
i

A C++ IMPLEMENTATION OF A

POLYNOMIAL TIME APPROXIMATION SCHEME

FOR ALIGNING PROTEIN STRUCTURES

BY

CHOR YUN JIA

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JAN 2013

2

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: A C++ IMPLEMENTATION OF A POLYNOMIAL TIME APPROXIMATION SCHEME

 FOR ALIGNING PROTEIN STRUCTURES

Academic Session: JANUARY 2013

I CHOR YUN JIA

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

(Author‟s signature) (Supervisor‟s signature)

Address:

 74, TAMAN KODIANG, .

 06100 KODIANG, DR. NG YEN KAOW .

 KEDAH. Supervisor‟s name

Date: 8/4/2013 . Date: __________________

i

A C++ IMPLEMENTATION OF A

POLYNOMIAL TIME APPROXIMATION SCHEME

FOR ALIGNING PROTEIN STRUCTURES

BY

CHOR YUN JIA

TITLE

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JAN 2013

ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “A C++ IMPLEMENTATION OF A POLYNOMIAL

TIME APPROXIMATION SCHEME FOR ALIGNING PROTEIN STRUCTURES”

is my own work except as cited in the references. The report has not been accepted for

any degree and is not being submitted concurrently in candidature for any degree or other

award.

Signature : _________________________

Name : CHOR YUN JIA .

Date : 8/4/2013 .

iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor for the

opportunity to work on this project on protein structure alignment–my first step towards a

career in bioinformatics. Thank you, Dr Ng.

This report is dedicated to my parents and my family for their love, support and

continuous encouragement throughout the course.

When I asked for strength, God gave me more burdens to carry.

When I asked for love, God sent me people with problems.

When I asked for wisdom, God gave me more problems to solve.

I see that I did not get the things I asked for but I have been given all the things that I

needed. Thank God.

iv

ABSTRACT

This project studies and implements a polynomial time approximation scheme (PTAS)

for aligning protein structures proposed by Li and Ng (Li and Ng, 2010). The algorithm

addresses the alignment problem called the LCP problem under bottleneck distance. In

the problem, each protein structure is modeled as a sequence of 3D points. Given two

such sequences, the problem is to find a maximal subset of points from each protein and a

bijection between the two subsets, under the restriction that there exists a superposition

which brings each pair of points in the bijection to within a specified proximity. Whereas

most current algorithms for the problem are heuristic in nature, the algorithm under study

provides a solution with theoretical bounds for both runtime and accuracy.

Implementation of the algorithm is complicated by the difficult geometrical

manipulations in the algorithm. The basic idea of the algorithm is as follows. Firstly, a

rigid transformation is identified to superimpose the two structures. The transformation is

searched in a discretized space of resolution – a theorem shows that the discretization

will introduce discrepancies of at most 3 . Each pair of points in Q will then be used as a

rotation axis upon which P is rotated. During the rotation, the rotation angles where

points in P and Q come within the required proximity are noted. At each angle, for each

point in P we know a set of points in Q that it can be matched to. This set does not change

for each rotation interval where no points come into or out of contact; hence the entire

rotation interval can be considered similarly. For each such rotation interval, the problem

is to find a bijection which matches the most points in P to Q. To solve this, a bipartite

graph is constructed where the vertices are the points in P and Q, and an edge is placed

between every two vertices that can be matched; a maximum bipartite matching of the

graph gives us the optimal bijection. An exhaustive search of the optimal bijection for all

rotation axes and rotation angles gives us the solution to the problem. The algorithm

further exploits some geometrical properties as well as overlaps in the intermediate

solutions to reduce runtime complexity.

This project gives a full implementation of the algorithm in C++, with very minimal use

of external libraries.

v

TABLE OF CONTENT

TITLE ... i

DECLARATION OF ORIGINALITY ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

LIST OF FIGURES .. vii

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation and Problem Statement .. 1

1.2 Project Objective and Contribution .. 2

1.3 Background information .. 3

CHAPTER 2 LITERATURE REVIEW ... 4

2.1 Literature Review ... 4

2.2 Polynomial Time Approximation Scheme to Implement 7

CHAPTER 3 METHODOLOGY AND TOOLS ... 11

3.1 Methodology and Tools .. 11

CHAPTER 4 ALGORITHM IMPLEMENTATION .. 12

4.1 Program Input and Output ... 12

4.2 Main Procedure of Program .. 13

4.2.1 Get user input.. 14

4.2.2 Read .pdb file .. 15

4.2.3 Get total length of common residue ID of two input structures (P and Q) 16

4.2.4 Create Structure for the input structures ... 17

4.2.5 Identify radial pair candidates from P and Q ... 18

4.2.6 Transform structure Q so that it is along the y-axis ... 20

4.2.6.1 Translation ... 22

4.2.6.2 Rotation .. 23

4.2.6.3 Cross Product ... 24

4.2.6.4 Rotation axis .. 25

4.2.6.5 Rotation angle .. 28

4.2.7 Exhaustive search of positions for p1 in discretized Dc sphere around q1 31

4.2.8 Forming a sphere cap for p2 .. 34

vi

4.2.9 Find angle that moves P in and out of contact of Q ... 41

4.2.10 Find the maximum bipartite matching .. 49

4.2.11 Output the maximum number of matching of both structures........................ 51

4.3 Program Result .. 52

CHAPTER 5 DISCUSSION AND CONCLUSION ... 54

5.1 Discussion ... 54

5.1.1 Achievement ... 54

5.1.2 Implementation Issues and Challenges ... 54

5.1.2.1 Problem of Installing Cygwin .. 54

5.1.2.2 Early conceptual mistakes in implementing the algorithm 55

5.1.2.4 Lack of knowledge in circle-sphere intersection 57

5.1.2.4 Implementation of Hopcroft-Karp algorithm... 57

5.1.3 Runtime Error and Memory Error .. 59

5.2 Conclusion ... 59

BIBLIOGRAPHY ... 60

APPENDIX A COMPLETE CODING OF THE WHOLE PROGRAM 1

A-1 main.cpp ... A-1

A-2 pdb.h ... A-4

A-3 pdb.cpp ... A-5

A-4 Structure.h .. A-7

A-5 Structure.cpp .. A-8

A-5 MathOperation.h .. A-11

A-6 MathsOperation.cpp ... A-12

A-7 Transformation.h .. A-15

A-8 Transformation.cpp .. A-16

A-9 Graph.h ... A-30

A-10 Graph.cpp ... A-31

A-11 Example of .pdb file ... A-34

vii

LIST OF FIGURES

Figure Number Title Page

Figure 2.2.1 LCP Problem under bottleneck distance 7

Figure 2.2.2 Forming rotation axes with a radial pair within the 8

discretized space

Figure 2.2.3 Rotation angles which move p into and out of contact 9

with q

Figure 4.2.1.1 Code to Store User Input 14

Figure 4.2.2.1 Code of Function readFile 15

Figure 4.2.3.1 Code of Function matchPDB 16

Figure 4.2.4.1 Parts of codes in main function 17

Figure 4.2.5.1 Distance of P from Q must is at most Dc 18

Figure 4.2.5.2 Initial check for matching point p1 to q1 and p2 to q2 18

Figure 4.2.5.3 Code of function matchPoints 19

Figure 4.2.6.1 Translation of Q so that q1 and q2 are along y-axis 20

Figure 4.2.6.2 Code of function transformStruct 21

Figure 4.2.6.1.1 Code of function translateStruct 22

Figure 4.2.6.1.2 Code of function diff 22

Figure 4.2.6.2.1 Rotation of q2 23

Figure 4.2.6.3.1 Cross Product 24

Figure 4.2.6.3.2 Code of function crossProduct 24

Figure 4.2.6.4.1 Rotation axis of q2 25

Figure 4.2.6.4.2 Code of function rotateStruct 26

Figure 4.2.6.4.3 Code of function normalize 26

Figure 4.2.6.4.4 Rotation angle to rotates q2 to y-axis 27

Figure 4.2.6.4.5 Law of Cosine 27

Figure 4.2.6.5.1 Calculation of rotation angle using Law of Cosine 28

Figure 4.2.6.5.2 Code of function rotateStruct 29

Figure 4.2.6.5.3 Code of function rotatesAboutVector 29

viii

Figure 4.2.6.5.4 Code of function rotatesAboutArbLine 30

Figure 4.2.7.1 Cube for candidate positions of p1 31

Figure 4.2.7.2 Discretization of cube of q1 32

Figure 4.2.7.3 Sphere encapsulated in the cube 32

Figure 4.2.7.4 Code of function tryP1InGrid 33

Figure 4.2.8.1 Forming sphere cap with grid 34

Figure 4.2.8.2 Conditions leading to the formation of a sphere cap 35

Figure 4.2.8.3 Vector1 to rotate p2 35

Figure 4.2.8.4 Code of function rotateVectorAbtVector 36

Figure 4.2.8.5 Method to form sphere cap 37

Figure 4.2.8.6 Diagram for formula of arc length 37

Figure 1.2.8.7 Code of function formSphereCap 38

Figure 4.2.8.8 Code of function formSphereCap 39

Figure 4.2.8.9 Code of function movePtoPlace 40

Figure 4.2.9.1 Angle that moves p in and out of contact with q 41

Figure 4.2.9.2 Code of function findAngleInOut 41

Figure 4.2.9.3 Intersection of circle and sphere 42

Figure 4.2.9.4 Intersection of a plane and circle 43

Figure 4.2.9.5 Intersection of two circles 44

Figure 4.2.9.7 Angle that moves p into contact of q 45

Figure 4.2.9.8 Angle that moves p out of contact of q 46

Figure 4.2.9.9 Code of function getIntersectPoint 47

Figure 4.2.9.10 Code of function getIntersectPoint 48

Figure 4.2.9.11 First θ1 and θ2 combination 49

Figure 4.2.9.12 Angle rearrangement 49

Figure 5.1.2.2.1 Wrong concept of finding radial pair of P to match Q 55

Figure 5.1.2.2.22 Wrong concept of forming sphere cap 56

CHAPTER 1 INTRODUCTION

1

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

CHAPTER 1 INTRODUCTION

1.1 Motivation and Problem Statement

Proteins are the most important molecules in all living organisms. It functions as

enzymes, sensors, antibodies, transporters, among myriads of other roles. To perform

their biological function, proteins will fold into one or more specific spatial

conformations, driven by some non-covalent interactions. The functions performed are

frequently determined by the molecular shape of a protein, and it has been observed that

proteins of similar 3D structures are likely to function similarly. This allows us to predict

the functions of a protein by comparing its three-dimensional structure to the proteins of

known functions.

For this reason, there have been very intense researches on protein structure

comparison. Consequently, a large number of approaches, algorithms and software tools

have been developed to evaluate the similarity between the 3D proteins structures, under

the topic name of Protein Structure Alignment (Li & Ng 2010).

Though there are many protein structure comparison methods, all these methods

are heuristic in nature. That is, the principles which the methods are based on common-

sense or past experiences, rather than strict mathematical results. For example, they may

use readily accessible but loosely applicable information to increase the speed of finding

a satisfactory solution. Heuristic methods provide no guarantee on their runtime or the

accuracy of their outputs. Since the accuracy of the structure alignment is very important,

there is a need to devise methods which guarantees a specified level of accuracy in its

output. Such an algorithm to align the protein structures under the bottleneck distance for

protein structures is given by Li and Ng (Li & Ng 2010). The algorithm looks for an

optimal superposition of the two protein structures in a discretized space to approximate

the solution, through the radial pairs (or radial axes) introduced in (Li, Bu, Xu & Li

2008).

CHAPTER 1 INTRODUCTION

2

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

1.2 Project Objective and Contribution

The implementation of the algorithm for the LCP problem under the bottleneck

distance program will result in a first tool for aligning protein structures with a guarantee

in its accuracy. This will help researchers determine such alignments accurately in cases

where such accuracy is important – for example, when there is dispute with the results

from two different alignment methods.

The technique of radial pair used in the technique has proven to be very useful,

and has been successfully used to devise algorithms for so-called model comparison and

local continuous segments. To correctly implement the techniques involved in the use of

these radial pairs, e.g. the discretization and the rotation axis, is a non-trivial task which

requires days, or even weeks, for a programmer. Hence, the implementation of radial pair

library is important besides provide standard routines in the manipulation of the radial

pairs.

The availability of the radial pair library will be very useful for the

implementations of other algorithms which require them. The ease of programming radial

pairs using the library will also help in testing new algorithms which makes use of them,

spurring faster development of algorithms in structural alignment.

CHAPTER 1 INTRODUCTION

3

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

1.3 Background information

The main aim in the study of Protein Structure Alignment is to establish the

similarities of two or more polymer structures according to their shapes and three-

dimensional conformation. Two important problems studied are:

1. Structure comparison, which is to analyze the similarities and differences

between two given structures, while

2. Structure alignment, which is to establish the equivalence between the individual

atoms of two given structures.

Specifically, structure alignment requires no prior knowledge on the equivalence

of the structures. Thus, structure alignment is very useful for evaluating structures that

are predicted purely from protein sequences, that is, through ab initio protein structure

prediction methods (Zhang & Skolnick 2005). Structure alignment is also very useful in

finding the evolutionary relationship between the proteins which have only a small

number of identical sequences, that is, where the evolutionary relationship is difficult to

be determined by sequence alignment.

The output expected from a structural alignment typically includes (1) the

equivalence between the atoms of the input structures, (2) a minimal root mean square

deviation (RMSD) between the structures. The RMSD measures the similarity between

the two structures under the best possible superposition of the two structures. The

changes in domain relative orientation between two structures can unnaturally increase

the RMSD. Hence, structural alignment can be complicated because of the multiple

protein domains in one or more input structures.

CHAPTER 3 METHODOLOGY AND TOOLS

4

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

CHAPTER 2 LITERATURE REVIEW

2.1 Literature Review

Many methods for comparing two protein structures are based on the three

following steps. First, detect the common similarities of the two protein structures. Then,

align the structures based on such similarities. Lastly, compute a statistical measure on

the similarities. Most of these methods do well in recognizing observable similarities

between the protein structures. However, it is difficult to align two or more structures.

The accuracy may depend on the method used or what the user is about to achieve

(Martin, Captriotti, Shindyalow & Bourne 2009). The protein structure alignment

methods that are widely used and cited are DALI (Holm and Sander, 1993b),

Combinatorial Extension (CE) (Shindyalov and Bourne, 1998), MAMMOTH (Ortiz,

Strauss, and Olmea, 2002), RAPIDO (Mosca, Schneider TR.), SALIGN (Sali and

Blundell, 1990) and SSAP (Orengo and Taylor, 1996). There are many other new

methods that have been published and used. For instance, SABERTOOH, TOPOFIT,

SARF2 and ProBis are some known structure alignment methods in the world.

DALI, which is a distance alignment matrix method, represents each structure as

a distance matrix. Proteins are transformed into 2D arrays of distance between all Cα

atoms (Martin, Captriotti, Shindyalow & Bourne 2009). The method breaks the structures

into hexapeptide fragments and generates a comparison distance matrix by evaluating the

contact patterns between those successive fragments to align the two structures (Holm &

Sander 1996). The matrix diagonal consists of secondary structure features that involve

contiguous regions in the sequence‟s residues. Other diagonals reflect spatial contacts

between the residues that are far from each other in the sequence. The features they

represent are parallel if these diagonals are parallel to the main diagonals. On the other

hand, their features are anti-parallel whenever they are perpendicular. The features in the

square matrix are symmetrical about the main diagonal.

Combinatorial extension (CE) is a method similar to DALI, which breaks

structure into fragments before reassembling into a complete alignment. AFPs (aligned

fragment pairs) which are a series of pair-wise combinations of fragments are used to

identify a similarity matrix through which an optimal path is generated to determine the

CHAPTER 3 METHODOLOGY AND TOOLS

5

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

final alignment. In order to reduce unnecessary search space and increase the efficiency,

only AFPs which satisfy the criteria for local similarity are included in the matrix

(Shindyalov & Bourne 1998). Some similarity metrics are possible. CE identifies most

alike AFPs between the compared structures by using combinatorial extension algorithm.

