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Abstract 

 

This project is to enhance the RISC32 architecture that developed in UniversitiTunku 

Abdul Rahman under Faculty of Information and Communication Technology. After 

reviewing previous work, the RISC32 processor has a readily available SDRAM 

Controller and 128MB SDRAM functional model provided by Micron but it has not been 

integrated into the processor yet. 

 

Therefore this project is initiated to integrate the main memory into the processor. The 

existing SDRAM Controller is build based on Wishbone Compatible Standard while the 

processor side is not. Therefore, a bus interface unit should be design in order to establish 

a communication platform for the processor and main memory.Other than that, caches 

design should be taken into consideration when we are designing the bus interface unit 

due to whenever there is a cache miss, the processor need to get the data or instruction 

from SDRAM. This design modeled using Verilog, High Level Description Language 

and connects to other component. 
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Chapter 1: Introduction 

1.1: Background 

 As modern day systems are gradually becoming more and more complex due to 

their wide functionalities, memory plays an important role in the performance of the 

system. Many computations executed on current machine are often limited by the 

response of the memory system rather than the speed of processor [1]. At early in the 

1960’s, it was the time cache memories were proposed and being introduced into the 

memory hierarchy as high speed memory buffers used to hold the contents of recently 

accessed main memory locations. It was already known at that time that recently used 

information such as instructions and data is likely to be used again in the near future[1-2]. 

With this method, although cache memory would only hold a small fraction of the 

contents of main memory, a disproportionate fraction of all memory references would be 

satisfied by information contained within the cache [5-7]. However, this introduction 

could not solve the problem perfectly since the size of the cache is inversely proportional 

to the speed of the memory. As the cache size reduced, miss rate which indicates the 

chance of data needed was not available inside cache will be increase. When cache miss 

happens, instruction or data has to be read from the main memory which indicates that 

several processes have to go through in order to handle cache miss[7]. This is 

unavoidable as long as we are using cache memory inside our system and this has comes 

to our topic, main memory integration which responsible to handle the data or instruction 

transfers between SDRAM and cache memory when cache miss happens. 
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1.2: Motivation and Problem Statement 

Recently, a RISC32 project has been developed in the Faculty of Information and 

Communication Technology, UniversitiTunku Abdul Rahman. The project is based on 

the RISC architecture. The main reasons for initiating this project are: 

 Microchip design companies develop microprocessors cores as IP for commercial 

purposes. The microprocessor IP includes information on the entire design 

process for the front-end (modeling and verification) and back-end (layout and 

physical design) IC design. These are trade secrets of a company and certainly not 

made available in the market at an affordable price for research purposes. 

 Several freely available microprocessor cores can be found in [1]. Unfortunately, 

these processors do not implement the entire MIPS Instruction Set Architecture 

(ISA) and lack comprehensive documentation. This makes them unsuitable for 

reuse and customization. 

 Verification is vital for proving the functionality of any digital design. The 

microprocessor cores mentioned above are handicapped by incomplete and poorly 

developed verification specifications. This hampers the verification process, 

slowing down the overall design process. 

 The lack of well-developed verification specifications for these microprocessor 

cores will inevitably affect the physical design phase. A design needs to be 

functionally proven before the physical design phase can proceed smoothly. 

Otherwise, if the front-end design has to be changed, the physical design process 

has to be redone. 

 

The RISC32 project will aim to provide a solution to the above problems by creating a 

32-bit RISC core-based development environment to assist research work in the area of 

soft-core and also application specific hardware modeling. Currently, a basic central 

processing unit (CPU) and SDRAM Controller and SDRAM providedby MICRON 

Technology Inc. has been modeled at the Register Transfer Level (RTL) using Verilog 

HDL and both of them have been combined together and had gone through a series of 

simulation test.  However, several design issues were found in the existing RISC32 
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Memory System [9].One of the issues is although the SDRAM Controller and SDRAM 

has been modeled, it is not ready to integrate into basic CPU that has been modeled 

previously due to the outputs of CPU is not compatible to current SDRAM since the 

current RICS32 processor is using a 32 bits address which will cover up to 4GB of 

memory space. Hence, an additional circuit has been to add on to the current design 

which acts as a platform for current SDRAM, TLB, MMU, CACHE and others basic 

CPU to communicate with each others. With all these problems, it is imperative for us to 

reanalyze and refurbish the foundation of the Memory System before any memory 

integration can be done. 

1.3: Project Scope 

This project aims to integrate existing SDRAM Controller and conventional SDRAM 

into the 32 bits 5-stage pipelined RISC processor. 

The scope of this project involves: 

1) Designing a bus interface unit which compatible to SDRAM controller, 64MB 

SDRAM behavioral model provided by MICRON Technology Inc and CPU.  

2) The implementation of an industry standard WISHBONE SoC interface in the bus 

interface unit design to ensure portability. 

3) Verify its behavior and functionality at chip level together withTLB, MMU, 

CACHE, SDRAM controller, 64MB SDRAM behavioral model provided by 

MICRON Technology Inc and CPU. Timing analysis and synthesis is outside the 

scope of this project. 
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1.4: Project Objectives 

The project’s objectives include: 

 Analyze the existing Memory System organization, interfacing and the 

functionality of a SDRAM and SDRAM Controller. Analysis on the existing 

MIPS Memory System will be done. 

 SDRAM Bus Interface Unit Design – This part includes the development of chip 

specification and the microarchitecture specification of the SDRAM Bus Interface 

Unit based on WISHBONE Soc Interface. 

 TLB Design – This part include the development of microarchitecture 

specification of the TLB which used to act as a cache for keeping page table 

entries. 

 MMU Design – This part include the development of microarchitecture 

specification of MMU (Memor y Management Unit) which responsible to conduct 

a page table walk through. 

