias. The training data 

used in this research was fixed except the ordering sequences altered. After all, 

comparison of all the ordering patterns was accomplished and a best ordering pattern 

was chosen. This best ordering pattern was then set as optimal order to the network 

input.  

 

 Subsequently, optimization of the parameters in the training algorithm was 

carried out. Optimal value of momentum constant, learning rate and constant 

parameter H in adaptation learning rate were found to improve the convergence 
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speed in learning process. At the end, comparison between initial and optimal 

condition was made to show the total improvement of the network. Flowchart shows 

in figure 3.3 is the overall methodology to carry out the research. 

 

Collect data set of digits 0-3 

Build a new algorithm with combining the 

momentum and adaptation learning rate 

algorithm into the backpropagation method 

Develop ordering of training patterns  

Analysis and select optimal solution for 

ordering of training patterns 

Optimize the parameters in proposed 

algorithm to fit the best training data ordering 

                                               

Comparing before and after optimization 

Figure 3.3: Flowchart of overall methodology 

 

 

 

3.1.1 Data set 

 

The data set consisted of 400 elements, where each digit had 100 elements. It was 

then split into 3 parts with 60%, 20% and 20% for the training set, generalization set 
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and validation set respectively. The splitting data were then stored into 3 different 

input files respectively. The figure 3.4 shows the splitting of the data set.  

 

    

 

 

 

Training set --- 60% 

(240 elements) 

 

 

Data Set 

Figure 3.4: Splitting of data set 

 

 

Training set is the data used to train the network and update the weights, so it 

must be the largest chunk among them. Generalization set is the data used to run 

through the neural network at the end of each epoch to see how well the network 

handles with unseen data while validation data set will only run through the network 

once the training has completed to give the final validation result. Both 

generalization and validation data set are used to avoid the over-fitting problem, 

where the network starts to memorize the input data and fail to handle the unseen 

data correctly. Thus, the data of generalization and validation set must include all the 

possible patterns of the digits such as scaled, skewed, transited and rotated images to 

test how well the network can handle the data in all possible directions. 

 

  

 

3.1.2 Operating principle of proposed algorithm in C++ program 

 

Initially, the neural network program is set up with loading the network configuration 

parameters into the program. After establish the network, the data input files are 

loaded into the program. These data input files include training, generalization and 

validation data set are then stored into arrays respectively.  

 

(400 elements) 

 

Generalization Set --- 20% 

(80 elements) 

Validation Set --- 20% 

(80 elements) 
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Afterwards, program creates a series of random initial weights to both input-

to-hidden and hidden-to-output weights. These initial weights are set to be the value 

from a random distribution between -1 to 1. It can be reached by using formula 3.1 

below. The ratio of rand( )/RAND_MAX will create a value between 0 to 1. This ratio 

is then multiplied by 2 to create the value range from 0 to 2. Lastly, this value is 

ubtracted from 1 to obtain the value range between -1 to 1. s

 

ݐ݄ܹ݃݅݁  ൌ ቀ2.0  ൈ  ௥௔௡ௗሺ ሻ
ோ஺ே஽_ெ஺௑

ቁ െ 1.0           (3.1) 

 

where 

rand( ) = rand function which generate an integer between 0 to RAND_MAX 

RAND_MAX = a symbolic constant defined in the <stdlib.h> header file 

 

 These initialized input-to-hidden weights are then adjusted through Nguyen-

Widrow normalization. This normalization makes each hidden node linear over only 

a small interval of input-to-hidden weights. The magnitude of input-to-hidden 

weights are adjusted to 0.7*S to provide some overlapping between the intervals. 

The slices of interval, S is equal to the number of hidden nodes divide by number of 

input nodes. By using this normalization method, the network can achieve a lower 

mean square error in a much shorter time. It is used to improve the network’s 

training speed. 

 

 Next, the neural network’s training process is started. The training data are 

sent into the input layer. These training patterns are sent one at the time. It is then 

gone through the feed-forward process. The inputs are modulated by the weights. 

Then, these weighted inputs are added up and passed through the activation function 

to produce outputs for each hidden node. This process is repeated in hidden-to-output 

layer to determine each output node’s value. Bipolar sigmoid function is used as the 

activation function. Its formula can refer to formula 1.2.  

 

At the end of the feed-forward process, actual output values are produced. 

Followed by backpropagation process, the error of each output node is calculated and 

back-propagated to the network. Moreover, weights are updated to minimize the 
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network error and at the same time produce the desired output. Error is defined as the 

different between target and actual output value which show in formula 3.2. When 

errors are propagated back to the network, error gradients or deltas for each output 

and hidden node are calculated. The deltas formula for output nodes and hidden 

nodes is shown in formula 3.3 and 3.4 respectively. 