To increase the performance of the process, the size of each AFP must be within 30

residues distance to the current alignment ends (Martin, Captriotti, Shindyalow & Bourne

2009) and maximum gap size are set to empirically determined value of 8 (Shindyalov &

Bourne 1998).

MAMMOTH (MAtching Molecular Models Obtained from THeory) transforms

coordinates of the protein structure into a set of six unit-vectors which are computed from

the Cα trace of the consecutive heptamers. This method decomposes protein structures

into short heptapeptides to compare with the heptapeptides of other proteins. It obtains a

similarity score between the heptapeptides and store in a similarity matrix by using a

unit-vector RMS, which is known as URMS method (Kedem, Chew & Elber 1999). With

hybrid dynamic programming, it computes the optimal residue alignment over the

similarity matrix. Lastly, identify the largest local structure alignment within a given

RMSD threshold by using the non-constant heuristic that is implemented in MaxSub

(Martin, Captriotti, Shindyalow & Bourne 2009).

RAPIDO, the Rapid Alignment of Proteins In terms of Domains, is actually a

web server for crystal structures of different protein molecules in 3D alignment. It

identifies fragments that have similar structure in two proteins based on the difference

distance matrices. The Matching Fragment Pairs (MFPs) are represented as nodes in a

graph. The MFPs are chained together to form an alignment through an algorithm to

identify the longest path on a Directed Acyclic Graph (DAG). After finish the alignments

of the two structures, the server identify conformational invariant regions by a genetic

algorithm (Jogn & Wendy 2004).

SALIGN compares structure properties by calculating the 3D coordinates of two

or more proteins. This method aligns the coordinates by dynamic programming. SALIGN

represents proteins by a set of properties or features which is calculated from protein

sequences and structures, or arbitrarily defined by the user. SALIGN can be applied to

align three or more protein structures. There are two approaches of SALIGN, which are a

CHAPTER 3 METHODOLOGY AND TOOLS

6

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

tree-based or a progressive alignment. Progressive alignment has less intensive than the

tree-based alignment (Martin, Captriotti, Shindyalow & Bourne 2009).

The SSAP (Sequential Structure Alignment Program) algorithm uses a double

dynamic programming optimizer to compare 3D structures based on the atom-to-atom

vectors. Instead of using alpha carbons, SSAP uses the C atoms to generate a set of

vectors for all residues except for glycine, a dummy C is used. A series of inter-residue

distance vectors between every residue and its closest non-contiguos neighbours on a

protein is constructed. Then, the matrices which consist of the vector differences between

C vectors are constructed. By applying the dynamic programming on each resulting

matrix, a set of selected matching position is defined. The final matrix is obtained by

comparing vectors between C atoms at pairs of same protein to the C atoms from the

selected matching position. Then, the final structural alignment is computed over the

matrix of scores S by second dynamic programming (Martin, Captriotti, Shindyalow &

Bourne 2009).

CHAPTER 3 METHODOLOGY AND TOOLS

7

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

2.2 Polynomial Time Approximation Scheme to Implement

As stated before, the methods discussed previously are heuristic in nature. Since

the accuracy of the structure alignment is very important, there is a need to devise

methods which guarantees a specified level of accuracy in its output. Such an algorithm

to align the protein structures under the bottleneck distance for protein structures is given

by Li and Ng (Li & Ng 2010). The algorithm looks for an optimal superposition of the

two protein structures in a discretized space to approximate the solution, through the

radial pairs (or radial axes) introduced in (Li, Bu, Xu & Li 2008).

 We first describe the alignment problem which the algorithm aims to solve. Given

two protein structures, the problem is to find a subset of points from each protein and a

bijective matching of the points between the two proteins, with the objective of

maximizing the number of pairs of points. The resultant problem is called the largest

common point set problem (LCP), which is formally stated in Figure 2.2.1. In the

formulation of the problem, each residue in the protein structure is represented as a point

in .

Figure 2.2.1: LCP Problem under bottleneck distance (Li & Ng 2010)

We let P, Q, f, T, S denote an optimal P’, Q’, f, t, S, respectively. Assume that a

pair of points p1, p2 P is known for the problem. We consider T as consisting of two

parts: (1) an initial transformation T which transforms p1, p2 into their positions under T,

and (2) a rotation R about an axis through the points T(p1) and T(p2), such that p P, R

(T(p)) = T(p).

LCP Problem under Bottleneck Distance

Input: Sequences P = (p1, …, pn), Q = (q1, …, qm) and distance

threshold Dc . Without loss of generality, assume m

 n.

Output: (i) Subsets , , | | | |,

(ii) bijection ,

(iii) rigid transformation (rotation and translation) t,

fulfilling the following conditions :

(a) ‖ ‖

(b) S = | | is maximized

CHAPTER 3 METHODOLOGY AND TOOLS

8

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Let P and Q be two given structures. A rigid transformation T is to be finding to

superimpose the two protein structures.

Assume that two points p1, p2 P, and their corresponding point ql, q2
Q are

known. Let T define an axis where a rotation will complete the transformation T. All

possible coordinates for p1 and p2 are examined in a discretized space in order to find T. T,

however, may not be within the discretized space. Let T be a transformation within the

discretized space which best approximates T. We will show that when p1 and p2 fulfills

certain properties, the error introduced by T can be bounded by the resolution of the

discretization.

Definition 1 (Radial pair (Li, Bu, Xu & Li 2008)). Given , . We call and a

radial pair iff is the furthest point from among all the points in P, which is written

as 〈 〉 . Note that 〈 〉 does not imply 〈 〉 .

Lemma 2 (Li, Bu, Xu & Li 2008). Given a set of points P, a rigid transformation T, T

and radial pair , . If ‖ ‖ and ‖ ‖ , then

there exists a rotation R about an axis through the points and , such that p

P, ‖ ‖ .

Hence an error of introduced by T on p1 and p2 with respect to T will at most

introduce an error of 3 on the rest of the points in P, and hence it suffices that we search

for the transformation in a discretized space of resolution to obtain a solution of

accuracy up to 3 . We now discuss how to perform this search in the discretized space.

Figure 2.2.2: Forming rotation axes with a radial pair within the discretized space

CHAPTER 3 METHODOLOGY AND TOOLS

9

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Assume that a radial pair pi, pj of P match respectively to qk, ql of Q. Since we

require that ||pi – pj|| ≤ Dc and ||qk – ql|| ≤ Dc, it suffices that we examine the coordinates

which fulfill these conditions. Then, the sphere of qk is discretized using cubes of size

length δ = Dc/3. Every cube corresponds to a grid point in the discretized space. After

fixing pi at a grid point, all possible positions of pj must be placed on a sphere cap at

center pi and radius ||pi – pj||, as illustrated in Figure 2.2.2. There are O(

) grid points in

the sphere and O(

) grid points in the sphere cap, giving us a total of O(

) rotation axes.

That is,

Lemma 3 (Li, Bu, Xu & Li 2008). If it is known that , P is a radial pair, and that

 and () for , Q, then one only needs to search among O(

)

transformations to find a transformation T which will result in at most difference to

each p P transformed by T, by way of Lemma 2.

 With a rotation axis fixed, we find the angle , about the axis through

pi and pj such that the score S is maximized. For a given p P and q Q, we find the

rotation angles that move p into and out a distance of from q, as shown in

Figure 3. The angle moves p into within a distance of from q, while the

angle moves p out from within a distance of from q. Within the angles

 and , p may be matched to q while outside of the angles, p cannot be matched to q.

Figure 2.2.3: Rotation angles which move p into and out of contact with q

Given a rotation axis and a rotation angle, we want to find the maximum number

of one-one matches between the points in P and Q. To do so we construct a graph G = (V,

CHAPTER 3 METHODOLOGY AND TOOLS

10

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

E). Each node in the graph represents a point in either P or Q. We place an edge between

two nodes if and only if at that angle, the point they represent can be matched. That is, an

edge (u, v) E iff u P, v Q and || u – v || ≤ (1 +) . It is clear that G is bipartite. To

find the maximum one-one matches, it suffices that we find the maximum bipartite

matching of G (Schneider 2002). It is clear that for any angle in , which does

not correspond to an angle where a point p comes into, or out of contact with some point

q, the bipartite graph created will be the same as one where the last change in point

contact occurs. Hence, we only need to construct bipartite graphs for the angles where

points come into, or out of contact. The angles which define these events divide ,

into mn intervals. We sort the angles that define the rotation intervals in order. The

bipartite graph constructed for each subsequent interval differs by at most an edge, and

the bipartite matching for one graph can be used as an initial matching for the subsequent

graph (Li & Ng 2010), allowing the matching to be performed in O(1) time. The time

required for the first bipartite matching, , while each of the O(mn) subsequent

bipartite matching requires O(mn) time, resulting in a total time complexity of

 .

Hence, we are able to determine the maximum number of matches in

 time when a rotation axis is given. Given our discretization scheme, there are at

most O(

) rotation axes given a radial pair (Lemma 3). However, we do not know which

pair is a radial pair of P, nor do we know their matching points in Q. For this reason we

exhaustively search all the possible m
2
n

2
 combinations of pairs of points in P and Q. This

gives us the following result.

Theorem 1 (Li, Bu, Xu & Li 2008). There is an algorithm of time complexity

 for the LCP problem under bottleneck distance.

CHAPTER 3 METHODOLOGY AND TOOLS

11

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

CHAPTER 3 METHODOLOGY AND TOOLS

3.1 Methodology and Tools

My choice of language to implement the algorithm is C++. The intermediate-level

language feature is the reason I chosen C++. It comprises the combination of high-level

and low-level language features (Herbert 1998).

For the present work, C++ is chosen based on consideration of performance and

versatility. My first consideration is speed, since the algorithm has a runtime of a very

high polynomial. Due to the intermediate level nature of the C++ language, compiled

codes in C++ remain to date faster than those written in most other languages.

Part of the aim of the present work is to realize a library for the manipulation of

radial pairs. A major consideration for library codes is the ability to make the codes run

under different environments and software development platforms. C++ is perfect for this

purpose. A number of interpreters of other programming languages are implemented in

C++ language themselves.

 To automate the experimentation, I choose to use the UNIX operating system for

this project. UNIX also supports many system level programming calls for controlling

processes, files, and access rights, such as those to prevent programs from simultaneously

accessing the same resource. UNIX is also a natural candidate for program automation,

due to its simplicity in the use of plain text and files for inter-process communication

(IPC), as well as a wealth of software tools for processing textual data, which can be

easily strung together through a command line interpreter using pipes. The use of UNIX

shells naturally adds control structures for scripting the software tools. The Bash shell is

chosen for this project.

CHAPTER 4 ALGORITHM IMPLEMENTATION

12

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

CHAPTER 4 ALGORITHM IMPLEMENTATION

4.1 Program Input and Output

Input of the program:

- Protein Structure 1 file (.pdb)

- Protein Structure 2 file (.pdb)

- Value of Dc

- Value of

Output of the program:

- Maximum number of residue matched.

CHAPTER 4 ALGORITHM IMPLEMENTATION

13

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2 Main Procedure of Program

The main procedure of the program is as follows:

1. Get user input.

2. Read .pdb file.

3. Get total length of common residue ID of two input structures (P and Q).

4. Create Structure for the input structures.

5. Identify candidate radial pairs: p1, p2 from P, and corresponding q1, q2 from Q.

6. Transform structure Q so that q1 and q2 are along the y-axis.

7. Discretize a sphere of radius Dc centered at q1 as candidate positions for p1.

8. Form discretized sphere cap centered at q2 as candidate positions for p2.

9. For each p in P and each q in Q, find the angles that move p in and out of contact

of q.

10. For each angular interval where there are no changes in the points in P and Q that

may come into or out of contact, find for each point p in P the set of points in Q

that it may be matched to.

11. Construct a bipartite graph out of the contact information obtained for the angular

interval in (10).

12. Find the maximum bipartite matching of the bipartite graph in (11).

13. Repeat for each candidate radial pair.

14. Output the maximum number of matching of both structures.

The geometrical manipulations to achieve each of these steps are detailed in the

following.

CHAPTER 4 ALGORITHM IMPLEMENTATION

14

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.1 Get user input

Dc = atof(argv[3]);

 epsilon = atof(argv[4]);

 pdb* nativePdb = new pdb(argv[1]);
 pdb* modelPdb = new pdb(argv[2]);

Figure 4.2.1.1: Code to Store User Input

Input from the user is specified through command line arguments passed to the

program. The first input argument is to be the native structure (structure Q); the second

input argument is to be the model structure (structure P). The third input argument is to

be the value of Dc while the last input argument is to be the value of .

 The sample input:

a.pdb b.pdb 0.1 2

CHAPTER 4 ALGORITHM IMPLEMENTATION

15

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.2 Read .pdb file

The protein structure file (.pdb) will be read. The total number of residues in the

file, residue IDs and also Cα‟s x, y and z coordinate will be read.

void pdb::readFile(){

 FILE *fInput=fopen(mPDBFile, "r");

 if(!fInput)

 {

 cerr << "Unsuccessfully open protein file " << mPDBFile << " !"

<< endl;

 exit(0);

 }

 char temp[80];

 double x,y,z;

 string residueName;

 mNumOfResidue = 0;

 while (fgets (temp, sizeof(temp), fInput) != NULL)

 {

 string line;

 line = temp;

 if(line.substr(0, 6) == "ENDMDL")

 break;

 if(line.substr(0, 6) != "ATOM ")

 continue;

 if(line.substr(12,4) == " CA " || line.substr(12,4) == "CA "

|| line.substr(12,4) == " CA")

 {

 x = toDouble(line.substr(30,8));

 y = toDouble(line.substr(38,8));

 z = toDouble(line.substr(46,8));

 mCAlpha[mNumOfResidue*3] = x;

 mCAlpha[mNumOfResidue*3+1] = y;

 mCAlpha[mNumOfResidue*3+2] = z;

 residueName = line.substr(17,3);

 mresidueID[mNumOfResidue] = toInt(line.substr(22,4));

 mNumOfResidue++;

 }

 }

 fclose(fInput);

}

Figure 4.2.2.1: Code of Function readFile

Only Cα atom‟s x, y and z coordinates will be needed. Thus the corresponding x,

y and z will be stored when the 12
th

–13
th

 letters of each line is “CA”. The residueID is

taken from the 22
nd

 character of each line.

CHAPTER 4 ALGORITHM IMPLEMENTATION

16

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.3 Get total length of common residue ID of two input structures (P and Q)

int matchPDB(pdb* native, pdb* model)

{

 int natLength = native->mNumOfResidue;

 int modLength = model->mNumOfResidue;

 int* resNative = native->mresidueID;

 int* resModel = model->mresidueID;

 int j = 0, k = 0;

 for(int i = 0; i < natLength; i++)

 {

 for(; j < modLength; j++)

 {

 if(resNative[i] == resModel[j])

 {

 mIndexNative[k] = i;

 mIndexModel[k] = j;

 k++;

 break;

 }

 else if(resNative[i] < resModel[j])

 break;

 }

 }

 if(k == 0)

 {

 cout << "There is no common residues in the input Stuctures" <<

endl;

 exit(0);

 }

 return k;

}

Figure 4.2.3.1: Code of Function matchPDB

In this function, the total number of common residueID of both structures and the

index of the common residue will be stored. The coordinates of the common residues will

be copied to create two Structure objects as shown in Figure 4.2.4.1.