 Integration with Cache – This part will include the integration of cache together 

with existing 64MB of SDRAM, SDRAM Controller, TLB and MMU. 

 Verification – Test case will be developed to test the SDRAM and SDRAM 

controller as a whole by simulating Wishbone master interface signal based on 

Bus Functional Model and to test whether the design is workable, lw and sw 

instructions should be used inside the test case.. 
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1.5: Significance and Impact 

As a synopsis to the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The 

development environment refers to the availability of the following: 

 A well-developed design document, which includes the chip specification, 

architecture specification and micro-architecture specification. 

 A fully functional well-developed 32-bit RISC architecture core in the form of 

synthesis-ready RTL written in Verilog. 

 A well-developed verification environment for the 32-bit RISC core. The 

verification specification should contain suitable verification methodology, 

verification techniques, test plans, testbench architectures etc.  

 A complete physical design in FPGA with documented timing and resource usage 

information. 

The RISC32 project is an effort to develop the environment mentioned above: to be used 

as a multi-cycle pipelined RISC microprocessor core-based platform to support hardware 

modeling research work. 

With the existing well-developed basic RISC32 RTL model (which has been fully 

functionally verified), the verification environment and the design documents, a 

researcher can develop his research specific RTL model as part of the RISC32 

environment (whether directly modifying the internals of the processor or interface to the 

processor) and can quickly verify his model to obtain results, without having to worry 

about the development of the verification environment and the modeling environment. 

This can hasten the research work significantly. Relating exclusively to this project, the 

establishment of a strong foundation of the Memory System is important. By building the 

SDRAM Bus Interface Unit which act as a communicator between SDRAM and CPU, a 

solid ground will be formed whereby the next designer can focus on fixing other parts of 

the Memory System.  
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Chapter 2: Literature Review 

2.1: MIPS 

MIPS (Microprocessor without Interlocked Pipelined Stage) is a RISC (Reduced 

Instruction Set Computers) processor which use hardware implementation to 

directlyexecute instructions, without microprogrammed control. MIPS is widely used in 

digitalconsumer, networking, personal entertainment, communications and business 

applications [2], such as Sony Playstation 2, Sony Playstation Portable (PSP) and Linksys 

wireless router which primarily used in MIPS implementations. MIPS can be develop 

using Verilog – a hardware description language (HDL). 

2.2: Memory Hierarchy 

When we are discussing about the performance issues in computer architectural 

design, algorithm predictions, and the low level programming constructs which involve 

locality of reference, the term, memory hierarchy will always been used in the computer 

architecture.

 

Figure 2.2.1: The Memory Hierarchy(Adapted from [6]) 
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As shown in the diagram above, the memory hierarchy in computer storage is actually 

distinguishes each level by access time, cost per unit and capacity. Besides, in order to 

produce a faster access time memory, controlling technology plays an important role in it 

and therefore, each level of memory hierarchy also can be used to distinguish controlling 

technology [2,3,6,8]. 

2.3: Cache and Main Memory Interfacing 

 From [7], we know that processor is connected to the main memory by a bus 

system and the bandwidth of the bus system has a significant impact on miss penalty. 

This is because the clock rate for bus is usually much slower than the processor as much 

as a factor of 10. Therefore, selection of memory organization to be use in processor 

plays an important role in deciding the performance of the processor. 

 

Figure 2.3.1: Memory Organization (Adapted from [7]) 
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Miss Penalty =  

Send address (1 bus cycle) + Access 1 word in DRAM (15 bus cycles)                              

+ Send a word from DRAM to Cache (1 bus cycle) 

 

 Figure on previous page shows three types of available memory organizations 

which are one-word-wide memory, wide memory and interleaved memory organization. 

To have a deeper understanding towards the memory organization, let us go through a 

simple example [7]. Assume that a processor need 

 1 memory bus clock cycle to send the address to main memory. 

 15 memory bus clock cycles for each DRAM access initiated. 

 1 memory bus clock cycle to send a word of data. 

Assume that we are going to send 4 words from main memory to cache.  

The miss penalty can be calculated by using the equation below:  

 

 

With all the information given above, we can evaluate the performance of the memory 

organization shows in Figure 2.3.1. 

 For a one-word-wide memory organization, since it can only fetch one word per 

time, in another word, it means that the main memory needs to be access 4 times in order 

to fetch all the data require to the cache. Therefore,  

Miss Penalty = 1 + (4 * 15) + (4 * 1) = 65 bus cycles. 

 For a wide memory organization, it is capable to fetch all the require data in one 

shot since it has a very high bandwidth of bus system. Therefore, 

Miss Penalty = 1 + (1 * 15) + (1 * 1) = 17 bus cycles. 

 Lastly, a interleaved memory organization, which capable to read multiple words 

in main memory in a single bus cycle and transfer the data back word by word. Therefore,  

Miss Penalty = 1 + (1 * 15) + (4 * 1) = 21 bus cycles. 
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 The calculations above shows that a wide memory organization has the least miss 

penalty but keep in mind that a huge bus system is not easy to manage and it require a 

high cost to implement. For the interleaved memory organization, although it is slower 

than wide memory organization, it is using a shared bus system among the memory banks. 

This reduces the cost to implement but this will results in a similar performance with 

wide memory organization.  

2.4: DRAM 

Dynamic Random-Access Memory (DRAM) is a type of random access memory 

that will stores each bit of data in a separate of capacitor within an integrated circuit. It is 

a non-volatile memory that the data stored inside will be lost once the power supply been 

turned off. Due to the characteristic of capacitor which is charging and discharging, these 

states are taken to represent two values of bit which are 0 and 1. DRAM is always cost 

lesser than Static Random Access Memory (SRAM) due to its simple structural which 

only consists of one transistor and one capacitor per bit comparing to SRAM which is 

using 4 or 6 transistors depends on the design [6-8]. With this structure, DRAM can be 

designed to reach a very high density but as a tradeoff, the accessing time of DRAM is 

slower than SRAM. Other than that, since capacitors leak charge, the information stored 

inside will eventually fades unless the capacitor is being refreshed periodically.  