  

ߝ  ൌ ݐ െ ܽ                (3.2) 

 

where 

ε = error of the neural network 

t = target output value  

a= actual output value  

 

 

௢௨௧௣௨௧ߜ                  (3.3) ൌ ݂ᇱሺݔሻ ൈ          ߝ

      ൌ ଵ
ଶ
 ሺ1 ൅ ܽሻሺ1 െ ܽሻሺݐ െ ܽሻ      

 

w

 ௢௨௧௣௨௧= error gradient or delta for particular output nodeߜ

here 

f’(x) = inverse of activation function shows in formula 1.2 

ε = error between target value, t and actual output, a 

 

 

௛௜ௗௗ௘௡ߜ     ൌ ݂ᇱሺݔሻ ൈ ∑൫߱ுை ൈ  ௢௨௧௣௨௧൯                 (3.4)ߜ

 

w

= error gradient or delta for particular hidden node 

here 

௛௜ௗௗ௘௡ߜ
 ௢௨௧௣௨௧= error gradient or delta for particular output nodeߜ

f’(

߱ுை = hidden-to-output weight for particular output node 

x) = inverse of activation function shows in formula 1.2 

 

These error gradients or deltas are then used to update the weights in the 

neural network. To update the weights, a new weight-updating formula is formed 
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here with adding the momentum and adaptation learning rate algorithm. The new 

weight changes formula is shown in formula 3.5. It is just a combination formula of 

backpropagation, momentum and adaptation learning rate algorithm. Then, the 

eights are simply updated by ߱ ൌ  ߱ ൅ ∆߱ formula. w

 

  ∆߱ ൌ ߙ଴ expሺ݄ . ሻܧ ൈ ܽ௟௢ ൈ ௛௜ߜ ൅ ߚ  ൈ ∆߱ ሺݐ െ 1ሻ           (3.5) 

 

whe

߱= weight change 

re 

∆

 ଴= initial learning rateߙ

E = mean square error when one iteration or epoch is finished 

h 

 = output value of lower layer 

= amplifying factor, h > 0 

ܽ௟௢
 ௛௜ = error gradient or delta of higher layerߜ

β = momen

∆߱ ሺݐ െ 1ሻ = previous state of weight changes 

tum constant 

 

After updating the weights, next training pattern is sent into input nodes and 

operations as previous are carried out again. When all the input patterns are passed 

through the neural network, one epoch is completed. At that moment, generalization 

data set are then run through the network to see how well the network performs. 

Subsequently, whole training process is continued by repeating previous process all 

over again until it reached the maximum setting value of the epoch. At that time, the 

validation data set are running through the program to get the final validation results. 

 

 Furthermore, a new set of random initial weights are generated for second 

rerun and whole training process is repeated until the maximum rerun condition 

reached. The rerun process used to ensure the average output result is fair and no bias 

to any initial weights. Therefore, the average output result of the rerun process is 

then used to show the overall neural network performance. Figure 3.5 below is the 

flowchart of the neural network program. 
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Figure 3.5: Flowchart of neural network program 

Load data set (different ordering)

Assign random initial weights  

Normalize the input-to-hidden 
weights by Nguyen-Widrow method 

Feed-forward training data set 

Calculate the error between target 
and actual value using 
backpropagation algorithm 

Start 

Update weights with a new weight 
change formula  

 
(Consist of momentum and 
adaptation learning rate method)

Training pattern = = 
last sample?

Epoch = = 
MaxEpoch?

Rerun = = 
MaxRerun?

Feed-forward generalization data set 
and result observed

Feed-forward validation data set and 
result observed

Final result was observed 
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3.1.3 Ordering of training patterns 

 

Development on the training data ordering patterns has a great meaning in sequential 

supervised training. It is because improper order of elements in the training process 

may lead to terrible interference. Additionally, this mechanism can also occur during 

each training epoch and disturb the networks from learning more patterns. The worst 

case may happen where the connection weights cannot be corrected, even though the 

output layer has a large error value. Therefore, finding an optimal ordering of 

training data patterns are important. With a good ordering of training data, the 

network can minimize the final validation error. Hence, it may easily lead to 

recognition success.  

 

 After splitting the data set, generalization and validation set were fixed. This 

ordering analysis was only dealt with training data set, because it is the only data set 

passing through the supervised training. 

 

 In this project, several ordering approaches to the training data were 

proposed and experimentally evaluated. The ordering sequences were divided into 5 

main parts, which are random, sequence, interleaving sequence, transition, and 

rotation order. However, transition and rotation order could not stand alone without 

any supported order, thus they were combined with the sequence and interleaving 

sequence to test their ordering effects. On the whole, 7 cases of ordering were tested 

in this project. Table below shows the 7 cases of data patterns ordering. 
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Table 3.1: 7 Type of data patterns ordering 

Case Condition
0 Random order
1 Sequence order 
2 Interleaving sequence order 
3 Sequence + transition order
4 Interleaving sequence + transition order
5 Sequence + rotation order
6 Interleaving sequence + rotation order 

 
 

 

Random order was used as the reference point for this ordering analysis 

because it is the general order implement in the input network nowadays. All the 

training data are randomize distribution through whole training sequence.  

 

Besides, sequence order was distributed the training data digit by digit over 

entire training sequence. After training all the patterns of one digit, the network will 

move on to train another digit patterns and so on. The data patterns between each 

digit were out of order. Furthermore, interleave sequence order was interleaved the 

data between digits. This interleaving digits model was then repeated with different 

training patterns through entire training process. The data patterns between each 

interleaving model were out of order.  