CHAPTER 4 ALGORITHM IMPLEMENTATION

17

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.4 Create Structure for the input structures

int alignLength = matchPDB(nativePdb, modelPdb);
double* nativeCoord = new double[alignLength*3];
double* modelCoord = new double[alignLength*3];

//copy coordinates of common residues.
for(int i = 0; i < alignLength; i++)
{

 //Native
 nativeCoord[i*3] = nativePdb->mCAlpha[mIndexNative[i]*3]; //x
 nativeCoord[i*3+1] = nativePdb->mCAlpha[mIndexNative[i]*3+1]; //y
 nativeCoord[i*3+2] = nativePdb->mCAlpha[mIndexNative[i]*3+2]; //z

 //Model
 modelCoord[i*3] = modelPdb->mCAlpha[mIndexModel[i]*3]; //x
 modelCoord[i*3+1] = modelPdb->mCAlpha[mIndexModel[i]*3+1]; //y
 modelCoord[i*3+2] = modelPdb->mCAlpha[mIndexModel[i]*3+2]; //z
}

Structure* mNative = new Structure(nativeCoord, alignLength*3);
Structure* mModel = new Structure(modelCoord, alignLength*3);

Figure 4.2.4.1: Parts of codes in main function

CHAPTER 4 ALGORITHM IMPLEMENTATION

18

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.5 Identify radial pair candidates from P and Q

Figure 4.2.5.1: Distance of p from q must is at most Dc

 The condition for a point pP to be matched to qQ is that the distance between

p and q must be within Dc (as shown in Figure 4.2.5.1). Thus, a prerequisite for a pair p1,

p2 P to be matched to q1, q2 Q is for ||distP – distQ|| 2Dc, where distP = ||p1 – p2||

and distQ = ||q1 – q2||. In the program, ||distP – distQ|| 2Dc is checked (as shown in

Figure 4.2.5.2) before the combination of matching point p1 to q1 and p2 to q2 proceeds to

the next step.

Figure 4.2.5.2: Initial check for matching point p1 to q1 and p2 to q2

CHAPTER 4 ALGORITHM IMPLEMENTATION

19

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

void Transformation::matchPoints(int iNative, int jNative, int iModel, int jModel)
{

 //Translate p1 and p2 to match q1 and q2.
 //iNative = q1 iModel = p1
 //jNative = q2 jModel = p2

 //---------------Translation to match model to native-----------------------------

 double distP = calDist(mModel->mCoord + iModel, mModel->mCoord + jModel);
 double distQ = calDist(mNative->mCoord + iNative, mNative->mCoord + jNative);

 if(fabs(distP - distQ) <= 2*mDc)
 {

 //Transform Q structure such that q1 and q2 is along y-axis
 mNative->transformStruct(mNative->mCoord + iNative, mNative->mCoord +

jNative);

 //Discretize q1 and try p1 in the grid
 tryP1InGrid(mModel->mCoord + iModel, mNative->mCoord + iNative, mModel-

>mCoord + jModel, mNative->mCoord + jNative);

 }

}

Figure 4.2.5.3: Code of function matchPoints

CHAPTER 4 ALGORITHM IMPLEMENTATION

20

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.6 Transform structure Q so that it is along the y-axis

 The program now proceeds with the assumption that p1 is matched to q1 and p2 is

matched to q2. To simplify subsequent geometrical manipulations, I transform the

structure Q so that q1 and q2 lies on the y-axis, and q1 is located at the origin (as shown in

Figure 4.2.6.1).

Figure 4.2.6.1: Translation of Q so that q1 and q2 are along the y-axis

CHAPTER 4 ALGORITHM IMPLEMENTATION

21

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

/*

 Transform structure such that two points is along y-axis

*/

void Structure::transformStruct(double* q1, double* q2)

{

 double* transStep = new double[3];

 bool q2IsOrigin = false;

 //when one of the point is at origin, no need to do translation, just

perform rotation.

 if((q1[0] == 0 && q1[1] == 0 && q1[2] == 0))

 {

 ;

 }

 else if(q2[0] == 0 && q2[1] == 0 && q2[2] == 0)

 {

 q2IsOrigin = true;

 }

 else

 {

 //get the translation step of q1 to origin.

 transStep = q1;

 //translate whole structure so that q1 is at origin.

 translateStruct(transStep);

 }

 if(q2IsOrigin) //ONLY if q2 is origin, we rotate q1.

 {

 rotateStruct(q1);

 }

 else

 {

 //Rotates whole structure so that q2 is on y-axis.

 rotateStruct(q2);

 }

}

Figure 4.2.6.2: Code of function transformStruct

CHAPTER 4 ALGORITHM IMPLEMENTATION

22

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.6.1 Translation

To perform the translation, I first obtain the translation which moves q1 to the

origin, and apply the translation on the remaining points of the structure. The procedure is

skipped when q1 or q2 is already located at the origin.

/*

 Translate the whole structure

*/

void Structure::translateStruct(double* transStep)

{

 for(int i = 0; i < mLength; i += 3)

 {

 diff(mCoord + i, transStep, mCoord + i);

 }

}

Figure 4.2.6.1.1: Code of function translateStruct

void diff(double* A, double* B, double *ans)

{

 ans[0] = A[0] - B[0];

 ans[1] = A[1] - B[1];

 ans[2] = A[2] - B[2];

}

Figure 4.2.6.1.2: Code of function diff

CHAPTER 4 ALGORITHM IMPLEMENTATION

23

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.6.2 Rotation

If q2 is at origin, q1 is rotated so that q1 it lies on the y-axis. Otherwise, q2 will be

rotated so that it is on the y-axis as shown in Figure 4.2.6.2.1.

Figure 4.2.6.2.1: Rotation of q2

To rotate q2 to its position along the y-axis, the rotation axis must first be

determined. This rotation axis can be found by using the cross product. The result of

cross product is a vector that is perpendicular to both of the vectors that are being

multiplied.

CHAPTER 4 ALGORITHM IMPLEMENTATION

24

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.6.3 Cross Product

Figure 4.2.6.3.1: Cross Product

Formula of cross product:

void crossProduct(double* A, double* B, double* ans)

{

 ans[0] = A[1]*B[2] - A[2]*B[1];

 ans[1] = A[2]*B[0] - A[0]*B[2];

 ans[2] = A[0]*B[1] - A[1]*B[0];

}

Figure 4.2.6.3.2: Code of function crossProduct

 [

]

 [

]

 [

] [

]

CHAPTER 4 ALGORITHM IMPLEMENTATION

25

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.6.4 Rotation axis

Figure 4.2.6.4.1: Rotation axis of q2

 To get the rotation axis, cross product is used. The rotation axis is a vector that is

the cross product of vector1 and vector2, where vector1 is the vector of two points (q2

and origin) and vector2 is the vector of two points (point and origin). Note that point is a

point on y-axis where its value of y is taken from q2. For example, if q2 = (3, 5, 2), then

point = (0, 5, 0). After obtaining the cross product, vector3, I normalize the vector to

make it a unit vector.

The next step is to find the rotation angle on our new rotation axis which will

rotate q2 into the y-axis.

CHAPTER 4 ALGORITHM IMPLEMENTATION

26

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

/*

 Rotate structure Q so that q1 and q2 are along y-axis

*/

void Structure::rotateStruct(double* q2)

{

 double a, b, c;

 double origin[3] = {0, 0, 0};

 double cosC, theta;

 double point[3] = {0, q2[1], 0};

 double vector1[3], vector2[3], vector3[3];

 //get vector1 (a), vector2 (b), vector3 (c), where c = a x b cross

product, c = axis of rotation

 diff(q2, origin, vector1); //a

 diff(point, origin, vector2);//b

 crossProduct(vector1, vector2, vector3); //c:axis of rotation

 normalize(vector3);

 //get angle of rotation using law of cosines

 a = calDist(q2, origin);

 b = calDist(point, origin);

 c = calDist(q2, point);

 cosC = (a*a + b*b - c*c) / (2*a*b);

 if(cosC > 1)

 cosC = 1;

 if(cosC < -1)

 cosC = -1;

 theta = acos(cosC);

 rotateStruct(origin, vector3, theta);

}

Figure 4.2.6.4.2: Code of function rotateStruct

void normalize(double* u)

{

 double norm = sqrt(u[0]*u[0] + u[1]*u[1] + u[2]*u[2]);

 u[0] = u[0]/norm;

 u[1] = u[1]/norm;

 u[2] = u[2]/norm;

}

Figure 4.2.6.4.3: Code of function normalize

CHAPTER 4 ALGORITHM IMPLEMENTATION

27

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 4.2.6.4.4: Rotation angle to rotate q2 to y-axis

To find this rotation angle as shown in Figure 4.2.6.4.4, the Law of Cosine

(Weisstein, Eric, n.d.) is used. The Law of Cosine is shown in Figure 4.2.6.4.5.

Figure 4.2.6.4.5: Law of Cosine

 Formula of Law of Cosine:

CHAPTER 4 ALGORITHM IMPLEMENTATION

28

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.6.5 Rotation angle

Figure 4.2.6.5.1: Calculation of rotation angle using Law of Cosine

In order to calculate the angle of rotation, I calculate the distance between the

origin and q2 as a, the distance between origin and point as b and the distance between

point and q2 as c. The angle of rotation can then be obtained from:

 Finally, Q is transformed using the determined rotation axis and rotation angle.

The rotation is performed using a rotation matrix. That is, new coordinates for each point

in Q is computed through multiplication with the matrix. The resultant coordinates can be

written in the following functional form: For a point (x, y, z) about a line through (a, b, c)

with direction unit vector <u, v, w>, where u + v + w = 1, by the angle θ (Glenn 2011),

 , , , , , , , , ,

[

()

()

()

]

Applying the function to the current rotation axis and rotation angle,

(x, y, z) = points in the structure,

(a, b, c) would be the origin, so that the point pass through origin,

CHAPTER 4 ALGORITHM IMPLEMENTATION

29

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

<u, v, w> would be the vector3, which is the rotation axis, and

 would be the rotation angle.

/*

 Rotates structure about an axis

 point: a point that the vector(axis) pass through

 axis : vector(axis of rotation)

 theta: rotation angle

*/

void Structure::rotateStruct(double* point, double* axis, double theta)

{

 for(int i = 0; i < mLength; i+=3)

 {

 rotatesAboutVector(mCoord+i, point, axis, theta, mCoord+i);

 }

}

Figure 4.2.6.5.2: Code of function rotateStruct

/*

 //rotatesAboutVector and rotatesAboutArbLine are the same

 //rotatesAboutVector is to convert double* into 3 double

 xyz : point to be rotate

 abc : a point that the rotation axis passes through

 uvw : direction vector (unit vector)

 theta : angle of rotation

 newCoord : the rotated point

*/

void rotatesAboutVector(double* xyz, double* abc, double* uvw, double theta,

double* newCoord)

{

 rotatesAboutArbLine(xyz[0], xyz[1], xyz[2], abc[0], abc[1], abc[2],

uvw[0], uvw[1], uvw[2], theta, newCoord);

}

Figure 4.2.6.5.3: Code of function rotatesAboutVector

CHAPTER 4 ALGORITHM IMPLEMENTATION

30

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

void rotatesAboutArbLine(double x, double y, double z, double a, double b,

double c, double u, double v, double w, double theta, double* newCoord)

{

 double costheta = cos(theta);

 double sintheta = sin(theta);

 double oneMinusCosTheta = 1 - costheta;

 double v2 = v*v;

 double u2 = u*u;

 double w2 = w*w;

 newCoord[0] = (a*(v2 + w2) - u*(b*v + c*w - u*x - v*y - w*z)) *

oneMinusCosTheta + x*costheta + (-c*v + b*w - w*y + v*z)*sintheta;

 newCoord[1] = (b*(u2 + w2) - v*(a*u + c*w - u*x - v*y - w*z)) *

oneMinusCosTheta + y*costheta + (c*u - a*w + w*x - u*z)*sintheta;

 newCoord[2] = (c*(u2 + v2) - w*(a*u + b*v - u*x - v*y - w*z)) *

oneMinusCosTheta + z*costheta + (-b*u + a*v - v*x + u*y)*sintheta;

}

Figure 4.2.6.5.4: Code of function rotatesAboutArbLine

CHAPTER 4 ALGORITHM IMPLEMENTATION

31

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.7 Exhaustive search of positions for p1 in discretized Dc sphere around q1

 Suppose structure Q has been transformed so that q1 and q2 are along the y-axis. I

want to discretize q1 and q2 with grids of size

 and exhaustively examine p1 and p2 at

each grid point. Now p1 can be at most away from q1. To find the position for

p1, I discretize a sphere of radius centered at q1. However, it is difficult to

construct such a discretization with a sphere; to simplify this discretization a cube is used

instead. The cube has the same width, length and depth, , as shown in Figure

4.2.7.1.

Figure 4.2.7.1: Cube for candidate positions of p1

Then, the cube is discretized with grids of size

. Positions for p1 will be

examined on each grid point on the cube and started with the start point and end point as

shown in Figure 4.2.7.2. Start point is calculated by using x, y and z value of q1

subtract while end point is calculated by using x, y and z value of q1 add

 , which is as follows:

Start = (x – , ,

End = (x + , ,

CHAPTER 4 ALGORITHM IMPLEMENTATION

32

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 4.2.7.2: Discretization of cube of q1

 Beginning from the start point, I exhaustively examine p1 on the grid. However,

since this is a cube, the distance of each grid point to the center (q1) may greater than the

radius of a sphere, which is . Hence, I examine the distance from each grid

point to the center of the sphere; when the distance is more than , the grid point

will not be considered further.

Figure 4.2.7.3: Sphere encapsulated in the cube

CHAPTER 4 ALGORITHM IMPLEMENTATION

33

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

/*
 Examine p1 in the grid of q1 (all possible positions)
 p1 : coord of p1
 q1 : sphere center
 p2 : another point of structure P.
 q2 : point of structure Q.
*/
void Transformation::tryP1InGrid(double* p1, double* q1, double* p2, double* q2)
{

 double start[3] = {q1[0] - mThres, q1[1] - mThres, q1[2] - mThres}; //Store each

start point of each exist
 double end[3] = {q1[0] + mThres, q1[1] + mThres, q1[2] + mThres}; //Store each

end point of each exist
 double coord[3]; // coord = p1 on the grid
 double distQ = calDist(q1,q2); //distance between q1 and q2

 double radius = calDist(p1, p2);
 int count=1;
 for(double x = start[0]; x <= end[0]; x += mStepSize)
 {

 coord[0] = x;

 for(double y = start[1]; y <= end[1]; y += mStepSize)
 {

 coord[1] = y;

 for(double z = start[2]; z <= end[2]; z += mStepSize)
 {

 coord[2] = z;

 if(isInThres(q1, coord)) //is in sphere of q1
 {

 //check whether distance(p1,q2) > mThres
 if(calDist(coord,q2) > mThres)
 {

 //check whether p2 is in sphere of q2
 if(radius >= (distQ - mThres) && radius <=

(distQ + mThres))
 {

 formSphereCap(p1, coord, p2, q2,

radius);

 cout<<"next"<<endl;
 }

 }

 }

 }

 }

 }

}

Figure 4.2.7.4: Code of function tryP1InGrid

CHAPTER 4 ALGORITHM IMPLEMENTATION

34

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.8 Forming a sphere cap for p2

 After fixing p1 at a grid point, a sphere cap is to be formed for all possible

positions of p2, centered at p1 with radius ||p1 – p2||, and the sphere cap must be inside the

sphere of q2. The sphere cap is also discretized with grids of size

. p2 is then examined

on each grid point of the sphere cap.

Figure 4.2.8.1: Forming sphere cap with grid

I check for the condition of whether the distance between the grid point and q2 is

greater than . If the grid point is within from q2, they are

approximately matched, and the formation of a sphere cap is not required. In order to

form the sphere cap, another condition must be fulfilled. Namely, that the distance d

between p1 and p2 must have

 d [distance between q1 and q2] , and

 d [distance between q1 and q2] , as shown in Figure 4.2.8.2.

CHAPTER 4 ALGORITHM IMPLEMENTATION

35

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 4.2.8.2: Conditions leading to the formation of a sphere cap

 To fulfill the conditions, all the possible positions of p2 form a sphere cap inside

the sphere of q2. The sphere cap is generated in the program as follows: starting with a

point that forms a straight line with p1 and is parallel to the y-axis (Figure 4.2.8.3). I

rotate the point upward, downward, leftward or rightward, until forming a circle, 2 . The

step size of the movement is set according to the resolution of the discretization.