 

 

 

 

 

   DRAM     SRAM 

Figure 2.4.1:The structure of DRAM and SRAM. (Adapted from [7]) 

 

 



Main Memory Integration 2013 

 

BIT (Hons) Computer Engineering  

Faculty of Information and Communication Technology, UTAR  Page 10 

 

2.5: SDRAM 

Synchronous Dynamic Random Access Memory (SDRAM) is a DRAM that is 

synchronized with the system bus. The previous DRAM we had discussed has an 

asynchronous interface in which it responds as quickly as possible to changes in control 

input while SDRAM has a synchronous interface, meaning it will wait for a rising edge 

of clock signal before responding to control input[5].  

 

Figure 2.5.1: Block diagram of 128Mb banks SDRAM(Adapted from [9]) 

Pin Name Size Description 

 

ba [1:0] 2 bits Bank Address: Define to which device bank the ACTIVE, 

READ, WRITE or PRECHARGED is being applied. 

 

adr [31:0] 12 bits Address Bus: Used as an input to send column address, row 

address and configuration setting to the SDRAM. 

 

dq [31:0] 32 bits Data Line: 32 bits bidirectional data line to/from SDRAM. 

 

dqm [4:0] 4 bits Data Mask: Used to select which byte of the 32 bits bidirectional 

data line, dq, is valid. 

 

cs_n 1 bits Chip Select: When this signal is high, the chip ignores all other 

inputs except clock signal, and acts as if a NOP command is 

received. 

 

cs_n 

we_n 

cas_n 

ras_n 
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we_n 1 bits Write Enable:  Along with /RAS and /CAS, this selects one of 8 

commands. This generally distinguishes read-like commands 

from write-like commands. 

cas_n 1 bits Column Address Strobe: Along with /RAS and /WE, this selects 

one of 8 commands. 

 

ras_n 1 bits  Row Address Strobe:  Along with /CAS and /WE, this selects 

one of 8 commands. 

 

clk 1 bits Clock Signal: Used to synchronize with the CPU bus system. 

 

Table2.5.1: I/O description table of SDRAM. 

The SDRAM has adopted bidirectional data line, dq, for write transfer and read 

transfer. This is because the SDRAM can only do one of the operations at a time. The 

granularity of a bus is defined as the smallest transfer can be done by that bus. This is 

accomplished using the data masking pin, dqm(3:0).  The data masking pin is used to 

select which byte of the 32-bit bidirectional data line, dq, is valid. 

For example, if dqm = 0001 (binary), the valid 8-bit data is located at dq(7:0). 

Here is another example, if dqm = 1100 (binary), the valid 16-bit data is located at 

dq(31:16). As mentioned, since the smallest transfer is 8-bit, the granularity of this 

SDRAM is 8-bit. As a comparison, the customized SDRAM has a granularity of 32-bit 

for its 32-bit write data line and 256-bit granularity for its 256-bit read data line. This also 

means that the customized SDRAM cannot support byte addressing. 

There are several functions available to control the activity of SDRAM by varying 

the control signals such as cs_n, ras_n, cas_n, we_n. These control signals are normally 

issued by a SDRAM Controller. 
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The table below provided a quick reference of available command for SDRAM: 

Table2.5.2: Truth Table – Command and DQM operation. (Adapted from [4]) 

 

 Other than that, by using adr[11:0] pin of the SDRAM, we can configure the 

mode register which used to define the specific mode of operation for SDRAM via the 

LOAD MODE REGISTER command and the information stored will be retain until it 

has been reprogrammed or the device has been powered off. The definition includes the 

selection of burst length, burst type, CAS latency, operating mode and write burst mode. 

 Burst is a technique used to continuous read or write data from the memory 

depends on the burst length. For example, if we set the burst length to be 4 and it is a 

READ operation, the data inside SDRAM will be read 4 times continuously. The 

sequences of the data read or write will be either in sequential or interleaved order which 

shows in Table 2.4.3. 
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Figure 2.5.2: Mode Register Definition Diagram. (Adapted from [4]) 

The description of each definition shown above will be discussed as below: 

 Burst Length 

Used to determine maximum number of column locations that can be accessed for 

a given READ or Write command. 

 

 



Main Memory Integration 2013 

 

BIT (Hons) Computer Engineering  

Faculty of Information and Communication Technology, UTAR  Page 14 

 

 Burst Type 

Used to select either sequential or interleaved burst to be adopted by SDRAM. 

The ordering of accesses within a burst is determined by burst length, burst type, 

starting column address. 

 CAS Latency 

Delay in clock cycles between registration of a READ command and the 

availability of the first piece of output data. It can only be set to 2 or 3 clock 

cycles. 

 Operating Mode 

Used to select which operating mode should the SDRAM be. Currently there is 

only normal operating mode is available for use. 

 Writing Burst Mode 

When it is ‘0’, the burst length is programmed via M0-M2 applies to both READ 

and WRITE burst. 

When it is ‘1’, the programmed burst length applies to READ bursts, but write 

accesses are single-location (non-burst) accesses. 

 

Table2.5.3: Burst Definition Table.(Adapted from [4]) 
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2.6: SDRAM Controller 

The SDRAM Controller is used to acts as a communicator between the host and 

SDRAM. As the SDRAM Controller receive the operation command from the host, it 

will interpret it and translate into a control signal which acts as an input to the SDRAM.  