 

Apart from that, the 4 other types of data ordering were based on the 

transition and rotation order. As a result of these two orders could not stand alone, 

sequence and interleaving sequence order were then merged into them. Transition 

order was dealt with the alignment of the image, such as left, centre and right, while 

rotation order was arrange with the sequence of normal to italic image or vice versa. 
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3.2 Planning 

 

Table 3.2 shows the project planning for the final year project and Figure 3.6 shows 

the project progress in chart. The whole project was divided into small piece of tasks 

and then planning time to accomplish each task was set. Therefore, the project can be 

finished smoothly and on time.  

 

Table 3.2: Project Planning Table 

 
 

 

 
Figure 3.6: Project progress 
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Network Setup  

 

In this research, two main optimization studies were involved, where optimize the 

ordering of training data and training algorithm parameters. Before proceeding to 

these studies or analyses, data set for digits 0 to 3 was collected and network 

program was built. Figure below shows a few sample of the data set used in this 

research. Then, network configuration was set up and ordering of training patterns 

was generated. 

 

 
Figure 4.1: Input samples 
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4.1.1 Results and discussions of network configuration 

 

Before starting the study of ordering patterns, configuration of neural network 

program was set up. Number of hidden node, epoch value, rerun value and etc were 

defined in this moment. The ordering of training data used in this setting are not 

optimized since the setting only used to achieve the basic performance of the 

network.   

 

 First, number of hidden node was set to 11. It is because if the program has 

very less hidden nodes such as 6, it may not have sufficient memory place to classify 

the digits. On the other hand, if the hidden nodes are too much such as 20, it will 

waste the memory place and somehow memorizing the data rather than classifying 

them. Therefore, a moderate number, 11 was used in this program. 

 

The initial learning rate of the program was set to 0.2. The same case happens 

here where value set should be moderate. If learning rate set to a large value like 0.8, 

the network results may oscillate and distort the network stability. However, if 

learning rate set to very small value like 0.02, then convergence speed of the network 

will be very slow. A balance value, 0.2 was chosen as the initial learning rate. 

 

 Next, epoch value which reflected the number of looping used in the training 

process was considered. Training loop should end after completion of training 

process where system learnt no more patterns. It can be identified by the saturation of 

the network results. To determine it, epoch was first set to a huge value and then 

graph for training accuracy and generalization accuracy versus epoch were plotted. 

Figure 4.2 and 4.3 show the training accuracy versus epoch and generalization 

accuracy versus epoch respectively.  
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Figure 4.2: Training accuracy vs Epoch 

 

 

 
Figure 4.3: Generalization accuracy vs Epoch   

 

 

Observation on these graphs found that the training accuracy was going to be 

constant at epoch equal to 500, and the generalization accuracy saturate at epoch 

value near to 300. From this observation, when epoch value equal to 500, both 

training and generalization accuracy reached their saturation state. Therefore, the 

minimum epoch required to complete the training process was set to 500.  

 

In addition, rerun value was considered. Rerun condition ensures the results 

produced are fair to any initial weights. To determine this rerun value, the method 
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used previously was repeated. Rerun value was set to a large value first, and then 

graph of training accuracy versus rerun was plotted. Figure 4.4 below shows the 

training accuracy of the rerun parameter over 1000 times.  

 

 
Figure 4.4: Training accuracy vs Rerun 

 

 

The graph above showed that the training accuracy was distributed equally 

through whole the rerun times. Since it was distributed equally, it means that the 

rerun value can be cut down to a sufficient condition. Hence, a comparison between 

the rerun parameter was carried out to determine the rerun value. Table 4.1 shows the 

comparison on rerun parameters. From the table, training accuracy and training mean 

square error were shown not much different. In advance, the average deviations of 

these results were nearly the same. Consequently, rerun value was set to 100 since it 

could use to represent the 1000 times rerun condition where prove the results are not 

bias. 

 

Table 4.1: Comparison on rerun parameters 

 

Rerun Training Accuracy TrainingMSE Average deviation
1000 96.18 0.02 1.79
500 96.12 0.02 1.81
100 96.37 0.02 1.51
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4.1.2 Creation of ordering patterns  

 

After setting the configuration of network program, ordering study was carried out. 

In this ordering study, the backpropagation algorithm was used, so momentum 

constant and amplifying factor of adaptation learning rate were set to zero. 

Backpropagation algorithm was used in this study rather than proposed algorithm, 

because it is the universal algorithm used to perform the research. Hence, the study 

results were identified. 

 

The seven cases of the training data ordering were formed by using C++ 

program code. From case 0 to case 4, the training data was arranged from left to 

centre and then to right before loading into the program, while case 5 and case 6 

were arranged the training data in rotation order, which is upright to skewed images 

before load into the program. All data input file were arranged in sequence order, 

which patterns follow digit by digit. Figure 4.5, 4.6 and 4.7 showed the codes use to 

generate random, sequence and interleaving sequence order respectively.  

 

 
Figure 4.5: Case 0 Random Order 

 

Code in figure 4.5 will generate a random order for the training data. Initially, 

it created a shuffle temporary array by formula rand()%nT. The total number of 

training data, nT was used because whole training data set should jumble up in this 
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case 0. A series of random shuffle number from 0 to 239 were then generated. 

Subsequently, input data ordering were modified by this shuffle array to form its 

random ordering patterns.  