 Now I want to find the rotation axis and rotation angle to perform the rotations in

each of the four directions mentioned. The rotation axis is initialized with a vector that

passes through p1 and is parallel to the z-axis as shown in Figure 4.2.8.3.

Figure 4.2.8.3: Vector1 to rotate p2

CHAPTER 4 ALGORITHM IMPLEMENTATION

36

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

The vector (vector1) then will be rotated around another vector (vector2) that

passes through p1 and is parallel to the x-axis, to be rotated to the left or right,

corresponding to the leftward and rightward movement of the point. Each rotated point

will be checked to see if it is still within the sphere of q2 by checking whether the

distance between the point and q2 is within . Otherwise, the rotation continues

until 2 .

To rotate a vector about another vector, the following formula is used:

 { } ,

where A is the vector to be rotated, and axis is the rotation axis (Rotating a vector

around an arbitrary axis 2003).

/*

 A:Vector to be rotate

 axis:axis

 V = (A - ((axis.A)*axis)*costheta) + ((A X axis)*sintheta) +

(axis.A)*axis)

*/

//must use normalized vector

void rotateVectorAbtVector(double* A, double* axis, double theta,

double* ans)

{

 double cross[3], dotAxis[3], dotAxisCosTheta[3], ans1[3], ans2[3],

ans3[3];

 double dot;

 dot = dotProduct(A,axis); //(axis.A)

 multiply(dot, axis, dotAxis); //(axis.A)*axis

 multiply(cos(theta), dotAxis, dotAxisCosTheta);

//((axis.A)*axis)*costheta

 crossProduct(A,axis,cross); //(A X axis)

 diff(A, dotAxisCosTheta, ans1); //(A -

((axis.A)*axis)*costheta)

 multiply(sin(theta), cross, ans2); //((A X axis)*sintheta)

 ans3[0] = dotAxis[0]; //(axis.A)*axis)

 ans3[1] = dotAxis[1];

 ans3[2] = dotAxis[2];

 add(ans1, ans2, ans);

 add(ans, ans3, ans);

}

Figure 4.2.8.4: Code of function rotateVectorAbtVector

CHAPTER 4 ALGORITHM IMPLEMENTATION

37

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 4.2.8.5: Method to form the sphere cap. Vector1 is the rotation axis for p2 to rotate

in the up or down direction. Vector2 is the vector for vector1 and point p2 to rotate to the

left or right. Each rotated point of p2 will be checked to see if it is within the sphere of q2.

The rotation angle is calculated using the formula of arc length, s = rθ. Hence, θ =

. For the present purpose, s =

, r = distance between p1 and p2. Thus θ is computed as

 ‖ ‖
.

Figure 4.2.8.6: Diagram for formula of arc length

CHAPTER 4 ALGORITHM IMPLEMENTATION

38

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

/*
 Form a sphere cap for p2 on q2 grid, try all coordinates on sphere cap
 oriP1: the original p1 before putting on grid
 p1 : center of the sphere cap
 p2 : point to form sphere cap
 q2 : center of sphere where the sphere cap is inside
 radius: distance between p1 and p2, radius of forming sphere cap
*/
void Transformation::formSphereCap(double* oriP1, double* p1, double* p2, double* q2,

double radius)
{

 double totalangle,totalAOut,PI2; //totaltheta must be at most 360 to

stop the rotation.
 double coord[3]; //point on sphere cap

(new p2)
 double middleCoord[3]; //center point of each moving

up and down/left and right
 double oriCoord[3]; //the original point before

any rotation
 double vector1[3], vector2[3]; //axis of rotation
 double angle = mStepSize/radius; //rotation angle
 PI2 = 2*PI;

 bool isWithinQ2 = false; //is the coordinate within sphere of

q2
 double rotAng;

 //start to form sphere cap with p1 point that form straight line parallel to y-

axis
 middleCoord[0] = p1[0];

 middleCoord[1] = p1[1] + radius;

 middleCoord[2] = p1[2];

 //copy the coordinates to prepare for rotation
 coord[0] = middleCoord[0];

 coord[1] = middleCoord[1];

 coord[2] = middleCoord[2];

 oriCoord[0] = middleCoord[0];

 oriCoord[1] = middleCoord[1];

 oriCoord[2] = middleCoord[2];

 //vector1 to rotate p2 on sphere cap (up and down): firstly parallel to z, will be

changed later
 vector1[0] = 0; //parallel to z
 vector1[1] = 0;

 vector1[2] = 1;

 //point that passes through the vector1 and vector2(axis of rotation) = p1

 //vector2 to rotate p2 on sphere cap (left and right) : parallel to x-axis
 vector2[0] = 1;

 vector2[1] = 0;

 vector2[2] = 0;

 totalAOut = 0;

Figure 4.2.8.7: Code of function formSphereCap

CHAPTER 4 ALGORITHM IMPLEMENTATION

39

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

do
{

 /*prepare to rotates up and down*/
 //going up and down

 totalangle = 0;

 //rotates p2 up and down around vector1
 do
 {

 rotatesAboutVector(coord, p1, vector1, angle, coord); //going

up or down

 totalangle += angle;

 //check whether is in sphere of q2
 isWithinQ2 = isInThres(q2, coord);

 if(isWithinQ2)
 {

 //Move other P respectively
 movePtoPlace(p1, oriP1, coord, p2); //p1: new p1 on grid;

 oriP1: p1 before putting on grid;

 //coord: p2 on sphere cap; p2: p2 before putting on sphere cap
 //form rotation axis and rotates
 findAngleInOut();

 getMaxMatch(); //get most number of residue matched from

the maximum bipartite matching for each rotation angle.
 }

 } while(totalangle < PI2);

 //reset coord back to original coord before rotates up&down, to prepare to

move left/right

 coord[0] = middleCoord[0];

 coord[1] = middleCoord[1];

 coord[2] = middleCoord[2];

 //rotates p2 left and right and rotates vector1 together with same theta

 rotatesAboutVector(coord, p1, vector2, angle, coord); //going

left&right
 //rotates also vector1
 rotateVectorAbtVector(vector1, vector2, angle, vector1);

 //normalize vector1
 normalize(vector1);

 totalAOut += angle;

 middleCoord[0] = coord[0];

 middleCoord[1] = coord[1];

 middleCoord[2] = coord[2];

 } while(totalAOut < PI2);

}
 Figure 4.2.8.8: Code of function formSphereCap

 Having moved p1 and p2 to a grid point around q1 and q2 respectively, all the

points in P are to be transformed accordingly. To do so, they are first applied the

translation step which moved p1 from its original to its position on the grid point around

CHAPTER 4 ALGORITHM IMPLEMENTATION

40

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

q1. Then, they are applied the rotation which moved p2 to its position on the sphere cap

around q2. The exact geometrical manipulation follows the same method used earlier to

transform Q such that q1 and q2 lie along the y-axis. The rotation axis is determined by

using cross product and rotation angle is calculated by using the Law of Cosine.

/*

 Move all points in structure P respectively after fixing p1 and p2

 newP1 : the point on grid(fixed)

 p1 : the old point before putting on grid

 newP2 : the point on sphere cap(fixed)

 p2 : the old point before putting on sphere cap

*/

void Transformation::movePtoPlace(double* newP1, double* p1, double* newP2,

double* p2)

{

 //get translation step to translate from old P1 to new P1.

 double transStep[3];

 double vector1[3];

 double vector2[3];

 double vector3[3];

 double theta, a, b, c, cosC;

 diff(p1, newP1, transStep);

 mModel->translateStruct(transStep);

 //get vector1 (a), vector2 (b), vector3 (c), where c = a x b cross

product, c = axis of rotation

 diff(newP1, p2, vector1); //a

 diff(newP1, newP2, vector2);//b

 crossProduct(vector1, vector2, vector3); //c:axis of rotation

 normalize(vector3);

 //get angle of rotation using law of cosines

 a = calDist(newP1, p2);

 b = calDist(newP1, newP2);

 c = calDist(p2, newP2);

 cosC = (a*a + b*b - c*c) / (2*a*b);

 if(cosC > 1)

 cosC = 1;

 if(cosC < -1)

 cosC = -1;

 theta = acos(cosC);

 mModel->rotateStruct(newP1, vector3, theta);

}

Figure 4.2.8.9: Code of function movePtoPlace

CHAPTER 4 ALGORITHM IMPLEMENTATION

41

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.2.9 Find angle that moves P in and out of contact of Q

Figure 4.2.9.1: Angle that moves p in and out of contact with q

The program proceeds with p1, p2 and Q fixed. The remaining points in P are to

be rotated about the axis formed by p1 and p2. In the course of the rotation, points in P

might come into contact with some points in Q (that is, within distance from

these points), as well as going out of contact from the points in Q (that is, further than

 from these points) which they are originally in contact with.

The program now computes, for each p in P and each q in Q, the angle that moves

p in and out of contact with q (as shown in Figure 4.2.9.1). Noting that the rotational path

of p forms a circle, this can be computed by finding the intersection of a circle and a

sphere.

/*
 Get the angle of rotation that moves P into and Out of Contact with Q,

by using intersection between the sphere of Q and unit circle(path of p)
*/
void Transformation::findAngleInOut()
{

 int indexp, indexq;
 initializeMatch();

 for(int i = 0; i < mNative->mLength; i+=3)
 {

 indexq = i/3;

 for(int j = 0; j < mModel->mLength; j+=3)
 {

 indexp = j/3;

 getIntersectPoint(mModel->mCoord + j, mNative->mCoord +

i, indexp, indexq);

 }

 }

}

Figure 4.2.9.2: Code of function findAngleInOut

CHAPTER 4 ALGORITHM IMPLEMENTATION

42

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

 Initially, the distance between p and q is checked. p is approximately matched to q

when the distance between p and q is within . Since the p has been matched to

q, no rotation is required for the specific p and thus no calculation on intersection of

circle and sphere is required. , the angle that moves p into q, is set to 0 since p is

already matched to q while , the angle that moves p out of q, is set to 2 .

Figure 4.2.9.3: Intersection of circle and sphere

To find the intersection of a circle and a sphere, I transform the circle into a plane,

then intersect the sphere with the plane. Each circle centered at (0, B, 0) and point P= (x1,

B, z1). Hence, the plane equation is Y = B. The intersection of the plane Y = B and the

sphere of Q will be a circle as in Figure 4.2.9.4.

CHAPTER 4 ALGORITHM IMPLEMENTATION

43

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 4.2.9.4: Intersection of a plane and circle

Equation of plane: Y = B

Equation of sphere:

 The formula of equation of the intersected circle can be found in (AmBrSoft

Quality Softwares, n.d.):

 ,

 √ ,

 ,

| |

√

 By applying the formula above,

 ,

 √ ,

which gives the equation:

 ,

CHAPTER 4 ALGORITHM IMPLEMENTATION

44

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

In order to find the intersection of the circle and the sphere, the intersection of the

circle (formed by the rotational path of p) and the intersected circle (intersection of plane

and sphere Q) is calculated as shown in Figure 4.2.9.5.

Figure 4.2.9.5: Intersection of Two Circles

 θ1 = Angle that moves p into contact with q

 θ2 = Angle that moves p out of contact with q

 θ1 and θ2 can be calculated by using the Law of Cosine.

 The intersection of two circles can be found analytically. Firstly, since the circles

lies on the x-z plane where y = B, there are only two unknowns to solve.

 Suppose the radius of the intersected circle is √ and the

radius of the unit circle is√

 . To simplify the equation, let the radius of

intersected circle be R and the radius of unit circle be r.

 The equation of unit circle : ―――――①

 The equation of the intersected circle :

 ――――②

Expanding ②,

 ―――――③

CHAPTER 4 ALGORITHM IMPLEMENTATION

45

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

③―①,

 ―――――④

Substitute ④into① and
 ,

Using quadratic formula,

 √

,

where

 ,

 ,

Substitute Z values into ④,

 After getting the intersection points, the angles are calculated using Law of

Cosine as shown in Figure 4.2.9.7 and Figure 4.2.9.8.

CHAPTER 4 ALGORITHM IMPLEMENTATION

46

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 4.2.9.7: Angle that moves p into contact with q

Figure 4.2.9.8: Angle that moves p out of contact of q

CHAPTER 4 ALGORITHM IMPLEMENTATION

47

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

/*

 Get intersection point of circle centered at (0,B,0) and circle cen-

tered at (X0, B, Z0) - intersection circle of plane Y=B and sphere of q

 Circle 1: (intersection of plane and sphere) equation: (X-x0)2 + (Y-

B)2 + (Z-z0)2 = ((1+eps)Dc)2 - (y0-B)2

 Circle 2: (path of p) equation: X2 + (Y-B)2 + Z2 = (x1)2 + (z1)2

 p : any point of p (x1,B,z1)

 q : any point of q (x0,y0,z0)

 B : plane to intersect with sphere.

*/

void Transformation::getIntersectPoint(double* p, double* q, int indexp,

int indexq)

{

 double B = p[1]; //y-coordinate

 double R = sqrt(mThres*mThres - (q[0]-B)*(q[0]-B)); //Radius of Cir-

cle1

 double r = sqrt(p[0]*p[0] + p[2]*p[2]); //radius of Cir-

cle2

 double R2, r2; //squared of R and squared of r.

 double c2center[3] = {0,B,0}; //center of circle

2

 R2 = R*R;

 r2 = r*r;

 double point1[3],point2[3]; //intersection points between two circles

 double a,b,c,cosC, angle1, angle2;

 double q02, q22; //squared of q[0] and squared of q[2].

 q02 = q[0]*q[0];

 q22 = q[2]*q[2];

 double dist = calDist(p, q); //distance between two centers of circle

 int yes;

 if(dist <= mThres) //p is approximately matched to q

 {

 angle1 = 0;

 angle2 = 2*PI;

 }

 else

 {

 //(-b +- sqrt(b2-4ac)) / 2a

 a = 4*q02 + 4*q22;

 b = -4*r2*q[2] + 4*R2*q[2] - 4*q02*q[2] - 4*q22*q[2];

 c = r2*r2 - 2*q02*r2 - 2*R2*r2 + 2*r2*q22 + R2*R2 - 2*R2*q02 -

2*R2*q22 + q02*q02 + 2*q02*q22 + q22*q22;

 point1[2] = (-b + sqrt(b*b-4*a*c))/ 2*a; //z1

 point2[2] = (-b - sqrt(b*b-4*a*c))/ 2*a; //z2

 point1[1] = B; //y1

 point2[1] = B; //y2

 point1[0] = (q22 + q02 - 2*q[2]*point1[2] - R2 + r2) / 2*q[0];

 //x1:sub z1

 point2[0] = (q22 + q02 - 2*q[2]*point2[2] - R2 + r2) / 2*q[0];

 //x2:sub z2

Figure 4.2.9.9: Code of function getIntersectPoint

CHAPTER 4 ALGORITHM IMPLEMENTATION

48

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

//get angle using law of cosines
 //angle that moves P into Q
 a = calDist(c2center, p);

 b = calDist(c2center, point1);

 c = calDist(p, point1);

 cosC = (a*a + b*b - c*c) / (2*a*b);

 angle1 = acos(cosC);

 //angle that moves P out of Q using law of cosines
 a = calDist(c2center, point2);

 c = calDist(point1, point2);

 cosC = (a*a + b*b - c*c) / (2*a*b);

 angle2 = acos(cosC);

 }

 setRotInterval(angle1, angle2, indexp, indexq);

}

Figure 4.2.9.10: Code of function getIntersectPoint

 All the angles (θ1 and θ2) computed thus far are then to be sorted. Suppose this

produces the sequence of increasing angles 1, 2, 3, … Then, each interval (i, i+1)

represents a region where no two points from P and Q respectively come into or moves

out of contact. That is, the ways to match points in P and Q are the same for all the

angles in the interval; hence in finding the optimal way to match the points between P

and Q, only one angle needs to be considered.