The SDRAM Controller has been previously modeled based on industry standard 

WISHBONE SoC interface [9].  

 

Figure 2.6.1:  Block diagram of SDRAM Controller.  

(Modified from [9]) 

Pin Name Size (bits) Description 

ip_wb_clk 1 Clock signal to synchronize to the system. 

 

ip_wb_rst 1 Synchronous reset to reinitialize the system. 

 

ip_wb_cyc 1 Asserted to indicate valid bus cycle is in progress. 

 

ip_wb_stb 1 Asserted to indicate the SDRAM controller is 

selected.  

 

ip_wb_we 1 Asserted to indicate that the current cycle is READ. 

Deasserted to indicate current cycle is WRITE. 

 

op_wb_ack 1 Asserted to indicate that the current READ or 

WRITE operation is successful. 

 

[3:0] 

[31:0] 
[31:0] 

[31:0] 

[3:0] 

[31:0] 

[1:0] 
[11:0] 

4 

2 

12 

32 
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Table2.6.1: I/O pin description of SDRAM Controller. 

*Note that ip represents input, op represents output, wb represents WISHBONE, sdr 

represents SDRAM. 

By using this SDRAM Controller, we can make a direct LOAD MODE 

REGISTER command straight from the host. To load the configuration to the SDRAM, 

the host nee to asserted for the pin ip_host_ld_mode. This can help in speeding upwhen 

configuring SDRAM since in the reality not only one SDRAM will be connected to this 

SDRAMController

ip_wb_sel [3:0] 4 Used to indicate where valid data is placed on the 

input data line (ip_wb_dat) during WRITE cycle and 

where it should present on the output data line 

(op_wb_dat) during READ cycle.  

ip_wb_addr [31:0] 32 Used to pass the memory address from the host. 

 

ip_wb_dat [31:0] 32 Used to pass WRITE data from the host. 

 

op_wb_dat [31:0] 32 Used to output READ data from the SDRAM. 

 

ip_host_ld_mode 1 Asserted to load a new mode into the SDRAM. 

 

op_sdr_cs_n 

 

1 SDRAM chip select. 

 

op_sdr_ras_n 

 

1 SDRAM row address select. 

 

op_sdr_cas_n 1 SDRAM column address select. 

op_sdr_we_n 

 

1 SDRAM write enable. 

 

op_sdr_addr [11:0] 12 Address output to the SDRAM.  

op_sdr_ba [1:0] 2 Bank Address output to SDRAM. 

 

op_sdr_dqm [3:0] 4 Used to select which bits of the data line (io_sdr_dq) 

to be masked.  

 

io_sdr_dq [31:0] 32 Bidirectional data line to receive READ data or send 

WRITE data. 
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Figures 2.6.2: The Microarchitecture of SDRAM Controller.
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The figure on the previous page shows the microarhitecture of the SDRAM Controller. 

Inside the figure, the block sdc_obrt_top_obrt_unit is used to track the row status of all of 

the banks. Block sdc_mc is responsible to store the status of the SDRAM configuration 

and also the power up status to indicate if the SDRAM controller is executing the 

initialization protocol or not.The address multiplexer, sdc_addr_mux partitions the 

WISHBONE address input line into row address, bank address and column address. Then, 

it multiplexes the configuration mode, row address and column address. It also decodes 

the WISHBONE Select input pin and converts it to equivalent masking output. 

 Besides, block sdc_dp_buf is used to controls the flow of the data between 

SDRAM and Host while block sdc_sdram_ifis the SDRAM Interface Block that 

synchronizes all the signals to the negative edge before sending them out the SDRAM. 

 Other than that, SDRAM Controller also responsible to instruct the SDRAM to 

initiate a precharge in order to maintain the information stored inside each cell. Otherwise, 

the information stored inside each cell will be lost due to the characteristic of capacitor 

which is the voltage will slowly leak off.The finite state machine below shows how the 

SDRAM Controllerhandles the timing and the state changes that forms the protocols of 

the SDRAM. It helps in decide which protocol to be executed and what commands to be 

sent to the SDRAM by using the sdc_fsm block. 
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Figure 2.6.3: Sub Module of SDRAM Controller –  

Protocol Controller Block Finite State Machine (Adapted from [9]) 
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State Definitions of Protocol Controller Block 

State Name Definition 

INIT Initialization  

INIT_W Wait for power up delay. The delay needed is dependence on the 

SDRAM manufacturer 

PRECH Send Precharge command 

PRECH_W Wait row precharge delay time 

AREF Send Auto-Refresh command 

AREF_W Wait refresh delay time 

LMR Send Load Mode command 

IDLE_0 Wait operation to complete 

IDLE Wait for new operation 

ACT Send Active command 

WRITE Send Write command 

WRITE_LOOP Write data 

READ Send Read Command 

READ_W Wait CAS Latency 

READ_LOOP Read data 

BT Send Burst Terminate command 

Table 2.6.2: State Definitionsof Protocol Controller Block(Adapted from [9]) 

Output or Behaviors of Protocol Controller Block Corresponding to the States 

 

State Name Correspondence Output Behaviors 

INIT op_fsm_cmd<=  `CMD_NOP; 

r_brst_cnt<= 0; 

r_pu_cnt<= 2; 

r_ri_cnt<=  `REF_INTERVAL; 

r_tmr_val<= `WAIT_150us; 

op_wb_ack<= 0; 

 

INIT_W op_fsm_cmd<=  `CMD_NOP; 

 