 

Coding of case 1 which is sequence order was generated by modifying the 

formula from rand()%nT to rand()% (nT/4). In case 1, data was trained in the 

sequence from digit 0 to 3, so the data were only randomize between the same digit 

patterns. Hence, formula was modified to rand()% (nT/4). After shuffled the 

temporary array, input data ordering were updated by the coding shown in figure 4.6. 

Next, Case 2 which is interleaving sequence order was created based on coding of 

case 1. Extension of code was used to create the data interleaving patterns which are 

0, 1, 2, 3, 0, 1, 2, 3, until the end of the training sequence. Figure 4.7 shows the 

extension code of case 2 to create the interleaving patterns. 

 

 
Figure 4.6: Case 1 Sequence Order  

 

 
Figure 4.7: Case 2 Interleaving sequence Order  

 

 

 Results of the ordering distribution of the random, sequence and interleaving 

sequence order were shown in figure 4.8 below. They were the ordering patterns 

generated by the coding above.   
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Figure 4.8: Results of ordering distribution for case 0, 1 and 2 

 

 

Case 3 and case 4 considered the transition order for the training inputs. In 

these two cases, the training data was arranged from left to centre and then to right 

before loading into the program. The coding used to create sequence and interleaving 

training patterns only. Furthermore, case 5 and case 6 were using the same coding 

with case 3 and case 4 respectively except the training data was arranged in rotation 

order, which is upright to skewed images before load into the program. Figure 4.9 

below shows the ordering results for case 3, 4, 5 and 6 which created by the program 

code. 
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        Figure 4.9: Results of ordering distribution for case 3, 4, 5 and 6 
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4.2 Results and discussion of ordering study for training data set 

 

4.2.1 Results 

 

Results for all the 7 ordering cases are shown in table 4.2. These results showed the 

average value of 5 execution times for each case. Total average is the percentage of 

corrected output numbers divided by total training sample. Whilst total perfect is the 

percentage score in the condition where corrected outputs equal to total training 

sample throughout whole training process. The minimum percentage score for 

average results is 50% due to the random prediction is either true or false, while 

perfect results has 0% for its minimum score. Generalization accuracy and validation 

accuracy are the average results for generalization and validation data set. 

  

Table 4.2: Results for 7 ordering cases 

Case Condition
Total 
Average 

Total 
Perfect

Total Generalization
Accuracy

Total Validation 
Accuracy

0 Random order 99.32% 16.80% 61.13% 68.87%
1 Sequence order  99.60% 33.80% 60.51% 67.60%
2 Interleaving sequence order  99.24% 14.00% 60.56% 69.42%
3 Sequence + transition order 99.54% 46.00% 60.28% 66.55%

4
Interleaving sequence  + 
transition order 99.28% 11.60% 61.67% 70.95%

5 Sequence + rotation order 99.44% 33.60% 61.15% 67.43%

6
Interleaving sequence  + 
rotation order  99.34% 12.80% 61.73% 69.78%

 
 

 

From table 4.2, it illustrated that ordering patterns of training data affecting 

the results of total perfect drastically. Besides, the results of total average were 

slightly affected by the ordering patterns. It may due to the reference point of total 

average which 99.32 was almost reach its maximum value, hence the influence of 

ordering patterns were not demonstrated significantly. However, total generalization 
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accuracy and total validation accuracy were not influenced by ordering patterns. The 

distribution of the perfect score in all the 5 execute time were plotted and showed in 

figure 4.10. 

 

 
Figure 4.10: Distribution of the Percentage Perfect 

 

 

The red line in the graph above represents the reference point. It was 

determined by the average of 5 total perfect score in case 0 or random order. From 

the graph above, case 1, 3 and 5 perform higher output compare to other. Moreover, 

case 1 and case 5 had higher variability than case 3. Therefore, case 3 was the best 

ordering to improve the network performance, because low variability can make the 

results more predictable. In contrast, case 2, 4 and 6 were performed lower output 

compare to the reference point. 

 

After observing the overall results of the ordering cases, more detail 

investigations on these cases were carried out. It was beginning by comparing 

random, sequence and interleaving sequence order. Transition and rotation order 

were not considered yet since they cannot stand alone to test its own effects to the 

network. Table and graph below shows the comparison on the 3 different cases. In 

this comparison, 20 testing were taken for each case and average result was counted. 
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Table 4.3: Comparison on case 0, 1 and 2 

Case Condition Total Average  Total Perfect

0 Random order 99.34% 18.10%

1 Sequence order 99.62% 40.25%

2 Interleaving sequence order 99.20% 12.85%
 

 

 
Figure 4.11: Distribution of case 0, 1, and 2 

 

 

Random order was used as the reference point to calculate the percentage 

improvement of other cases. Equation 4.1 and 4.2 show the percentage improvement 

of case 1 while equation 4.3 and 4.4 represent case 2. The formula used to calculate 

the percentage improvement on total average and total perfect are different. Since the 

total average results were almost reached its maximum value of 100, then ratio 

improvement in that small portion was calculated. Nevertheless, percentage 

improvement for total perfect was counted based on the reference value. It shows 

how much improvement was achieved by the new results compare to the reference 

value. 
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௧௢௧௔௟ ௔௩௘௥௔௚௘ ೎ೌೞ೐ భݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଽଽ.଺ଶିଽଽ.ଷସ
ଵ଴଴ିଽଽ.ଷସ