To sort the angles, I start with first angle of θ1. Note that θ1 and θ2 come in pair

and θ2 must be next to the θ1. For each angle, the matching of the respective p and q will

be stored. For the first angle, θ1, there is no respective p and q to be matched, hence -1 is

set as its respective index. In θ2, the respective p and q will be matched; the index

combination will be set to 1.

CHAPTER 4 ALGORITHM IMPLEMENTATION

49

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 4.2.9.11: First θ1 and θ2 combination

 When the next θ1 is smaller than the first angle in the storage, there will be

another angle created after the first angle in the storage as shown in left Figure 4.2.9.12.

Then, its pair of θ2 must be started right after θ1, as shown in right Figure 4.2.9.12. When

the angle is greater than the next cumulative angles, there also will be a new angle

created (as in Figure 4.2.9.12).

Figure 4.2.9.123: Angle rearrangement

4.2.10 Find the maximum bipartite matching

 After arranging the angles in order and setting the matching for each angle, the

maximum bipartite matching for the matching in each angle is to be determined. The

Hopcroft-Karp algorithm (Hopcroft & Karp 1973) is used to obtain this matching.

 The algorithm takes as input a bipartite graph, and produces as output a maximum

cardinality matching, i.e. a set of maximum edges with the property that no two edges

share an endpoint. This algorithm runs in | |√ time in the worst case, where E is

CHAPTER 4 ALGORITHM IMPLEMENTATION

50

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

the set of edges in the graph and V is the set of vertices of the graph. The algorithm is

able to work with a partial solution, improving on it to produce a maximal set of shortest

augmenting paths in order to increase the size of the partial matching. This allows us to

use the partial matching for the bipartite graph from an interval (i-1, i) as initial input to

the problem instance for the interval (i, i+1).

 The pseudocode of Hopcroft-Karp algorithm is as below:

/*

 G = G1 ∪ G2 ∪ {NIL}

 where G1 and G2 are partition of graph and NIL is a special null vertex

*/

function BFS ()

 for v in G1

 if Pair_G1[v] == NIL

 Dist[v] = 0

 Enqueue(Q,v)

 else

 Dist[v] = ∞

 Dist[NIL] = ∞

 while Empty(Q) == false

 v = Dequeue(Q)

 if Dist[v] < Dist[NIL]

 for each u in Adj[v]

 if Dist[Pair_G2[u]] == ∞

 Dist[Pair_G2[u]] = Dist[v] + 1

 Enqueue(Q,Pair_G2[u])

 return Dist[NIL] != ∞

CHAPTER 4 ALGORITHM IMPLEMENTATION

51

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

function DFS (v)

 if v != NIL

 for each u in Adj[v]

 if Dist[Pair_G2[u]] == Dist[v] + 1

 if DFS(Pair_G2[u]) == true

 Pair_G2[u] = v

 Pair_G1[v] = u

 return true

 Dist[v] = ∞

 return false

 return true

function Hopcroft-Karp

 for each v in G

 Pair_G1[v] = NIL

 Pair_G2[v] = NIL

 matching = 0

 while BFS() == true

 for each v in G1

 if Pair_G1[v] == NIL

 if DFS(v) == true

 matching = matching + 1

 return matching

4.2.11 Output the maximum number of matching of both structures.

 cout << "Maximum number of residue matched: " << maxMatch << endl;

 return 0;
}

CHAPTER 4 ALGORITHM IMPLEMENTATION

52

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

4.3 Program Result

 Since the program runs for a long time, the program is tested with several .pdb

file that has very less number of CA atoms to shorten the time of running. The results

have shown the accuracy of the algorithm.

 In order to test the accuracy of the program, the same .pdb file has been used for

the input of the program. For instance, if protein structure file has two residues of CA

atoms, the output of the program should also be two since the two files are the same.

 Some test cases of my program testing are as follows:

Test case 1: The program was tested with two same .pdb file, namely a.pdb that has two

residues of CA atoms. The result showed that there are two residues matched.

Test case 2: The program was then tested with another .pdb file, that is b.pdb that is also

has two residues of CA atoms. The output of the program is two, which is the expected

output.

CHAPTER 4 ALGORITHM IMPLEMENTATION

53

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Test case 3: The input protein structure files have four residues of CA atoms. The result

of the program is 4.

CHAPTER 5 DISCUSSION AND CONCLUSION

54

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

CHAPTER 5 DISCUSSION AND CONCLUSION

5.1 Discussion

5.1.1 Achievement

I have successfully implemented the algorithm in 2.2 in C++. Due to the high

runtime complexity of the algorithm, the program takes quite a long time to run. The

discretization and the forming of sphere cap for pairs of point, which introduces the O(

)

runtime, appears to be the bottleneck. Although this program takes a long time to run, it

guarantees the accuracy of the matching of two structures and thus will help researchers

to determine the alignments accurately.

The testing of this program has been carried out to ensure the correctness of the

program.

 However, the analysis of code in order to accelerate the program has not been

carried out. The accuracy of its output compared to other methods has also not been

examined because of the time taken to run the whole program. The packaging of the

codes for handling radial pairs (into an easy to use library) has also not been carried out

due to time constraint.

The unfinished work should be continued in the future in order to make the

program more useful.

5.1.2 Implementation Issues and Challenges

5.1.2.1 Problem of Installing Cygwin

 At the beginning of the project, Microsoft Visual Studio 2010 is used to run my

code. However, in the Bioinformatics field, most of the people are using Unix operating

system. Thus, I installed Cygwin to run the program. I found that it was difficult to use

since it has no GUI. Installing Cygwin also requires some knowledge such as: in order to

compile C++ codes, the GCC package has to be installed. The default installation of

Cygwin did not include the package, and resulted in some time lost before the problem

was identified.

CHAPTER 5 DISCUSSION AND CONCLUSION

55

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

 After seeking advice from a friend that used Cygwin to run his code, I

successfully run my code. He also showed me several commands to compile and run the

codes, as well as obtained the packages for me from the internet.

5.1.2.2 Early conceptual mistakes in implementing the algorithm

 Find radial pair of structure P for matching structure Q.

 In finding the radial pair of P, I made a few errors in coding the condition of “||p1

– q1|| ≤ Dc and ||p2 – q2|| ≤ Dc”. I translated whole structure P so that p1 match q1, and then

checked the distance between p2 and q2 to see if it is within 2Dc. This is an error for all

the cases because the position of p2 and q2 might be within 2Dc after rotation. The

checking of the distance between p2 and q2 after translation is not correct. After

discussing with my supervisor, he showed me my mistake and I made the corrections.

Figure 5.1.2.2.1: Wrong concept of finding radial pair of P to match Q

 Form sphere cap for p2

I had a few conceptual misunderstanding regarding the forming of the sphere caps

for p2. Initially, I first form grids on the cube of q2, and then only form the sphere cap by

checking the distance between the grid and the cube center (q2). However, this is wrong

as when the sphere cap is not on the grid, the sphere cap could not be formed.

CHAPTER 5 DISCUSSION AND CONCLUSION

56

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Figure 5.1.2.2.2: Wrong concept of forming sphere cap

 Rotation of P to match Q

 To rotate structure P to match structure Q, I have to rotate structure P around an

arbitrary axis of q1 and q2. However, I did not know how to do this. I took advice from

supervisor to translate structure Q so that q1 and q2 lies along the y-axis. I did not know

how to use the rotation matrix to rotate a point about an arbitrary axis. I searched for the

formula at Google for days. Finally, I found the formula and also the graphic

visualization of the formula. I also did not know how to rotate a vector about an arbitrary

axis, which is to change the direction of the rotation axis. I tried to come out with a

formula for rotating a point about an arbitrary axis, but failed. I searched for the formula

for days and finally found the formula on web. It took me more than a week to complete

this step.

 Total Rotation Angle

In my initial tests of the program, the program did not complete even for very

small problem instances. At first I suspected that this is a natural consequence of the high

time complexity. However, after some debugging, I found that I had written an incorrect

condition for enumerating the rotation angles. The enumeration should terminate when

the angle is at most 2 , which I wrote 360 . This, however, caused the program to require

~100 times the actual time, since the rotation angle should be specified in radian.

CHAPTER 5 DISCUSSION AND CONCLUSION

57

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

5.1.2.4 Lack of knowledge in circle-sphere intersection

 Another part of the program which I found difficult to code is the part where I am

to find the intersection between a circle and a sphere. I searched for solutions to this

problem on many forums on the internet, but was unable to find any information on the

problem. There were only methods of finding plane-sphere intersection as well as circle-

circle intersection. My supervisor told me to reduce the problem to one of finding circle-

circle intersection, by changing the sphere into a circle via a plane-sphere intersection.

Thus, I extended one circle into a plane and cut the sphere with the plane to obtain

a circle from the sphere. Then, the problem becomes one of circle-circle intersection.

I also did not know what the equation for a plane is. I discussed this with my

supervisor again and finally came out with the complete solution.

5.1.2.4 Implementation of Hopcroft-Karp algorithm

 I searched for graphic explanation of Hopcroft Karp algorithm on the internet.

However, I could not get any explanation of the algorithm with graphics. I understood the

step of finding augmenting path through several powerpoint slides that were available on

web. The pseudocode of the Hopcroft-Karp algorithm is available on the internet and I

found that someone has already implemented it in C++. The writer posted his code on

Blogspot so that the code is able to help some people who need it (as shown below). I

tried to run his code but failed to get the expected result since I did not know what the

input of the code should be. The program also ran into an infinite loop at a specific line.

After trying for days and asking the writer about the input, I managed to get the expected

result.

 Next, I began to change the input of the function into the form required by my

program, namely, matching of the two structures P, Q at specific angle. The declaration

method of the vector<int> type double array is inappropriate. I tried many declaration

methods and resulted in error. An example of a wrong declaration is as follows:

vector<int> G[length*length+1];

CHAPTER 5 DISCUSSION AND CONCLUSION

58

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

I followed the method of declaration of original coding to declare a double array

of size length
2
+1. But, this did not work as well as it requires a constant whereas length is

the parameter that is passed into the function. I found a method to declare this vector<int>

with the build-in function “resize”. I make the following declaration and resize in the

same function and found that it is also wrong.

int hopcroft_karp(int length, int** matching)

{

vector<vector<int> > G;
G.resize(length+1);

}

After trying for few times, I found that the program will work when vector<int> is

declared a global variable.

vector<vector<int> > G;
int hopcroft_karp(int length, int** matching)
{

G.resize(length+1);

}

 Nevertheless, I also faced the problem of two uninitialized variables: “dist” and

“match”. The original code which I obtained declares them as global variable but I

declared them locally. I did not notice this would make a difference. Only after

debugging for some times did I realize that there are special meanings to these variable

when they are set to zero; dist[] = 0 means that all path is not defined yet and match[] = 0

means that there is no initial matching for the specific combination of points. These

details were not documented in the code which I obtained.

Original coding

int n, m, match[MAX], dist[MAX];

My coding

int hopcroft_karp(int length, int** matching)

{

 G.resize(length+1);

 int length2 = length*length;

 int *match = new int[length2 + 1];

 int *dist = new int[length2 + 1];

}

CHAPTER 5 DISCUSSION AND CONCLUSION

59

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

5.1.3 Runtime Error and Memory Error

 There are many memory errors that occurred while testing my program. I have to

print out some words for each section to find out which lines caused the memory problem.

Typically, these are caused by inappropriate deletion and allocation of memory for the

variables. Besides, pointing to a specific memory location that does not exist will also

cause the error shown below.

Segmentation fault (core dumped)

5.2 Conclusion

This project started out with the aim to implement an algorithm proposed by Li

and Ng in (Li & Ng 2010) to help researchers in structural biology to carry out protein

structure comparison. The algorithm solves the LCP problem under bottleneck distance

and has a time complexity of . This aim has been achieved – the

algorithm is now a C++ program.

The program turned out to be fairly difficult to code. It involves the use of many

mathematical operations and knowledge. It requires a strong foundation of mathematics

to complete the program. Any translation, rotation and graph require application of

addition, subtraction, vector formulas, rotation matrix, quadratic equation and

mathematical logics. Although some other aims of the project, such as comparisons of the

algorithm with other heuristic-based algorithms, has not been carried out, the main part of

the project has been accomplished.

REFERENCES

60

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

BIBLIOGRAPHY

S. C. Li, Y. K. Ng, 2010, „On protein structure alignment under distance constrain‟,

Journal of Theoretical Computer Science, vol. 412, no.32, pp. 4187-4199

S. C. Li, D. Bu, J. Xu, M. Li, 2008, „Finding the largest well-predicted subset of protein

structure models‟, Journal of Combinatorial Pattern Matching, vol. 5029, Springer-

Verlag, pp. 44-45.

Zhang Y, Skolnick J, 2005, „The protein structure prediction problem could be solved

using the current PDB library‟, Journal of Proc Natl Acad Sci USA, vol. 102 no. 4,

pp. 1029-1034.

Martin-Renom, Capriotti, Shindyalow and Bourne, 2009, Structure Comparison and

alignment, Journal of Structural Bioinformatics, vo.l 44, pp. 397-412

Holm L, Sander C, 1996, „Mapping the protein universe‟, Journal of Science, vol. 273,

no. 5275, pp. 595-603.

Shindyalov, I.N., Bourne P.E, 1998, „Protein structure alignment by incremental

combinatorial extension (CE) of the optimal path‟, Journal of Protein Engineering,

vol. 11, no.9, pp. 739–747.

Kedem, K., Chew, L., and Elber, R., 1999, „Unit-vector RMS (URMS) as a tool to

analyze molecular dynamics trajectories‟, Journal of Proteins, vol. 37, no.4, pp.

554–564 .

Schneider, 2002, „A genetic algorithm for the identification of conformationally invariant

regions in protein molecules‟, Journal in Acta Crystallogr D Biol Crystallogr, vol.

58, no. 2, pp. 195-208.

Jogn M. Boyer, Wendy J. Myrvold, 2004, „On the Cutting Egde: Simplified O(n)

Planarity by Edge Addition‟, Journal of Graph Algorithms and Applications

http://jgaa.info/, vol. 8, no. 3, pp. 241–273.

REFERENCES

61

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

Herbert S., 1998, C++ The Complete Reference, 3
rd

 edn. Osborne McGraw-Hill, Sydney.

Weisstein, Eric W, n.d., Law of Cosines. Available from: <

http://mathworld.wolfram.com/LawofCosines.html.>. [3 March 2013]

Glenn M., 2011, Rotation About an Arbitrary Axis in 3 Dimensions. Available from:

<http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/#x1-10011>. [20 Feb

2013]

gamedev.net, 2003. Camera: Rotating a vector around an arbitrary axis. gamedev.net.,

Maths and Physics. Available from: < http://www.gamedev.net/topic/183293-

camera-rotating-a-vector-around-an-arbitrary-axis/>

AmBrSoft Quality Softwares, 2012, Sphere and plane intersection. Available from: <

http://www.ambrsoft.com/TrigoCalc/Spher/SpherePlaneIntersection_.htm>. [20 Jeb

2013].

J.E. Hopcroft, R.M. Karp, 1973, „An algorithm for maximum matchings in bipartite

matchings in bipartite graphs‟, Journal of SIAM J. Comput., vol.2, no. 4, pp. 225-

231.