PRECH op_fsm_cmd<=  `CMD_PRECH; 

op_fsm_bank_clr<=  !(w_ref_req | ip_fsm_pu_stat); 

op_fsm_bank_clr_all<=  (w_ref_req | ip_fsm_pu_stat | 

ip_host_ld_mode); 

op_fsm_a10_cmd  <= (w_ref_req | ip_fsm_pu_stat | 

ip_host_ld_mode); 

r_tmr_val<=  `TRP_DEF – 13’d1; 

 

 

 

PRECH_W op_fsm_ld_mode_req<=  ip_host_ld_mode; 

op_fsm_cmd<=  `CMD_NOP; 
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AREF op_fsm_cmd<=  `CMD_AREF; 

r_pu_cnt<=  ip_fsm_pu_stat? r_pu_cnt – 1: r_pu_cnt;  

r_ri_cnt<=  `REF_INTERVAL; 

r_tmr_val<= tRFC constant – 1; 

 

AREF_W op_fsm_cmd<=  `CMD_NOP; 

r_ri_cnt<=  `REF_INTERVAL; 

 

LMR op_fsm_cmd<=  `CMD_LMR; 

op_fsm_lmr_sel<= 1; 

op_fsm_pu_done<= ip_fsm_pu_stat? 1: 0; 

r_tmr_val<=  {2’b00, `TMR_DEF} – 13’d1; 

op_wb_ack<= ip_wb_cyc&ip_wb_stb&ip_host_ld_mode; 

 

IDLE_0 op_fsm_cmd<=  `CMD_NOP; 

 

IDLE op_fsm_cmd<=  `CMD_NOP; 

 

ACT op_fsm_cmd<=  `CMD_ACT; 

op_fsm_bank_act<=  1 

op_fsm_row_sel<= 1; 

r_tmr_val<=  {1’b0,`TRCD_DEF} – 13’d1; 

 

 

 

WRITE op_fsm_cmd<=  `CMD_WR; 

r_brst_cnt<= r_brst_val – 1; 

r_tmr_val<=  {2’b00,`TWR_DEF} – 13’d1; 

op_fsm_woe<= 1; 

op_wb_ack<= ip_wb_cyc&ip_wb_stb; 

 

WRITE_LOOP op_fsm_cmd<=  `CMD_NOP; 

r_brst_cnt<= r_brst_cnt – 1; 

r_tmr_val<=  {2’b00,`TWR_DEF} – 13’d1; 

op_fsm_woe<= 1; 

op_wb_ack<= ip_wb_cyc&ip_wb_stb; 

 

READ op_fsm_cmd<=  `CMD_RD; 

r_brst_cnt<= r_brst_val; 

r_tmr_val<=  {1’b0,ip_fsm_cfg_mode[6:4]} – 13’d1; 

 

 

READ_W op_fsm_cmd<=  `CMD_NOP; 

 

READ_LOOP op_wb_ack<= ip_wb_cyc&ip_wb_stb&r_roe; 

op_fsm_cmd<=  `CMD_NOP; 

r_brst_cnt<= r_brst_cnt – 1; 

r_roe<= 1; 
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BT op_fsm_cmd<=  `CMD_BT; 

r_brst_cnt<= 0; 

Table 2.6.3: Output or Behaviors of Protocol Controller BlockCorresponding 

to the States (Adapted from [9]) 

 

 With the help of the protocol controller block, all the states and operations need to 

be done by SDRAM have been fully specify and been show clearly. With the aid of this 

sub module, the SDRAM Controller can initiate a refreshing circuit whenever it is 

necessary without receiving any command from the CPU. Due to the complexity of finite 

state machine, in order to have a ease way to understand what Protocol Controller do, 

process of understanding how the protocol controller had been conducted and as a result, 

individual process has been successfully been figured out. 
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Initialization Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 2.6.4: This protocol follows the recommended SDRAM initialization requirement 

given by MICRON. 
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Keep Bank and Row Open Access Protocol 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.5: Keep Bank and Row Open Access Protocol to to achieve fast access cycle 

for same row accesses. 
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Load Mode Protocol (Initialization Stage) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.6: Load Mode Protocol when in the initialization stage. 
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Load Mode Protocol (Post Initialization Stage) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.7: Load Mode Protocol when in the post initialization stage. 
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Auto Refresh Protocol (Post Initialization Stage) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.8: Auto Refresh Protocol when in the post initialization stage. 
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Read Protocol  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.9: Read Protocol. 
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Write Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.10: Write Protocol. 
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2.7: Problem in Existing Memory System 

 For the existing memory system, they are actually using physical address to access 

the information resides in either SDRAM or caches. For this design, it is only capable to 

work with a single user program. The problem arises when, 

 Run multiple programs simultaneously. 

o For example, when UserA start up a process and UserB also start a process, 

how are we going to manage both of the memory spaces required by both 

of the process to ensure they are not overlaying each others? 

 

 Run a program in which its size is larger than SDRAM. 

o For example, the size of main memory used in the memory system is 

64MB, so how are going to start a process when the process required more 

than 64MB of memory? 

*Noted that all the process that is currently running need to be in main 

memory. 

 To solve the problems, we can enlarge our main memory or the programmer needs 

to bear the responsibility to divide the program that they had written into few sections and 

transfer them into main memory. As the program proceeds, new sections will be added 

into main memory by replacing those sections that are currently unused. There is some 

disadvantage for both of solution which is 

 Cost of enlarging main memory. 

 

 As program become more and more complex, it is impossible for programmers to 

handle the division of the program. 
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2.8:  Introduction of Virtual Memory 

 To solve the problems discussed in the previous session, the best solution is using 

a virtual memory which is a technique that used main memory, also called as physical 

memory to act as a “cache” for disk. As what we had been discussed earlier, the access 

time is increasing as going down from the memory hierarchy like what is illustrated by 

the figure below, 

 

Figure 2.8.1:Access time and size of memory as going down from memory hierarchy.  