 ൈ 100% ൌ 42.42%                  (4.1) 

 

௧௢௧௔௟ ௣௘௥௙௘௖௧ ೎ೌೞ೐ భݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ସ଴.ଶହିଵ଼,ଵ

ଵ଼,ଵ
 ൈ 100% ൌ 122.38%           (4.2) 

   

௧௢௧௔௟ ௔௩௘௥௔௚௘ ೎ೌೞ೐ మݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଽଽ.ଶ଴ିଽଽ.ଷସ
ଵ଴଴ିଽଽ.ଷସ

 ൈ 100% ൌ െ21.21%              (4.3) 

 

௧௢௧௔௟ ௣௘௥௙௘௖௧ ೎ೌೞ೐ మݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଵଶ.଼ହିଵ଼.ଵ

ଵ଼,ଵ
 ൈ 100% ൌ െ29.01%           (4.4) 

 

 

From the calculation above, ordering of case 1 was proved performing better 

than the random order, while ordering of case 2 was degraded the performance of the 

network. Sequence order or case 1 enhanced the total perfect performance at least 

twice and at the same time rinse the total average output from 99.34 to 99.62. 

 

Next, transition order investigation was considered. The comparison between 

both transition orders with different combination order was made based on the table 

4.2. Random order was used as reference point to calculate the percentage 

improvement. This comparison was shown in table below. Percentage improvement 

of these two cases was calculated as well. Equation 4.5 and 4.6 represent 

improvement of case 3 while equation 4.7 and 4.8 represent the improvement of case 

4. 

 

Table 4.4: Comparison on case 3 and 4 

Case Condition Total Average Total Perfect

0 Random order 99.32% 16.80%

3 Sequence + transition order 99.54% 46.00%

4 Interleaving sequence + transition order 99.28% 11.60%  
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௧௢௧௔௟ ௔௩௘௥௔௚௘ ೎ೌೞ೐ యݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଽଽ.ହସିଽଽ.ଷଶ
ଵ଴଴ିଽଽ.ଷଶ

 ൈ 100% ൌ 32.35%                  (4.5) 

 

௧௢௧௔௟ ௣௘௥௙௘௖௧ ೎ೌೞ೐ యݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ସ଺.଴ିଵ଺.଼

ଵ଺.଼
 ൈ 100% ൌ 173.81%           (4.6) 

   

௧௢௧௔௟ ௔௩௘௥௔௚௘ ೎ೌೞ೐ రݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଽଽ.ଶ଼ିଽଽ.ଷଶ
ଵ଴଴ିଽଽ.ଷଶ

 ൈ 100% ൌ െ5.88%                (4.7) 

 

௧௢௧௔௟ ௣௘௥௙௘௖௧ ೎ೌೞ೐ రݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଵଵ.଺ିଵ଺.଼

ଵ଺.଼
 ൈ 100% ൌ െ30.95%           (4.8) 

 

 

In table 4.4, transition order was showed improvement when combining with 

sequence order while it performs poorly when combining with interleaving sequence 

order. These results can be proved by the calculation made in equation 4.5 to 4.8. In 

conclusion, considering transition ordering patterns can improve the total perfect 

2.75 times compare to the reference value.  

 

After that, rotation order was examined as well. The comparison between 

both rotation orders with different combination order was made. This comparison 

was shown in table below. Percentage improvement of these two cases was 

calculated as case 3 and 4. Equation 4.9 and 4.10 represent case 5 calculations while 

equation 4.11 and 4.12 represent case 6 calculations. 

 

Table 4.5: Comparison on case 5 and 6 

Case Condition Total Average Total Perfect

0 Random order 99.32% 16.80%

5 Sequence + rotation order 99.44% 33.60%

6 Interleaving sequence + rotation order  99.34% 12.80%
 

 

 

௧௢௧௔௟ ௔௩௘௥௔௚௘ ೎ೌೞ೐ ఱݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଽଽ.ସସିଽଽ.ଷଶ
ଵ଴଴ିଽଽ.ଷଶ

 ൈ 100% ൌ 17.65%                  (4.9) 
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௧௢௧௔௟ ௣௘௥௙௘௖௧ ೎ೌೞ೐ ఱݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଷଷ.଺ିଵ଺.଼

ଵ଺.଼
 ൈ 100% ൌ 100%                     (4.10) 

   

௧௢௧௔௟ ௔௩௘௥௔௚௘ ೎ೌೞ೐ లݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଽଽ.ଷସିଽଽ.ଷଶ
ଵ଴଴ିଽଽ.ଷଶ

 ൈ 100% ൌ 2.94%                 (4.11) 

 

௧௢௧௔௟ ௣௘௥௙௘௖௧ ೎ೌೞ೐ లݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଵଶ.଼ିଵ଺.଼

ଵ଺.଼
 ൈ 100% ൌ െ23.81%         (4.12) 

 

 

Similar to transition cases, rotation order showed improvement when 

combining with sequence order while perform weakly when combining with 

interleaving sequence order. However, these rotation order effects were not so 

significant compared to transition cases. It can be proved by comparing the transition 

order and rotation order with the same combination order which is sequence order. 