APPENDICES

A-1

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

APPENDIX A COMPLETE CODING OF THE WHOLE PROGRAM

A-1 main.cpp

#include "pdb.h"
#include "Structure.h"
#include "Transformation.h"
#include <math.h>
#include <iostream>

using namespace std;

int mIndexNative[LONGEST_CHAIN];
int mIndexModel[LONGEST_CHAIN];

//Match both structure to get common residues.
int matchPDB(pdb* native, pdb* model)
{

 int natLength = native->mNumOfResidue;
 int modLength = model->mNumOfResidue;

 int* resNative = native->mresidueID;
 int* resModel = model->mresidueID;
 int j = 0, k = 0;
 for(int i = 0; i < natLength; i++)
 {

 for(; j < modLength; j++)
 {

 if(resNative[i] == resModel[j])
 {

 mIndexNative[k] = i;

 mIndexModel[k] = j;

 k++;

 break;
 }

 else if(resNative[i] < resModel[j])
 break;
 }

 }

 if(k == 0)
 {

 cout << "There is no common residues in the input

Stuctures" << endl;
 exit(0);

 }

 return k;
}

APPENDICES

A-2

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

int main(int argc, char** argv)
{

 if(argc !=5)
 {

 cout << "Usage: (native pdb) (model pdb) (distance

threshold) (epsilon)" << endl;
 exit(0);

 }

 double Dc, epsilon;

 Dc = atof(argv[3]);

 epsilon = atof(argv[4]);

pdb* nativePdb = new pdb(argv[1]);
 pdb* modelPdb = new pdb(argv[2]);

 int alignLength = matchPDB(nativePdb, modelPdb);
 double* nativeCoord = new double[alignLength*3];
 double* modelCoord = new double[alignLength*3];

 //copy coordinates of common residues.
 for(int i = 0; i < alignLength; i++)
 {

 //Native
 nativeCoord[i*3] = nativePdb->mCAlpha[mIndexNative[i]*3];

 //x
 nativeCoord[i*3+1] = nativePdb-

>mCAlpha[mIndexNative[i]*3+1]; //y
 nativeCoord[i*3+2] = nativePdb-

>mCAlpha[mIndexNative[i]*3+2]; //z

 //Model
 modelCoord[i*3] = modelPdb->mCAlpha[mIndexModel[i]*3];

 //x
 modelCoord[i*3+1] = modelPdb->mCAlpha[mIndexModel[i]*3+1];

 //y
 modelCoord[i*3+2] = modelPdb->mCAlpha[mIndexModel[i]*3+2];

 //z
 }

 Structure* mNative = new Structure(nativeCoord, alignLength*3);
 Structure* mModel = new Structure(modelCoord, alignLength*3);

 Transformation* transf = new Transformation(mNative, mModel, Dc,

epsilon);

 int maxMatch = 0;

APPENDICES

A-3

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

//Match native to model
 for(int iNative = 0; iNative < alignLength*3; iNative+=3)
 {

 for(int jNative = 0; jNative < alignLength*3; jNative+=3)
 {

 for(int iModel = 0; iModel < alignLength*3; iModel+=3)
 {

 for(int jModel = 0; jModel < alignLength*3;

jModel+=3)
 {

 if(iNative != jNative && iModel != jModel)
 {

 transf->matchPoints(iNative,

jNative, iModel, jModel);

 maxMatch = transf->mMaxMatch;

 if(maxMatch < transf->mMaxMatch)
 maxMatch = transf->mMaxMatch;

 }

 }

 }

 }

 }

 cout << "Maximum number of residue matched: " << maxMatch << endl;

 return 0;
}

APPENDICES

A-4

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-2 pdb.h

#ifndef _PDB_H_
#define _PDB_H_
#include <iostream>
using namespace std;

#define LONGEST_CHAIN 2000

class pdb
{

public:
 char* mPDBFile;
 int mNumOfResidue;
 float* mCAlpha;
 int * mresidueID;
 char* mSeq;
 void readFile();
 void write(double** rot, double* shift);

 pdb(char* fileName);
 ~pdb();

};

#endif

APPENDICES

A-5

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-3 pdb.cpp

#include <iostream>
#include <string.h>
#include <string>
#include <stdlib.h>
#include <math.h>
using namespace std;

#include "pdb.h"

double toDouble(string str)
{

 char* tempStr=new char[10];
 int index=0;
 double ans;

 for(int i=0; i<str.size(); i++){
 if(str[i]!=' ')
 tempStr[index++]=str[i];

 }

 tempStr[index]='\0';

 ans=atof(tempStr);

 delete [] tempStr;

 return ans;
}

int toInt(string str)
{

 char* tempStr=new char[10];
 int index=0,ans;

 for(int i=0; i<str.size(); i++){
 if(str[i]!=' ')
 tempStr[index++]=str[i];

 }

 tempStr[index]='\0';

 ans=atoi(tempStr);

 delete [] tempStr;

 return ans;
}

pdb::pdb(char* fileName){
 mPDBFile = fileName;

 mCAlpha = new float[3*LONGEST_CHAIN];
 mresidueID = new int [LONGEST_CHAIN];
 readFile();

}

APPENDICES

A-6

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

pdb::~pdb()

{

 delete [] mCAlpha;
 delete [] mresidueID;
}

void pdb::readFile(){
 FILE *fInput=fopen(mPDBFile, "r");
 if(!fInput)
 {

 cerr << "Unsuccessfully open protein file " << mPDBFile <<

" !" << endl;
 exit(0);

 }

 char temp[80];
 double x,y,z;
 string residueName;

 mNumOfResidue = 0;

 while (fgets (temp, sizeof(temp), fInput) != NULL)
 {

 string line;

 line = temp;

 if(line.substr(0, 6) == "ENDMDL")
 break;
 if(line.substr(0, 6) != "ATOM ")
 continue;
 if(line.substr(12,4) == " CA " || line.substr(12,4) == "CA

" || line.substr(12,4) == " CA")
 {

 x = toDouble(line.substr(30,8));

 y = toDouble(line.substr(38,8));

 z = toDouble(line.substr(46,8));

 mCAlpha[mNumOfResidue*3] = x;

 mCAlpha[mNumOfResidue*3+1] = y;

 mCAlpha[mNumOfResidue*3+2] = z;

 residueName = line.substr(17,3);

 mresidueID[mNumOfResidue] = toInt(line.substr(22,4));

 mNumOfResidue++;

 }

 }

 fclose(fInput);

}

APPENDICES

A-7

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-4 Structure.h

#ifndef _PDB_H_
#define _PDB_H_
#include <iostream>
using namespace std;

#define LONGEST_CHAIN 2000

class pdb
{

public:
 char* mPDBFile;
 int mNumOfResidue;
 float* mCAlpha;
 int * mresidueID;
 char* mSeq;
 void readFile();
 void write(double** rot, double* shift);

 pdb(char* fileName);
 ~pdb();

};

#endif

APPENDICES

A-8

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-5 Structure.cpp

#include "Structure.h"
#include <iostream>

using namespace std;

Structure::Structure(double* coord, int length)
{

 mCoord = coord; //coordinates for translation and

rotation
 mLength = length;

}

Structure::~Structure()

{

 delete mCoord;
}

/*
 Translate the whole structure
*/
void Structure::translateStruct(double* transStep)
{

 for(int i = 0; i < mLength; i += 3)
 {

 diff(mCoord + i, transStep, mCoord + i);

 }

}

/*
 Rotates structure about an axis
 point: a point that the vector(axis) pass through
 axis : vector(axis of rotation)
 theta: rotation angle
*/
void Structure::rotateStruct(double* point, double* axis, double theta)
{

 for(int i = 0; i < mLength; i+=3)
 {

 rotatesAboutVector(mCoord+i, point, axis, theta, mCoord+i);

 }

}

/*
 Transform structure such that two points is along y-axis
*/
void Structure::transformStruct(double* q1, double* q2)
{

 double* transStep = new double[3];
 bool q2IsOrigin = false;

APPENDICES

A-9

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

//when one of the point is at origin, no need to do translation,

just perform rotation.
 if((q1[0] == 0 && q1[1] == 0 && q1[2] == 0))
 {

 ;

 }

else if(q2[0] == 0 && q2[1] == 0 && q2[2] == 0)
 {

 q2IsOrigin = true;
 }

else
 {

 //get the translation step of q1 to origin.
 transStep = q1;

 //translate whole structure so that q1 is at origin.
 translateStruct(transStep);

 }

 if(q2IsOrigin) //ONLY if q2 is origin, we rotate q1.
 {

 rotateStruct(q1);

 }

 else
 {

 //Rotates whole structure so that q2 is on y-axis.
 rotateStruct(q2);

 }

}

/*
 Rotate structure Q so that q1 and q2 are along y-axis
*/
void Structure::rotateStruct(double* q2)
{

 double a, b, c;
 double origin[3] = {0, 0, 0};
 double cosC, theta;
 double point[3] = {0, q2[1], 0};
 double vector1[3], vector2[3], vector3[3];

 //get vector1 (a), vector2 (b), vector3 (c), where c = a x b cross

product, c = axis of rotation

 diff(q2, origin, vector1); //a
 diff(point, origin, vector2);//b
 crossProduct(vector1, vector2, vector3); //c:axis of rotation

 normalize(vector3);

 //get angle of rotation using law of cosines
 a = calDist(q2, origin);

 b = calDist(point, origin);

 c = calDist(q2, point);

 cosC = (a*a + b*b - c*c) / (2*a*b);

APPENDICES

A-10

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

if(cosC > 1)
 cosC = 1;

 if(cosC < -1)
 cosC = -1;

 theta = acos(cosC);

 rotateStruct(origin, vector3, theta);

}

APPENDICES

A-11

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-5 MathOperation.h

#ifndef _MATHS_OPERATION_H_
#define _MATHS_OPERATION_H_
#include <math.h>
#define PI 3.14159265

double calDist(double* A, double* B);
void add(double* A, double* B, double* ans);
void diff(double* A, double* B, double *ans);
void rotatesAboutVector(double* xyz, double* abc, double* uvw, double

theta, double* newCoord);
void rotatesAboutArbLine(double x, double y, double z, double a, double

b, double c, double u, double v, double w, double theta, double*

newCoord);
void normalize(double* u);
double dotProduct(double* A, double* B);
void crossProduct(double* A, double* B, double* ans);
void multiply(double num, double* A, double* ans);
void rotateVectorAbtVector(double* A, double* axis, double theta,

double* ans);

#endif

APPENDICES

A-12

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-6 MathsOperation.cpp

#include "MathsOperation.h"

double calDist(double* A, double* B)
{

 double sum = 0;
 sum += (A[0] - B[0])* (A[0] - B[0]);

 sum += (A[1] - B[1])* (A[1] - B[1]);

 sum += (A[2] - B[2])* (A[2] - B[2]);

 return sqrt(sum);
}

void add(double* A, double* B, double* ans)
{

 ans[0] = A[0] + B[0];

 ans[1] = A[1] + B[1];

 ans[2] = A[2] + B[2];

}

void diff(double* A, double* B, double *ans)
{

 ans[0] = A[0] - B[0];

 ans[1] = A[1] - B[1];

 ans[2] = A[2] - B[2];

}

/*
 //rotatesAboutVector and rotatesAboutArbLine are the same
 //rotatesAboutVector is to convert double* into 3 double
 xyz : point to be rotate
 abc : a point that the rotation axis passes through
 uvw : direction vector (unit vector)
 theta : angle of rotation
 newCoord : the rotated point
*/
void rotatesAboutVector(double* xyz, double* abc, double* uvw, double

theta, double* newCoord)
{

 rotatesAboutArbLine(xyz[0], xyz[1], xyz[2], abc[0], abc[1],

abc[2], uvw[0], uvw[1], uvw[2], theta, newCoord);

}

APPENDICES

A-13

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

void rotatesAboutArbLine(double x, double y, double z, double a, double

b, double c, double u, double v, double w, double theta, double*

newCoord)
{

 double costheta = cos(theta);
 double sintheta = sin(theta);
 double oneMinusCosTheta = 1 - costheta;
 double v2 = v*v;
 double u2 = u*u;
 double w2 = w*w;
 newCoord[0] = (a*(v2 + w2) - u*(b*v + c*w - u*x - v*y - w*z)) *

oneMinusCosTheta + x*costheta + (-c*v + b*w - w*y + v*z)*sintheta;

 newCoord[1] = (b*(u2 + w2) - v*(a*u + c*w - u*x - v*y - w*z)) *

oneMinusCosTheta + y*costheta + (c*u - a*w + w*x - u*z)*sintheta;

 newCoord[2] = (c*(u2 + v2) - w*(a*u + b*v - u*x - v*y - w*z)) *

oneMinusCosTheta + z*costheta + (-b*u + a*v - v*x + u*y)*sintheta;

}

void normalize(double* u)
{

 double norm = sqrt(u[0]*u[0] + u[1]*u[1] + u[2]*u[2]);
 u[0] = u[0]/norm;

 u[1] = u[1]/norm;

 u[2] = u[2]/norm;

}

double dotProduct(double* A, double* B)
{

 return (A[0]*B[0] + A[1]*B[1] + A[2]*B[2]);
}

void crossProduct(double* A, double* B, double* ans)
{

 ans[0] = A[1]*B[2] - A[2]*B[1];

 ans[1] = A[2]*B[0] - A[0]*B[2];

 ans[2] = A[0]*B[1] - A[1]*B[0];

}

void multiply(double num, double* A, double* ans)
{

 ans[0] = num*A[0];

 ans[1] = num*A[1];

 ans[2] = num*A[2];

}

APPENDICES

A-14

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

/*

 A:Vector to be rotate

 axis:axis

 V = (A - ((axis.A)*axis)*costheta) + ((A X axis)*sintheta) +

(axis.A)*axis)

*/

//must use normalized vector

void rotateVectorAbtVector(double* A, double* axis, double theta,

double* ans)

{

 double cross[3], dotAxis[3], dotAxisCosTheta[3], ans1[3], ans2[3],

ans3[3];

 double dot;

 dot = dotProduct(A,axis); //(axis.A)

 multiply(dot, axis, dotAxis); //(axis.A)*axis

 multiply(cos(theta), dotAxis, dotAxisCosTheta);

//((axis.A)*axis)*costheta

 crossProduct(A,axis,cross); //(A X axis)

 diff(A, dotAxisCosTheta, ans1); //(A -

((axis.A)*axis)*costheta)

 multiply(sin(theta), cross, ans2); //((A X axis)*sintheta)

 ans3[0] = dotAxis[0]; //(axis.A)*axis)

 ans3[1] = dotAxis[1];

 ans3[2] = dotAxis[2];

 add(ans1, ans2, ans);

 add(ans, ans3, ans);

}

APPENDICES

A-15

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-7 Transformation.h

#ifndef _TRANSFORMATION_H_
#define _TRANSFORMATION_H_
#include "Structure.h"
#include "MathsOperation.h"
#include "Graph.h"

class Transformation
{

 private:
 /*combine all thetas found*/
 int len;
 typedef struct
 {

 double angle;
 int** matching; //adjacency matrix used to

store the graph of p and q matching
 }ROTATION;

 public:

 Structure *mNative;

 Structure *mModel;

 double mDc, mEpsilon;
 double mThres, mStepSize;

 ROTATION* mRotInterval; //rotation interval and

its maching.
 int mRotItvIndex; //index of rotInterval
 int mMaxMatch; //the maximum

number of matched for specific p1,p2 and q1,q2

 Transformation(Structure* native, Structure* model, double

Dc, double epsilon);
 ~ Transformation();

 void matchPoints(int iNative, int jNative, int iModel, int

jModel);

 bool isInThres(double* center, double* points);
 void tryP1InGrid(double* p1, double* center, double* p2,

double* q2);

 bool isRadius(double* center, double* coord, double radius);
 void formSphereCap(double* oriP1, double* p1, double* p2,

double* q2, double radius);
 void movePtoPlace(double* newP1, double* p1, double* newP2,

double* p2);
 void findAngleInOut();
 void getIntersectPoint(double* p, double* q, int j, int i);

 void copyMatching(int** A, int** B);

APPENDICES

A-16

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

void moveBackwards(int start, int end, double temp2, int**

tempArr2);
 void insertTheta2(int start, int end, int i, int j, double

angle);

 void setRotInterval(double theta1, double theta2, int i,

int j);

 void getMaxMatch();

 void initializeMatch();

};

#endif

A-8 Transformation.cpp

APPENDICES

A-17

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

#include "Transformation.h"
#include <iostream>

using namespace std;