 

Figure 2.8.2: The basic concept of virtual memory. 

 Previously, as the size of physical memory grows, the access time is becoming 

slower and slower. Therefore, cache has been introduced to solve this problem which a 

portion of the data in main memory will be stored inside cache. Same theory we apply on 

the disk, we use the main memory to act as a cache for disk in order to speed up the 
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processing speed. In this design, the address used will be virtual address and it need to go 

through address translation before it can be to access memory.  

 

Figure 2.8.3: The overall picture of how virtual memory works. 

2.9: Overview of Virtual Address Space 

 For main memory and caches access, both of them must receive a physical address 

in order to proceed. When we adopt the virtual memory, all of the address generated by 

the program counter will become a virtual address and translation of address need to be 

made in order to access physical memory and cache. 
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For virtual memory, the memory space is divided into a few segments as shown in figure 

below, 

 

Figure 2.9.1: The virtual address space based on MIPS. 

*Note that, 

 kseg2 is mapped and cacheable. It is used for kernel data structures such as page 

table. 

 kseg1 is unmapped and uncacheable. Access to this space doesn’t go through 

Translation Lookaside Buffer, TLB. It is used for disk buffer, I/O register and 

ROM code. 

 kseg0 is unmapped and cacheable. It is used for kernel instruction and data. 

 kuseg is mapped and cacheable. It is used for current user process. 

 

 

 

 

 

 

 

Kernel Space 

User Space 
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2.10: Concept of Address Translation 

 Address Translation is a process which converts virtual address generated by CPU 

to physical address. Although the concept at work in virtual memory and in caches are the 

same, their different historical roots have led to different terminology in which the virtual 

memory block is called as a page while virtual memory miss is called as page fault. 

 

 

Figure 2.10.1: Address translation flow between pages in virtual memory and pages in 

main memory. 

 Based on the figure shown, we can actually notice that both virtual memory and 

physical memory are broken into pages so that the virtual page can exactly mapped to the 

physical page. As we all known, the size of virtual memory is actually larger than size of 

main memory. Therefore, it is possible for a page to be absent which means the virtual 

page is not mapping to a page inside physical memory, mapped instead on disk. It is 

possible for two virtual pages points to the same physical page and with this capability, it 

allows two different programs to share data or codes. 

Pages in Virtual Memory 

Pages in 

Main 

Memory 
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Figure 2.10.2: An example address translation mechanism. 

*Note that, 

 Virtual Page Number (VPN) is used to index a page table to find out appropriate 

Physical Page Number (PPN) for that particular virtual address.   

 

 Page offset is representing the Page Size.  

o  For example in this case, 

 Number of bits used as page offset =  12 bits 

 Page Size    =  2 ^ 12 

     = 4KB  

 

 By observing the length of Physical Page Number, we can actually compute the 

size of main memory they are using which is  

o Number of page in main memory = 2^18 = 256K physical page 

Page Size    = 4KB 

Size of main memory    = 256K x 4KB 

     = 512MB 
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2.11: Introduction of Page Table 

 For the previous session, we keep on discuss about address translation, a process 

to convert virtual address to physical address but what is the procedure for the translation? 

In order to map VPN to PPN, page table, which is a table of entries contain the 

information required for the translation is used.   

Valid Physical Page Number 

Figure 2.11.1: The contents of page table entry. 

*Note that, 

 Valid, is used to show the location of the page reside. 

o ‘1’ indicate the page reside in physical memory. 

o ‘0’ indicate the page reside in disk. 

 Physical Page Number is a part of physical address to be output to concatenate 

with the page offset. 

 By using page table, we can compute the physical address based on a given virtual 

address from kuseg. Below shows the example of how to do address translation using 

page table. 

 

Figure 2.11.2: The usage of page table in address translation. 

  

Virtual Address 
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Inside the figure, since we are using just only one page table which all called as 1-level 

page table, therefore, the size of the page table will be 

Number of entries in page table = 2 ^20  

     = 1M 

Size of each entry in page table = 4B 

Max. Size of page table  = 4B x 1M 

     = 4MB 

That is waste of memory in which too much of spaces are wasted to build up a page table. 

Therefore, another technique is used to reduce the wastage of memory which called as 2-

level page table. The concept of using 2-level page table is the first level of page table is 

will contain the page table entries as below 

 

Valid Page Table Base Register 

Figure 2.11.3: The contents of first level page table entry. 

*Note that, 

 Valid, is used to show the location of the page reside. 

o ‘1’ indicate the second level page table reside in physical memory. 

o ‘0’ indicate the second level page table reside in disk. 

 Page Table Base Register is a pointer to the second level page table. 

 

 

Valid Physical Page Number 

Figure 2.11.4: The contents second level page table entry. 

*Note that, 

 Valid, is used to show the location of the page reside. 

o ‘1’ indicate the page reside in physical memory. 

o ‘0’ indicate the page reside in disk. 

 Physical Page Number is a part of physical address to be output to concatenate 

with the page offset. 
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By using the 2-level page table technique, we need to segment out the virtual address into,  

Virtual Page Number 

1
st
 Level Page Table 

Index 

(10 bits) 

2
nd

 Level Page Table 

Index 

(10 bits) 

Page Offset 

 

(12 bits) 

Figure 2.11.5: Segmentation of virtual address. 

*Note that, 

 1
st
 Level Page Table Index is used to locate the address of 2

nd
 level Page Table. 

 2
nd

 Level Page Table Index is used to select the appropriate page table entries. 

 

 By segmenting the virtual page number into 1
st
 level page table index and 2

nd
 level 

page table index, we will be able to locate desired page table entries as below, 

 

Figure 2.11.6: The usage of 2-level page table in address translation. 