Figure below showed that comparison between transition order and rotation order. 

Both cases showed enhancement to network performance, but transition order will 

much helpful in improving the performance compare to rotation order. 

 

 
Figure 4.12: Comparison between transition and rotation order 
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After calculated the percentage improvement for every cases, the ordering 

were divided into degraded and improved cases. The following graphs show in figure 

4.13 and 4.14 were illustrated the degraded cases and improved cases respectively. 

 

 
Figure 4.13: Degraded cases 

 

 

From figure 4.13, all the degraded cases had a common ordering pattern 

which is interleaving sequence ordering. Therefore, this ordering pattern can be 

concluded as a poor ordering pattern to a supervised learning network.  

 

 
Figure 4.14: Improved cases 
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In contrast, there are three improved cases were determined in figure 4.14, 

which are sequence order, sequence plus transition order and sequence plus rotation 

order. The higher average performance was sequence plus transition order or case 3. 

However, these 3 cases were helping in enhance the network performance. Hence, a 

new additional ordering which is sequence plus transition plus rotation order was 

considered. The total perfect of new addition ordering was plotted in figure 4.15. 

 

 
Figure 4.15: Comparison of new additional ordering to random order 

 

 

From figure 4.14, the new additional ordering performs 3 times better than 

random order. It was also performed the highest perfect output compare to other. The 

average of 5 total perfect percentages was 56% and its total average was 99.7%. 

Percentage improvement was counted for both total average and total perfect which 

show in equations below. 

 

௧௢௧௔௟ ௔௩௘௥௔௚௘ݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ଽଽ.଻ିଽଽ.ଷଶ
ଵ଴଴ିଽଽ.ଷଶ

 ൈ 100% ൌ 55.88%                     (4.13) 

 

௧௢௧௔௟ ௣௘௥௙௘௖௧ݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ  
ହ଺.଴ିଵ଺.଼

ଵ଺.଼
 ൈ 100% ൌ 233.33%                     (4.14) 
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Formula 4.13 and 4.14 show the highest improvement was achieved by this 

new additional case. It helps to enhance the network performance at least 3 times 

from the reference condition. Hence, optimal ordering patterns was chosen to be 

sequence plus transition plus rotation order.  

 

 

 

4.2.2 Discussion 

 

From the analysis of ordering of the training data, overall 7 cases’ performances 

were plotted and observed. From these cases, results on their percentage score for 

total perfect was significantly influence by the ordering patterns. These total perfect 

score increment will lead to the improvement of total average score as well. However, 

it was not so significant in the total average score due to the score almost reaches its 

maximum value and increments are not shown significantly. When the total average 

score was almost reached 100, then the increment in total perfect score can use to 

represent the improvement of the network performance. Besides, the total 

generalization and total validation score from table 4.2 was not shown any influence 

of the ordering patterns. It may cause by some samples in the generalization and 

validation data set was too confusing, so even output was improved but the confusing 

images were still not recognized correctly.  

 

 Next, the distribution of cases which shows as figure 4.10 can use to 

determine the variability of the cases. This variability represents the predictability of 

the neural network. If the variability is small, it means the output results are more 

predictable. Predictability is important in neural network to show the consistent 

performance of the training results. When a best ordering patterns was chosen, not 

only the score of total average and total perfect are observing, the variability of the 

results should include into the consideration as well. If a case has a highest score of 

total perfect increment but variability of that score are large, then the worst case of 

that particular case should find out to confirm it is greater than the reference point 

before determine that particular case as the best ordering patterns. 
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Comparisons between small portions of 7 training ordering were made. First, 

table 4.3 and figure 4.11 show the comparison between case 0, 1, and 2. In this 

comparison, every case was performing 20 times to observe the variability of the 

ordering patterns. Results shows that sequence order performed better than random 

order and interleaving sequence order. To ensure the sequence order is the best 

among them, distribution of the cases was observed. In figure 4.11, even though 

sequence order had large variability compare to other two cases, it perform well over 

all the testing. The lowest performance of sequence order was still better than other. 

Hence, it can conclude that it was the best ordering among them. Besides, 

interleaving sequence order was perform poorly compare to random order. Their best 

result was just reached the average value of random order.  

 

From results above, sequence ordering was showed to help in network 

performance most. Sequence order was learning all the different patterns of one digit 

before proceeding to another digit. Hence, program can learn a particular digit until 

expert in recognizing the particular digit in all different aspects before it proceeds to 

other. Even though the program proceeds to learn another new digit patterns, 

program will still have some memory to the digit it learn before. This can be 

explained in the way human being learning a new thing.  

 

For example, when lecturer teaches a new equation or concept to his/her 

students, the lecturer will try to explain it and show the different application of that 

particular equation or concept. Hence, student will learn the equation deeply through 

all different points of view. After student familiar with the equation or concept, only 

then they will move to another new concept. Even though proceed to learn another 

new thing, the memory to recognize the learned knowledge was still there. However, 

if the equation or concept was touched and gone, then student will just ignored the 

knowledge and fail to recognize it in the future. Hence, sequence ordering help in 

learning process and interleaving sequence performed the worst results. Random 

order was perform better than interleaving sequence because it may generate a short 

block of sequence order to improve its classification ability rather than all different 

output targets. 
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Afterwards, transition and rotation order were found to be helpful in network 

performance when combining with sequence order. This phenomenon was also can 

be explained by human being learning process. For example, if a child starts learning 

the digit, the similar digit form are learned first before learning the confusing image. 