Transformation::Transformation(Structure* native, Structure* model,

double Dc, double epsilon)
{

 mNative = native;

 mModel = model;

 mDc = Dc;

 mEpsilon = epsilon;

 mThres = (1 + mEpsilon)* mDc;

 mStepSize = mEpsilon * mDc / 3;

 len = mModel->mLength/3; //total points in mNative or mModel

 mRotInterval = new ROTATION[2*len*len];

 for(int i = 0;i < 2*len*len; i++)
 {

 mRotInterval[i].matching = new int*[len];

 for(int j = 0; j < len; j++)
 {

 mRotInterval[i].matching[j] = new int[len];

 for(int k = 0; k < len; k++)
 {

 mRotInterval[i].matching[j][k] = 0;

 }

 }

 }

 mRotItvIndex = 0;

 mMaxMatch = 0;

}

Transformation::~ Transformation()

{

 delete[] mNative;
 delete[] mModel;
 delete[] mRotInterval;
}

APPENDICES

A-18

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

void Transformation::matchPoints(int iNative, int jNative, int iModel,

int jModel)
{

 //Translate p1 and p2 to match q1 and q2.
 //iNative = q1 iModel = p1
 //jNative = q2 jModel = p2

 //---------------Translation to match model to native------------

--
 double distP = calDist(mModel->mCoord + iModel, mModel->mCoord +

jModel);
 double distQ = calDist(mNative->mCoord + iNative, mNative->mCoord

+ jNative);

 if(fabs(distP - distQ) <= 2*mDc)
 {

 //Transform Q structure such that q1 and q2 is along y-axis
 mNative->transformStruct(mNative->mCoord + iNative,

mNative->mCoord + jNative);

 //Discretize q1 and try p1 in the grid
 tryP1InGrid(mModel->mCoord + iModel, mNative->mCoord +

iNative, mModel->mCoord + jModel, mNative->mCoord + jNative);

 }

}

/*
 Examine p1 in the grid of q1 (all possible positions)
 p1 : coord of p1
 q1 : sphere center
 p2 : another point of structure P.
 q2 : point of structure Q.
*/
void Transformation::tryP1InGrid(double* p1, double* q1, double* p2,

double* q2)
{

 double start[3] = {q1[0] - mThres, q1[1] - mThres, q1[2] -

mThres}; //Store each start point of each exist
 double end[3] = {q1[0] + mThres, q1[1] + mThres, q1[2] + mThres};

//Store each end point of each exist
 double coord[3]; // coord = p1 on the grid
 double distQ = calDist(q1,q2); //distance between q1 and q2

 double radius = calDist(p1, p2);
 int count=1;
 for(double x = start[0]; x <= end[0]; x += mStepSize)
 {

 coord[0] = x;

 for(double y = start[1]; y <= end[1]; y += mStepSize)
 {

 coord[1] = y;

 for(double z = start[2]; z <= end[2]; z += mStepSize)
 {

 coord[2] = z;

APPENDICES

A-19

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

if(isInThres(q1, coord)) //is in sphere of q1
 {

 //check whether distance(p1,q2) > mThres
 if(calDist(coord,q2) > mThres)

{

 //check whether p2 is in sphere of

q2
 if(radius >= (distQ - mThres) &&

radius <= (distQ + mThres))
 {

 formSphereCap(p1, coord, p2,

q2, radius);

 }

 }

 }

 }

 }

 }

}

/*
 Check whether the points (grid on cube) is within thres (sphere)
 center : sphere center
 point : point on the grid on cube
*/
bool Transformation::isInThres(double* center, double* point)
{

 if(calDist(center, point) <= mThres)
 return true;
 return false;
}

/*
 Form a sphere cap for p2 on q2 grid, try all coordinates on

sphere cap
 oriP1: the original p1 before putting on grid
 p1 : center of the sphere cap
 p2 : point to form sphere cap
 q2 : center of sphere where the sphere cap is inside
 radius: distance between p1 and p2, radius of forming

sphere cap
*/
void Transformation::formSphereCap(double* oriP1, double* p1, double*

p2, double* q2, double radius)
{

 double totalangle,totalAOut,PI2; //totaltheta must be at

most 360 to stop the rotation.
 double coord[3]; //point on sphere

cap (new p2)
 double middleCoord[3]; //center point of

each moving up and down/left and right
 double oriCoord[3]; //the original

point before any rotation
 double vector1[3], vector2[3]; //axis of rotation

APPENDICES

A-20

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

double angle = mStepSize/radius; //rotation angle
 PI2 = 2*PI;

 bool isWithinQ2 = false; //is the coordinate

within sphere of q2

//start to form sphere cap with p1 point that form straight line

parallel to y-axis
 middleCoord[0] = p1[0];

 middleCoord[1] = p1[1] + radius;

 middleCoord[2] = p1[2];

 //copy the coordinates to prepare for rotation
 coord[0] = middleCoord[0];

 coord[1] = middleCoord[1];

 coord[2] = middleCoord[2];

 oriCoord[0] = middleCoord[0];

 oriCoord[1] = middleCoord[1];

 oriCoord[2] = middleCoord[2];

 //vector1 to rotate p2 on sphere cap (up and down): firstly parallel

to z, will be changed later
 vector1[0] = 0; //parallel to z
 vector1[1] = 0;

 vector1[2] = 1;

 //point that passes through the vector1 and vector2(axis of rotation)

= p1

 //vector2 to rotate p2 on sphere cap (left and right) : parallel to

x-axis
 vector2[0] = 1;

 vector2[1] = 0;

 vector2[2] = 0;

 totalAOut = 0;

 do
 {

 /*prepare to rotates up and down*/
 //going up and down

 totalangle = 0;

 //rotates p2 up and down around vector1
 do
 {

 rotatesAboutVector(coord, p1, vector1, angle, coord);

 //going up or down

 totalangle += angle;

 //check whether is in sphere of q2
 isWithinQ2 = isInThres(q2, coord);

 if(isWithinQ2)
 {

APPENDICES

A-21

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

//Move other P respectively
 movePtoPlace(p1, oriP1, coord, p2); //p1: new

p1 on grid; oriP1: p1 before putting on grid;

 //coord: p2 on sphere cap; p2: p2 before putting on sphere cap
 //form rotation axis and rotates
 findAngleInOut();

 getMaxMatch(); //get most number of residue

matched from the maximum bipartite matching for each rotation angle.

}

 } while(totalangle < PI2);

 //reset coord back to original coord before rotates up&down,

to prepare to move left/right

 coord[0] = middleCoord[0];

 coord[1] = middleCoord[1];

 coord[2] = middleCoord[2];

 //rotates p2 left and right and rotates vector1 together

with same theta

 rotatesAboutVector(coord, p1, vector2, angle, coord);

 //going left&right
 //rotates also vector1
 rotateVectorAbtVector(vector1, vector2, angle, vector1);

 //normalize vector1
 normalize(vector1);

 totalAOut += angle;

 middleCoord[0] = coord[0];

 middleCoord[1] = coord[1];

 middleCoord[2] = coord[2];

 } while(totalAOut < PI2);
}

/*
 Move all points in structure P respectively after fixing p1 and

p2
 newP1 : the point on grid(fixed)
 p1 : the old point before putting on grid
 newP2 : the point on sphere cap(fixed)
 p2 : the old point before putting on sphere cap
*/
void Transformation::movePtoPlace(double* newP1, double* p1, double*

newP2, double* p2)
{

 //get translation step to translate from old P1 to new P1.
 double transStep[3];
 double vector1[3];
 double vector2[3];
 double vector3[3];

 double theta, a, b, c, cosC;

APPENDICES

A-22

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

 diff(p1, newP1, transStep);

 mModel->translateStruct(transStep);

//get vector1 (a), vector2 (b), vector3 (c), where c = a x b

cross product, c = axis of rotation
 diff(newP1, p2, vector1); //a
 diff(newP1, newP2, vector2);//b
 crossProduct(vector1, vector2, vector3); //c:axis of rotation

 normalize(vector3);

//get angle of rotation using law of cosines
 a = calDist(newP1, p2);

 b = calDist(newP1, newP2);

 c = calDist(p2, newP2);

 cosC = (a*a + b*b - c*c) / (2*a*b);

 if(cosC > 1)
 cosC = 1;

 if(cosC < -1)
 cosC = -1;

 theta = acos(cosC);

 mModel->rotateStruct(newP1, vector3, theta);

}

void Transformation::initializeMatch()

{

 for(int i = 0;i < 2*len*len; i++)

 {

 for(int j = 0; j < len; j++)

 {

 for(int k = 0; k < len; k++)

 {

 mRotInterval[i].matching[j][k] = 0;

 }

 }

 }

 mRotItvIndex = 0;

}

/*
 Get the angle of rotation that moves P into and Out of Contact

with Q, by using intersection between the sphere of Q and unit

circle(path of p)
*/
void Transformation::findAngleInOut()
{

 int indexp, indexq;
 mRotItvIndex = 0;

 for(int i = 0; i < mNative->mLength; i+=3)

APPENDICES

A-23

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

{

 indexq = i/3;

 for(int j = 0; j < mModel->mLength; j+=3)
 {

 indexp = j/3;

 getIntersectPoint(mModel->mCoord + j, mNative->mCoord

+ i, indexp, indexq);

 }

 }

}

/*

 Get intersection point of circle centered at (0,B,0) and circle cen-

tered at (X0, B, Z0) - intersection circle of plane Y=B and sphere of q

 Circle 1: (intersection of plane and sphere) equation: (X-x0)2 + (Y-

B)2 + (Z-z0)2 = ((1+eps)Dc)2 - (y0-B)2

 Circle 2: (path of p) equation: X2 + (Y-B)2 + Z2 = (x1)2 + (z1)2

 p : any point of p (x1,B,z1)

 q : any point of q (x0,y0,z0)

 B : plane to intersect with sphere.

*/

void Transformation::getIntersectPoint(double* p, double* q, int indexp,

int indexq)

{

 double B = p[1]; //y-coordinate

 double R = sqrt(mThres*mThres - (q[0]-B)*(q[0]-B)); //Radius of Cir-

cle1

 double r = sqrt(p[0]*p[0] + p[2]*p[2]); //radius of Cir-

cle2

 double R2, r2; //squared of R and squared of r.

 double c2center[3] = {0,B,0}; //center of circle

2

 R2 = R*R;

 r2 = r*r;

 double point1[3],point2[3]; //intersection points between two circles

 double a,b,c,cosC, angle1, angle2;

 double q02, q22; //squared of q[0] and squared of q[2].

 q02 = q[0]*q[0];

 q22 = q[2]*q[2];

 double dist = calDist(p, q); //distance between two centers of circle

 int yes;

 if(dist <= mThres) //p is approximately matched to q

 {

 angle1 = 0;

 angle2 = 2*PI;

 }

 else

 {

 //(-b +- sqrt(b2-4ac)) / 2a

 a = 4*q02 + 4*q22;

 b = -4*r2*q[2] + 4*R2*q[2] - 4*q02*q[2] - 4*q22*q[2];

APPENDICES

A-24

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

c = r2*r2 - 2*q02*r2 - 2*R2*r2 + 2*r2*q22 + R2*R2 - 2*R2*q02 -

2*R2*q22 + q02*q02 + 2*q02*q22 + q22*q22;

 point1[2] = (-b + sqrt(b*b-4*a*c))/ 2*a; //z1

 point2[2] = (-b - sqrt(b*b-4*a*c))/ 2*a; //z2

 point1[1] = B; //y1

 point2[1] = B; //y2

 point1[0] = (q22 + q02 - 2*q[2]*point1[2] - R2 + r2) / 2*q[0];

 //x1:sub z1

 point2[0] = (q22 + q02 - 2*q[2]*point2[2] - R2 + r2) / 2*q[0];

 //x2:sub z2

 //get angle using law of cosines

 //angle that moves P into Q

 a = calDist(c2center, p);

 b = calDist(c2center, point1);

 c = calDist(p, point1);

 cosC = (a*a + b*b - c*c) / (2*a*b);

 angle1 = acos(cosC);

 //angle that moves P out of Q using law of cosines

 a = calDist(c2center, point2);

 c = calDist(point1, point2);

 cosC = (a*a + b*b - c*c) / (2*a*b);

 angle2 = acos(cosC);

 }

 setRotInterval(angle1, angle2, indexp, indexq);

}

///Calculate

rotation

interval//

/*
 Copy matching matrix A to matrix B
 A: Matrix to be copied
 B: Copied Matrix
*/
void Transformation::copyMatching(int** A, int** B)
{

 for(int i = 0; i < len; i++)
 {

 for(int j = 0; j < len; j++)
 {

 B[i][j] = A[i][j];

 }

 }

}

APPENDICES

A-25

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

/*
 Move the elements in the array of mRotInterval backwards, based

on start and end.
 Start: position to start shift backwards.
 End : mRotInterval array size - mRotItvIndex(usually).

shift until the end of the array
 temp2 : temporary variable that holds the new value of

angle[start].
 tempArr2: temporary array that holds the new value of

matching[start].
*/
void Transformation::moveBackwards(int start, int end, double temp2,

int** tempArr2)
{

 double temp;
 int** tempArr;

 tempArr = new int*[len];
 for(int i = 0; i < len; i++)
 tempArr[i] = new int[len];

 for(int l = start; l < end; l++)
 {

 temp = mRotInterval[l].angle;

 mRotInterval[l].angle = temp2;

 temp2 = temp;

 copyMatching(mRotInterval[l].matching, tempArr);

 copyMatching(tempArr2, mRotInterval[l].matching);

 copyMatching(tempArr, tempArr2);

}

 //destroy tempArr in memory address
 for(int i = 0; i < len; i++)
 delete[] tempArr[i];
 delete[] tempArr;
}

/*
 Put in mTheta[i][j]->mTheta2 value in the rotation interval -

mRotInterval
 Start: starting position of mRotInterval to trace for

theta2. (theta2 must always starts from one element behind theta1)
 End : mRotInterval array size - mRotItvIndex(usually).

shift until the end of the array
 i : index of p structure
 j : index of q structure
 angle : mTheta[i][j]->mTheta2's value
*/
void Transformation::insertTheta2(int start, int end, int i, int j,

double angle)
{

 int** tempArr;

 tempArr = new int*[len];

APPENDICES

A-26

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

 for(int x = 0; x < len; x++)
 tempArr[x] = new int[len];

 double totalTheta = 0;
 double temp, temp2;
 bool isSet = false;

 for(int k = start; k < end; k++)
 {

 totalTheta += mRotInterval[k].angle;

 if(angle < totalTheta)
 {

 totalTheta = totalTheta - mRotInterval[k].angle;

//exclude angle[k]
 temp = mRotInterval[k].angle;

 mRotInterval[k].angle = angle - totalTheta;

 temp2 = mRotInterval[k+1].angle;

 mRotInterval[k+1].angle = temp - angle;

 copyMatching(mRotInterval[k+1].matching, tempArr);

 copyMatching(mRotInterval[k].matching,

mRotInterval[k+1].matching);

 //set matching of new matching[k]
 //set also matching for the angle before (for whole

totalTheta need to set)
 for(int x = start; x <= k; x++)
 {

 mRotInterval[x].matching[i][j] = 1;

 }

 mRotItvIndex++;

 //move backwards
 moveBackwards(k+2, mRotItvIndex, temp2, tempArr);

 isSet = true;

break;
 }

 else if(angle == totalTheta)
 {

 for(int l = start; l <= k ; l++)
 {

 mRotInterval[l].matching[i][j] = 1;

 }

 isSet = true;
 break;
 }

 }

 // angle > totalTheta => add new theta at behind

 if(!isSet)
 {

 mRotInterval[mRotItvIndex].angle = angle - totalTheta;

 for(int l = start; l <= mRotItvIndex ; l++)
 {

 mRotInterval[l].matching[i][j] = 1;

 }

APPENDICES

A-27

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

mRotItvIndex++;

 }

 //destroy tempArr in memory address
 for(int i = 0; i < len; i++)
 delete[] tempArr[i];
 delete[] tempArr;