  

 

 

Virtual Address 
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As shown in figure, the size of page table has been increase significantly compare with 

the 1-level page table. A more detail calculation shown as below 

Number of entries in 1
st
 level page table = 2 ^10 

      = 1K 

Number of entries in 2
nd

 level page table = 2 ^10 

      = 1K 

Size of each entry in page table  = 4B 

Size of each level page table   = 4B x 1K 

      = 4KB 

Total size of page table   = 4KB + 4KB 

      = 8KB 

 Previously if we are using the 1-level page table, we need to allocate 4MB space 

for the page table for each of the process. On the other hand, when we are using 2-level 

page table, we just need to allocate 8KB space for page table and the page table can be 

created based on demand. Besides, by using this mechanism, the size of page table will be 

uniform with the page size whether in virtual memory or physical memory. 

2.12: Introduction of Translation Lookaside Buffer 

 For previous sessions, we had discussed how to use a page table to allocate pages 

that reside in the physical memory. By using the 2-level page table, although we can save 

the memory spaces that required to store the page table, the access time in order to get the 

physical pages is becoming longer compare with 1-level page table.  

1-level Page Table 

i. Given a virtual address. 

ii. Use VPN to find out the PPN which used to concatenate with the page offset to 

form physical address. 

iii. Use physical address get data for physical memory. 

2-level Page Table 

i. Given a virtual address. 

ii. Use 1
st
 level page table index to allocate the address of 2

nd
 level page table. 

iii. Use 2
nd

 level page table index to find out the PPN which is used to concatenate 

with the page offset to form physical address. 

iv. Use physical address to get data from physical memory. 

Based on both of the scenario discussed above, we can notice that 2-level page table need 

one more access to the physical memory compare with the 1-level page level. As we are 

increasing the level of page table, although the size of page table required for each 

process will decrease, the number of access to physical memory will increase. This is very 

inefficient and therefore, Translation Lookaside Buffer (TLB) is used to solve this 

problem. 
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 The key to improving the performance is to rely the locality of reference to the 

page table. When a translation for a virtual page number is used, it will probably be 

needed again in the near future. With this concept, TLB has been introduced which is a 

special cache for translation that whole part of the page table entries in order to speed up 

the address translation. In order to enable a faster access table, TLB usually only contain 

very less entries which is around 48-128 entries and due to this, TLB usually be 

implemented as a fully associative cache which all of the entries inside TLB will be 

compare in one shot. This will result in a faster searching speed but it may require a lot of 

hardware support in order to build it. 

 

Figure 2.12.1:Example of how an eight-block cache configure as direct mapped, two-way 

set associative, four-way set associative and fully associative cache. 
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Figure 2.12.2: Example of how a searching works on eight-block cache based on direct 

mapped, two-way set associative and fully associative configuration. 

 Now, for us to start implementing TLB, the first thing we need to do is identify the 

contents of each entry in TLB. For a basic TLB, we must have VPN, PPN and also some 

control bits used to indicate the status of each entry such as, valid bit, dirty bit and so on 

based on the design needs. 

Virtual Page Number 

(20 bits) 

Control Bits Physical Page Number 

(20 bits) 

Figure 2.12.3: The contents TLB entry. 
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Figure 2.12.4: Usage of TLB in address translation by using 48 entries and fully 

associative TLB. 

*Note that, 

 VPN is included inside as part of the TLB entry contents which is different from 

the page table entry. 

 VPN doesn’t segment into 1
st
 page table index and 2

nd
 page table index. This is 

because when we are using TLB, it is containing the information in 2
nd

 level page 

table only. 

 Control bits can be any bits which used to represent the status of each entry based 

on the design needs. 

o Example of control bits will be 

 Valid Bit, which used to represent the location of the page whether 

in physical memory or disk. 

 Dirty bit, which used to represent whether the entry has been 

modified or not. Usually used for write back policy in cache. 

 Ref bit, which is a LRU status where the entry with the smallest ref 

will be replace when the CPU going to bring in a new page from 

disk or physical memory.  

 

 

Virtual Address 
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2.13: Virtually Addressed and Physically Addressed Cache 

 The placement of TLB can be either in series with caches or parallel with caches. 

Both of the design have their pros and con. When we set the TLB in front of the cache, 

this will mean that all of the address need to be translates into physical address before 

access into cache. By using this design, the processing speed will be reduced because we 

need to access to TLB first then only can access cache which means we need to times two 

the access time to a cache. Although the processing speed will be reduce, this method will 

be much simpler compare with a virtually addressed cache which will be discussed later. 

 

Figure 2.13.1: The design of physically addressed cache. 

*Note that all of the virtual addresses have to be translated by TLB before accessing 

cache or main memory. 

 There is another design of the placement of TLB which is the TLB works parallel 

with the caches. This will reduce the processing time because the address translation and 

the data searching can be done in parallel. Although this method can enhance the 

efficiency of the processor, the design is more complex compare with physically address 

cache because the lower 12 bits, page offset is used to search the data in cache and the tag 

inside cache entries is output from the cache to compare with the PFN output from TLB 

to determine whether it is a cache hit or miss. Problem arises when we have two cache 

entries with the same page offset, which will cause an aliasing effect. Therefore, 

additional logic needs to be added to eliminate this problem. 

 

Figure 2.13.2:The design of virtually addressed cache. 

*Note that the virtual address output from CPU is directly input to cache and TLB.  
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Chapter 3 – Methodology& Development tools 

3.1: Methodology 

A top down design approach was adopted as the main design methodology in this project. 

In this project, more focuses were put onto the functionality of the design. In the earlier 

phase of the project, a study was done on the performance analysis and the behavioral 

correctness of the previous memory system. However, from the analysis, we have found 

out the need to build a new Memory System Bus Interface Unitin order to integrate the 

current memory system to the basic CPU.This requires us to implement the system by 

using top down methodology.  