The variability between each sample should not too big, so that the child can classify 

the new sample easily based on his/her past knowledge. Therefore, transition and 

rotation order which produce the data in small variability changes was advised to 

apply. From figure 4.12, results showed that transition order was made a greater 

improvement in the network performance compared than rotation order. It was due to 

the variability change in transition order smaller than rotation order. 

 

 Adding all the issues help in learning process was produced the best results 

for the neural network. It was proved in figure 4.15 where sequence plus transition 

plus rotation order showed the best result in the study. In conclusion, learning 

enough samples for a particular digit changes with small variability between each 

learning sample may helps to improve the classification ability of the neural network. 

 

 

 

4.3 Results and discussion of optimization for training algorithm 

 

4.3.1 Results 

 

After finding the optimal ordering patterns for training data, optimization on the 

training algorithm’s parameters was carried out. In this study, the optimal ordering 

patterns with total average equal to 99.7% and total perfect equal to 59% was used. 

To increase the convergence speed, parameters such as momentum constant, initial 

learning rate, and amplifying factor were optimized. These three parameters were 

affected each other. To simplify the analysis, optimal value of momentum constant 

and initial learning rate were determined first. Then, the determined value of initial 

learning rate was used to discover the optimal amplifying factor of adaptation 

learning rate.  
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 The initial learning rate and momentum constant must be adjusted until the 

best network performance was obtained. Hence, the table below shows the different 

parameters testing for initial learning rate and momentum constant.  

 

Table 4.6: Learning rate and momentum parameter determination 

 

learning rate momentum  average perfect
0.2 0.05 99.50 36.00
0.2 0.1 99.40 36.00
0.2 0.5 98.00 4.00
0.1 0.1 99.70 55.00
0.1 0.05 99.70 59.00
0.05 0.1 99.80 69.00
0.05 0.2 99.70 58.00

 

In table 4.6, percentages of total average and total perfect were collected. The 

higher these two values, the better the network performs. In this part of study, 

learning rate equal to 0.05 and momentum constant equal to 0.1 was produced the 

highest output performance. Its total average was reached 99.8% and total perfect 

was gone to 69% at that state. This output value was improved compare to the 

optimal ordering output which set as the reference point in this part of study. It 

showed that the convergence speed of training algorithm was improved, so that the 

neural network can learn more in the same epoch value. Hence, these parameter 

values were chosen as the optimal value for initial learning rate and momentum 

constant. Furthermore, to determine the improved convergence speed, epoch value 

was being reduced until the output value was nearly equal to the reference point. In 

that moment, processing time of the algorithm was recorded down to compare with 

the reference case. Result recorded was shown in table 4.7 later.  

 

 Next, amplifying factor or constant parameter H in adaptation learning rate 

was considered. Using the initial learning rate which set from the previous analysis 

which is 0.05, optimal value of parameter H was found. Figure below show the graph 

of percentage perfect versus parameter H value.  
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Figure 4.16: Percentage Perfect vs parameter H 

 

 Similar to previous case, the highest output performance showed the network 

convergence speed was increased. The amplifying factor, H was optimizing at value 

1.00. In that value, percentage perfect was produced a higher output compare to the 

reference point. Hence, same procedure as previous state was carried out. Epoch 

value was reduced to achieve the similar output results with the reference point, and 

then processing time was recorded down. It shows in table 4.7 below.  

 

 

Table 4.7: Comparing the algorithm’s processing time 

Method time (minutes)

  

 backpropagation  9.022
 momentum 5.587
 momentum + adaptive learning rate 4.095

 

 Proposed algorithm which is momentum plus adaptive learning rate had the 

most shorten training time. It was proved that it improve the convergence speed of 

neural network. Backpropagation algorithm was used as the reference point and 

percentage improvement for momentum and the proposed algorithm were counted as 

below.    
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௠௢௠௘௡௧௨௠ݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ   ଽ.଴ଶଶିହ.ହ଼଻
ହ.ହ଼଻

 ൈ 100% ൌ 61.48%                     (4.15) 

 

௣௥௢௣௢௦௘ௗ ௔௟௚௢௥௜௧௛௠ݐ݊݁݉݁ݒ݋ݎ݌݉݅ % ൌ   ଽ.଴ଶଶିସ.଴ଽହ
ସ.଴ଽହ

 ൈ 100% ൌ 120.32%           (4.16) 

 

 Equation 4.15 and 4.16 showed that proposed algorithm had higher 

improvement on the convergence speed compare to momentum algorithm. It reduced 

half of the processing time required to train the network in backpropagation 

algorithm. Hence, proposed algorithm was shown to improve the convergence speed 

of neural network with its optimal parameters.  

 

 Finally, the output results before and after optimizing the algorithm 

parameters were shown below.  