}

/*
 Calculate rotation interval and matching of p and q in each

rotation interval - to do bipartite matching(next step)
 theta1 : angle that moves p to q
 theta2 : angle that moves p out of q
 i : index of p structure
 j : index of q structure
*/
void Transformation::setRotInterval(double theta1, double theta2, int i,

int j)
{

 double totalTheta = 0;
 double temp, temp2;
 bool isSet = false;

 int** tempArr;
 /*initialize*/
 tempArr = new int*[len];

 for(int x = 0; x < len; x++)
 tempArr[x] = new int[len];

 totalTheta = 0;

 isSet = false;
 if(mRotItvIndex == 0) //first element, first theta to be insert into

array

 {

 if(theta1 > 0)

 {

 mRotInterval[mRotItvIndex].angle = theta1;//angle that

moves p to q

 mRotInterval[mRotItvIndex].matching[i][j] = -1;

 mRotItvIndex++;

 }

 mRotInterval[mRotItvIndex].angle = theta2;//angle that moves p

out of q

 mRotInterval[mRotItvIndex].matching[i][j] = 1;

 mRotItvIndex++;

 }

 else

 {

 if(theta1 == 0) //insert only theta2 when theta1 = 0

 {

 insertTheta2(0, mRotItvIndex, i, j, theta2);

 }

 else

 {

 for(int k = 0; k < mRotItvIndex; k++)

APPENDICES

A-28

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

 {
 totalTheta += mRotInterval[k].angle;

 if(theta1 < totalTheta)
 {

 totalTheta = totalTheta - mRotInter-

val[k].angle; //exclude angle[k]

 temp = mRotInterval[k].angle; //copy an-

gle[k] to temp
 mRotInterval[k].angle = theta1 - total-

Theta; //replace angle[k] with new theta
 temp2 = mRotInterval[k+1].angle; //copy

angle[k+1] to temp2
 mRotInterval[k+1].angle = temp - theta1;

//replace angle[k+1] with new theta

 copyMatching(mRotInterval[k+1].matching,

tempArr); //copy matching[k+1] to tempArr
 copyMatching(mRotInterval[k].matching,

mRotInterval[k+1].matching); //copy mathing[k] to matching[k+1]
 //set matching of new matching[k]
 //set also matching for the angle before

(for whole totalTheta also need to set)
 for(int x = 0; x <= k; x++)
 {

 mRotInterval[x].matching[i][j] = -1;

 }

 mRotItvIndex++;

 //move backwards
 moveBackwards(k+2, mRotItvIndex, temp2,

tempArr);

 //theta2 - must be the at position that

next to the theta1
 insertTheta2(k+1, mRotItvIndex, i, j,

theta2);

 isSet = true;
 break;

 }

 else if(theta1 == totalTheta)
 {

 for(int l = 0; l <= k ; l++)
 {

 mRotInterval[l].matching[i][j] = -1;

 }

 //theta2 - must be the at position that

next to the theta1
 insertTheta2(k+1, mRotItvIndex, i, j,

theta2);
 isSet = true;
 break;
 }

APPENDICES

A-29

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

 }

 // theta1 > totalTheta => add new theta at behind
 if(!isSet)

{

 mRotInterval[mRotItvIndex].angle = theta1 - to-

talTheta;

 for(int l = 0; l <= mRotItvIndex ; l++)
 {

 mRotInterval[l].matching[i][j] = -1;

 }

 mRotItvIndex++;

 //theta2 - must be at the position that next to

the theta1
 insertTheta2(mRotItvIndex, mRotItvIndex, i, j,

theta2);

 }

 }

 }

 //destroy tempArr in memory address
 for(int x = 0; x < len; x++)
 delete[] tempArr[x];
 delete[] tempArr;
}

///Get maximum

bipartite

matching//
void Transformation::getMaxMatch()
{

 int max = 0;

 for(int i = 0; i < mRotItvIndex; i++)
 {

 max = hopcroft_karp(len, mRotInterval[i].matching);

 if(mMaxMatch < max)
 mMaxMatch = max;

 }

}

APPENDICES

A-30

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-9 Graph.h

#ifndef _GRAPH_H_
#define _GRAPH_H_
#define NIL 0
#define INF (1<<28)

#include <iostream>
#include <queue>
using namespace std;

void insertMatch(int** matching, int length);
bool bfsearch(int n, int* match, int* dist);
bool dfsearch(int v, int* match, int* dist);
int hopcroft_karp(int length, int** matching);

#endif

APPENDICES

A-31

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-10 Graph.cpp

/*

 Modified from code on web:

http://zobayer.blogspot.com/2010/05/maximum-matching.html

*/
#include "Graph.h"
// nLeft: number of nodes on left side, nodes are numbered 1 to n,G1

 (p structure)
// nRight: number of nodes on right side, nodes are numbered n+1 to

n+m,G2 (q structure)
// G = NIL[0] ∪¨¨ G1[G[1---n]] ∪¨¨ G2[G[n+1---n+m]]

vector<vector<int> > G;
void insertMatch(int** matching, int length)
{

 for(int i = 0; i < length; i++)
 {

 for(int j = 0; j < length; j++)
 {

 if(matching[i][j] == 1)
 {

 j += length; //v += nLeft
 G[i+1].push_back(j+1); //G[u].push_back(v);
 }

 }

 }

}

bool bfsearch(int n, int* match, int* dist)
{

 int u, v, length;
 queue<int> Q;
 //for vertex in G1: from 1 to n
 for(int i = 1; i <= n; i++)
 {

 if(match[i] == NIL) //Pair_G1 = match
 {

 dist[i] = 0;

 Q.push(i);

 }

 else
 {

 dist[i] = INF;

 }

 }

 dist[NIL] = INF;

 while(!Q.empty())
 {

 v = Q.front();Q.pop();//vertex = Dequeue(Q), vertex in G1 =

u

 if(v != NIL)

 {

 length = G[v].size();

APPENDICES

A-32

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

//for each u in Adj[v]
 for(int i = 0; i < length; i++)
 {

 u = G[v][i];

if(dist[match[u]] == INF)
 {

 dist[match[u]] = dist[v] + 1;

 Q.push(match[u]);

 }

 }

 }

 }

 return (dist[NIL] != INF);
}

bool dfsearch(int v, int* match, int* dist)
{

 int u, length;

 if(v != NIL)
 {

 length = G[v].size();

 //for each u in Adj[v]
 for(int i = 0; i < length; i++)
 {

 u = G[v][i];

 if(dist[match[u]] == dist[v] + 1)
 {

 if(dfsearch(match[u], match, dist))
 {

 match[u] = v;

 match[v] = u;

 return true;
 }

 }

 }

 dist[v] = INF;

 return false;
 }

 return true;
}

int hopcroft_karp(int length, int** matching)
{

 G.resize(length+1);

 int length2 = length*length;
 int *match = new int[length2 + 1];
 int *dist = new int[length2 + 1];

 for(int i = 0; i <= length2; i++)
 {

 match[i] = 0;

 dist[i] = 0;

 }

 insertMatch(matching, length);

APPENDICES

A-33

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

 int totalMatch = 0;

while(bfsearch(length, match, dist))
 {

 for(int i = 1; i <= length; i++)
 {

 if(match[i] == NIL)
 {

if(dfsearch(i, match, dist))
 {

 totalMatch++;

 }

 }

 }

 }

 delete match;
 delete dist;
 return totalMatch;
}

APPENDICES

A-34

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

A-11 Example of .pdb file

ATOM 1 N MET 1 1.040 0.374 -0.952 1.00 0.00

ATOM 2 CA MET 1 0.000 0.000 0.000 1.00 0.00

ATOM 3 C MET 1 0.598 -0.376 1.349 1.00 0.00

ATOM 4 O MET 1 -0.110 -0.827 2.249 1.00 0.00

ATOM 5 CB MET 1 -0.835 -1.146 -0.550 1.00 0.00

ATOM 6 N SER 2 1.907 -0.187 1.484 1.00 0.00

ATOM 7 CA SER 2 2.623 -0.615 2.679 1.00 0.00

ATOM 8 C SER 2 2.169 0.169 3.904 1.00 0.00

ATOM 9 O SER 2 2.381 -0.258 5.039 1.00 0.00

ATOM 10 CB SER 2 4.124 -0.467 2.479 1.00 0.00

ATOM 11 N PHE 3 1.543 1.316 3.667 1.00 0.00

ATOM 12 CA PHE 3 0.979 2.118 4.746 1.00 0.00

ATOM 13 C PHE 3 -0.184 1.398 5.417 1.00 0.00

ATOM 14 O PHE 3 -0.676 1.830 6.460 1.00 0.00

ATOM 15 CB PHE 3 0.534 3.474 4.222 1.00 0.00

ATOM 16 N ILE 4 -0.620 0.298 4.814 1.00 0.00

ATOM 17 CA ILE 4 -1.688 -0.516 5.381 1.00 0.00

ATOM 18 C ILE 4 -1.262 -1.139 6.704 1.00 0.00

ATOM 19 O ILE 4 -2.042 -1.195 7.655 1.00 0.00

ATOM 20 CB ILE 4 -2.113 -1.594 4.397 1.00 0.00

ATOM 21 N GLU 5 -0.020 -1.607 6.759 1.00 0.00

ATOM 22 CA GLU 5 0.522 -2.203 7.975 1.00 0.00

ATOM 23 C GLU 5 0.414 -1.244 9.153 1.00 0.00

ATOM 24 O GLU 5 -0.144 -1.586 10.195 1.00 0.00

ATOM 25 CB GLU 5 1.968 -2.622 7.761 1.00 0.00

ATOM 26 N LYS 6 0.951 -0.040 8.981 1.00 0.00

ATOM 27 CA LYS 6 0.883 0.984 10.017 1.00 0.00

ATOM 28 C LYS 6 -0.554 1.224 10.461 1.00 0.00

ATOM 29 O LYS 6 -0.842 1.292 11.656 1.00 0.00

ATOM 30 CB LYS 6 1.511 2.278 9.524 1.00 0.00

ATOM 31 N MET 7 -1.454 1.351 9.492 1.00 0.00

ATOM 32 CA MET 7 -2.867 1.562 9.781 1.00 0.00

ATOM 33 C MET 7 -3.436 0.419 10.612 1.00 0.00

ATOM 34 O MET 7 -4.200 0.642 11.552 1.00 0.00

ATOM 35 CB MET 7 -3.655 1.724 8.490 1.00 0.00

ATOM 36 N ILE 8 -3.060 -0.806 10.261 1.00 0.00

ATOM 37 CA ILE 8 -3.501 -1.984 10.998 1.00 0.00

ATOM 38 C ILE 8 -2.935 -1.993 12.412 1.00 0.00

ATOM 39 O ILE 8 -3.627 -2.350 13.365 1.00 0.00

ATOM 40 CB ILE 8 -3.103 -3.252 10.257 1.00 0.00

ATOM 41 N GLY 9 -1.673 -1.598 12.541 1.00 0.00

ATOM 42 CA GLY 9 -1.020 -1.534 13.843 1.00 0.00

ATOM 43 C GLY 9 -1.722 -0.545 14.764 1.00 0.00

ATOM 44 O GLY 9 -1.941 -0.827 15.942 1.00 0.00

ATOM 46 N SER 10 -2.074 0.615 14.220 1.00 0.00

ATOM 47 CA SER 10 -2.805 1.625 14.975 1.00 0.00

ATOM 48 C SER 10 -4.147 1.089 15.456 1.00 0.00

ATOM 49 O SER 10 -4.542 1.314 16.600 1.00 0.00

ATOM 50 CB SER 10 -3.002 2.877 14.133 1.00 0.00

ATOM 51 N LEU 11 -4.844 0.379 14.576 1.00 0.00

ATOM 52 CA LEU 11 -6.149 -0.182 14.906 1.00 0.00

ATOM 53 C LEU 11 -6.027 -1.282 15.953 1.00 0.00

ATOM 54 O LEU 11 -6.921 -1.470 16.777 1.00 0.00

ATOM 55 CB LEU 11 -6.830 -0.713 13.654 1.00 0.00

APPENDICES

A-35

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR.

ATOM 56 N ASN 12 -4.914 -2.007 15.915 1.00 0.00

ATOM 57 CA ASN 12 -4.711 -3.146 16.802 1.00 0.00
ATOM 58 C ASN 12 -4.910 -2.752 18.259 1.00 0.00

ATOM 59 O ASN 12 -5.491 -3.504 19.042 1.00 0.00

ATOM 60 CB ASN 12 -3.326 -3.739 16.595 1.00 0.00

ATOM 61 N ASP 13 -4.425 -1.568 18.618 1.00 0.00
ATOM 62 CA ASP 13 -4.443 -1.122 20.006 1.00 0.00

ATOM 63 C ASP 13 -5.557 -0.110 20.245 1.00 0.00

ATOM 64 O ASP 13 -5.622 0.518 21.301 1.00 0.00

ATOM 65 CB ASP 13 -3.096 -0.530 20.390 1.00 0.00

ATOM 66 N LYS 14 -6.433 0.042 19.257 1.00 0.00

ATOM 67 CA LYS 14 -7.539 0.986 19.354 1.00 0.00

ATOM 68 C LYS 14 -8.480 0.618 20.494 1.00 0.00

ATOM 69 O LYS 14 -8.594 -0.551 20.864 1.00 0.00

ATOM 70 CB LYS 14 -8.298 1.049 18.037 1.00 0.00

ATOM 71 N ARG 15 -9.152 1.621 21.047 1.00 0.00

ATOM 72 CA ARG 15 -10.245 1.387 21.984 1.00 0.00

ATOM 73 C ARG 15 -11.326 0.514 21.362 1.00 0.00

ATOM 74 O ARG 15 -12.018 -0.227 22.061 1.00 0.00

ATOM 75 CB ARG 15 -10.833 2.709 22.454 1.00 0.00

ATOM 76 N GLU 16 -11.468 0.605 20.044 1.00 0.00

ATOM 77 CA GLU 16 -12.479 -0.164 19.327 1.00 0.00

ATOM 78 C GLU 16 -12.101 -1.638 19.256 1.00 0.00

ATOM 79 O GLU 16 -12.968 -2.507 19.163 1.00 0.00

ATOM 80 CB GLU 16 -12.682 0.402 17.930 1.00 0.00

ATOM 81 N TRP 17 -10.802 -1.914 19.299 1.00 0.00

ATOM 82 CA TRP 17 -10.305 -3.280 19.192 1.00 0.00

ATOM 83 C TRP 17 -10.977 -4.192 20.210 1.00 0.00

ATOM 84 O TRP 17 -11.401 -5.300 19.882 1.00 0.00

ATOM 85 CB TRP 17 -8.795 -3.310 19.366 1.00 0.00

ATOM 86 N LYS 18 -11.071 -3.720 21.449 1.00 0.00

ATOM 87 CA LYS 18 -11.703 -4.486 22.515 1.00 0.00

ATOM 88 C LYS 18 -13.158 -4.795 22.184 1.00 0.00

ATOM 89 O LYS 18 -13.675 -5.853 22.542 1.00 0.00

ATOM 90 CB LYS 18 -11.606 -3.738 23.836 1.00 0.00

ATOM 91 N ALA 19 -13.813 -3.865 21.498 1.00 0.00

ATOM 92 CA ALA 19 -15.197 -4.054 21.080 1.00 0.00

ATOM 93 C ALA 19 -15.323 -5.210 20.096 1.00 0.00

ATOM 94 O ALA 19 -16.298 -5.960 20.125 1.00 0.00

ATOM 95 CB ALA 19 -15.746 -2.773 20.470 1.00 0.00

ATOM 96 N MET 20 -14.330 -5.348 19.224 1.00 0.00

ATOM 97 CA MET 20 -14.308 -6.436 18.254 1.00 0.00

ATOM 98 C MET 20 -14.388 -7.792 18.945 1.00 0.00

ATOM 99 O MET 20 -15.203 -8.638 18.580 1.00 0.00

ATOM 100 CB MET 20 -13.059 -6.352 17.390 1.00 0.00

ATOM 101 N GLU 21 -13.536 -7.991 19.945 1.00 0.00

ATOM 102 CA GLU 21 -13.514 -9.242 20.694 1.00 0.00

ATOM 103 C GLU 21 -14.851 -9.500 21.375 1.00 0.00