 

 
Figure 4.17: Before parameter optimization 
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Figure 4.18: After parameter optimization 

 

 

 

4.3.2 Discussions 

 

In the interpretation of the parameters of training algorithm, parameters of learning 

rate, momentum constant and amplifying factor H are affecting each other. It is 

because all these 3 parameters are used together in the weight-updating formula, so 

they will influence each other.  

 

 The ratio between initial learning rate and momentum constant will affect 

whole program functions. If initial learning rate was too much larger than momentum 

constant, the momentum effects will disappear. Program will not help to converge 

faster in the same direction. Hence, whole program remain slow convergence rate. 

On the other hand, if momentum constant was too much bigger than initial learning 

rate, program required very long time when it needs to change direction towards its 

target. Worst case may be happened where program pass by the target and find local 

minimum target rather than global minimum target.  

 

 To evade both conditions above, a balance value had to achieve between 

these initial learning rate and momentum constant. However, value of momentum 

constant should larger than initial learning rate, so that the momentum effects will 
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continue functioning. From the results produced, momentum constant was doubled 

the initial learning rate to produce highest convergence speed.  

 

 Next, adaptation learning rate was only functioning in certain amplifying 

factor, H value. If amplifying factor too large, network output will be oscillated and 

not stable. It is because when amplifying factor H has a high value, the exponential 

function will enlarge it again and make whole program oversensitive to every new 

data, and then lead to system failure. The proper range of amplifying factor was 

found to be 0 to 2 which shown in graph 4.16. The graph in figure 4.16 was proved 

this proper range was helped in network performance also. In this range, amplifying 

factor showed its highest convergence speed on value 1.00.  

 

 The proposed algorithm increases the network convergence speed at least 

twice to shorten the training time. Adding adaptation learning rate rather than using 

momentum method only was proved to have highest convergence speed than only 

used momentum method.  

 

 Overall, the proposed algorithm was proved to enhance the convergence 

speed of the network.  

 

  

 

 



58 

 

 

 

CHAPTER 5 

 

 

 

5 CONCLUSION 

 

 

 

 

5.1 Overall summary 

 

In this project, an optimal ordering of the data patterns was developed to improve the 

performance of the neural network. Besides, a combined algorithm from existing 

algorithm to train the network was carried on to improve the convergence speed or 

training time in a network.  

 

 From the results of the data patterns ordering analysis, a best way to improve 

the network performance are the sequence order plus transition and rotation order. It 

helps to improve at least twice the output performance of the neural network 

compare to the random order. It showed that learning all the similar target output 

patterns to the expert condition before proceed to other may helps in network 

performance. The optimal ordering shows that the neural network learning process 

was work in the same manner of human being learning process. Hence, the 

improvement in the results proved that the ordering patterns of the training data will 

affect the generalization ability of the neural network. 

 

 Next, the optimization of the training algorithm has made in this project. The 

optimization of momentum constant, initial learning rate and amplifying factor H 

will help to shorten the training time. Their optimal values are 0.1, 0.05 and 1.0 

respectively. Results showed that using a training program with combination of 
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momentum and adaptive learning rate will require the 50% of the training time 

compare to backpropagation.  

 

 

 

5.2 Future direction 

 

The neural network is an interdisciplinary field, both in its development and in its 

application. Nowadays, the neural network was found to be applied in many fields. 

However, some problems are encountered by the neural network such as global 

minimum problem and convergence speed still cannot be solved.  

 

 Apart from the algorithm analyze in this research, there are several advanced 

concept to improve the training speed in the neural network, especially deal with the 

massive input data sets. Data partitioning methods can be used to shorten the training 

time when dealing with big data sets or data dimensions. In nature, the neural 

network processes all the patterns in the training over and over. If the data set is large, 

it is very time-consuming to run through all the data in the program. Data 

partitioning may help to partition the training set to provide shorten training time.  

Here are 2 types of data partitioning which can apply into the research to advance the 

training process time of the network. First approaches in data partitioning is a 

growing data set in the training process. Initially, a small subset of data is trained, 

and this subset is growing with a fixed percentage in each time training has 

completed. This growing data set will carry on until the whole training set is included 

in the learning process. This growing data set helps to reduce the training time in the 

beginning. However, it is still cover all the training set at the end to ensure the 

training process is done completely. The second approach is windowed data set 

which has a fixed size of the subset that move across the data set. It required a 

caution step to set the window size and the step size of the subset to ensure the 

performance of the network is not affected. Both approaches may help in shorten the 

training process especially in the massive input data sets. Figure below showed both 

approaches. 
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Figure 5.1: Growing and windowed datasets 

 

 

 Furthermore, the neural network performance can be improved by scaling and 

centering the input data. Even a small 8x8 dimensions used in this research faces this 

scaling and centering problem. The neural network receives the data in form of input 

stimuli. Thus, it cannot recognize the different sizes and alignment of a character 

without having to learn all possible samples. Scaling and centering the input data will 

helps to reduce the patterns of the learning process, it may shorten the learning time 

of the neural network. With this scaling and centering input data, the ordering of the 

training data patterns can reduce to the point where considering only the sequence 

order. It helps to simplify the ordering patterns as well. Figure below showed the 

scaling and centering method. 
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Figure 5.2: Data scaling and centering 
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