 

In the top down methodology, the first step involves the gathering of the requirements of 

the SDRAM and SDRAM Controller. The requirements gathered will be analyzed and 

studied so that a specification can be created. This specification describes the 

input/outputs, registers, functions, and the constraints of the design. The requirements can 

be obtained from users, market demands and datasheets. In this project, the requirements 

are mainly defined from the SDRAM datasheets [12]. 

 

The reason for this is to ensure that the integration of memory system to32 bits RISC 

pipelined processor can be successfully done. Besides, studies were done on the ways to 

maximize the utilization of the 4 banks in the SDRAM. These studies were elaborated 

Chapter 2 literature review. 
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Figure 3.1.1: The top down approach adopted in this project 

 

After capturing the requirements of the design, a specification is build. This specification 

specifies the functions of all the modules, data flows between input pins, output pins, 

registers and such. Basically, it is a detailed description of the design in Register Transfer 

Level (RTL). Logic is described in terms of data flow and algorithms. 

 

From the requirements, RTL codes are written. These codes are then simulated to verify 

their functionality up to clock cycle accuracy. Sub-blocks that don’t perform as specified 

are to be debugged and have their RTL codes fixed the requirements are met.  

 

After the main task of defining the functionality is completed, the design will synthesize 

into gate-level representation. Design synthesis is outside the scope of this project thus 

will not be pursued. 
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3.2: Development Tools 

ModelSim XE 3 – Starter 6.4b will be used to code the RTL model of the design. Besides, 

it will also be used to carry out the functional and timing simulation. ModelSim provides 

an user friendly debug environments. Graphical waveform to display the simulation 

results is integrated into ModelSim.  

The starter edition placed a 10000 lines limit to the code. Based on the scope of this 

project, it is expected that this limit will not be reached. Besides, it is free thus being 

chosen as the main tool for this project. 
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Chapter 4: Handling Virtual Memory 

 

4.1:  Address Translation to Instruction Cache without TLB 

 

Virtual Page Number 

1
st
 Level Page Table Index 

(10 bits) 

2
nd

 Level Page Table Index 

(10 bits) 

Page Offset 

(12 bits) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.1:Address Translation to Instruction Cache without TLB. 
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4.2:  Address Translation to Data Cache without TLB 

 

Virtual Page Number 

1
st
 Level Page Table Index 

(10 bits) 

2
nd

 Level Page Table Index 

(10 bits) 

Page Offset 

(12 bits) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1:Address Translation to Data Cache without TLB. 
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4.3:  Address Translation to Instruction Cache with TLB 

 

Virtual Page Number 

1
st
 Level Page Table Index 

(10 bits) 

2
nd

 Level Page Table Index 

(10 bits) 

Page Offset 

(12 bits) 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1: Address Translation to Instruction Cache with TLB. 
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4.4:  Address Translation to Instruction Cache with TLB 

 

Virtual Page Number 

1
st
 Level Page Table Index 

(10 bits) 

2
nd

 Level Page Table Index 

(10 bits) 

Page Offset 

(12 bits) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.1: Address Translation to Data Cache with TLB. 
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Chapter 5: Memory System Specification 

5.1:  Features of Memory System 

 RISC32 with Integrated Main Memory 

 

SDRAM Yes, 64MB 

Instruction TLB  Yes, 64 entries 

Data TLB  Yes, 64 entries 

Instruction Cache 2MB 

Data Cache 2MB 

Data Bus Width 32bits 

Instruction Width 32bits 

Table 5.1.1: The features of recent RISC32. 
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5.2:  Naming Convention 

Module  – [lvl]_[mod. name] 

Instantiation  – [lvl]_[abbr. mod. name] 

Pin  – [lvl]_[abbr. mod. name]_[Type]_[pin name]  

 – [lvl]_[abbr. mod. name]_[Type]_[stage]_[pin name]  

 

Abbreviation: 

 Description Case Available Remark 

lvl level lower c : Chip 

u : Unit 

b : Block 

 

mod. name Module 

Name 

lower all any  

abbr. mod. 

name 

Abbreviated 

module 

name  

lower all any  maximum 3 characters 

Type Pin type lower  o : output 

i : input 

r : register 

w : wire 

f- :function 

 

stage Stage name lower all if, id, ex, 

mem, wb 

 

pin name Pin name lower all any Several word separate by 

“_” 

Table 5.2.1: Naming convention. 
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5.3:  Memory Map  

Segment Address Purpose 

 

kseg2 – 1GB 0xFFFF FFFF 

 

0xC000 0000 

Kernel module,  

Page Table allocated here 

kseg1 – 512MB 0xBFFF FFFF 

 

0xA000 0000 

Boot Rom 

I/O Register (if below 512MB) 

kseg0 – 512MB 0x9FFF FFFF 

 

 

 

0x8000 0000 

Direct view of memory to 512MB 

kernel code and data. 

Exception and Page Table Base 

Register allocated here. 

 

kuseg – 2GB 0x7FFF FFFF 

 

 

 

0x1000 8000 

Stack Segment starts from the ending 

address and expand down. 

Heap Segment starts from the starting 

address and expand top. 

 

0x1000 7FFF 

 

0x1000 0000 

Data segmentand Dynamic library 

code. 

0x09FFF FFFF 

 

0x0040 0000 

Code Segment, where the main 

program stored. 

0x003F FFFF 

 

0x0000 0000 

Reserved 

Table 5.3.1:The memory map used in this project. 

*Note that, 

 Stack Segment 
o Use for storing automatic variables, which are variables that allocated 

and de-allocated automatically when program flow.  

 Heap Segment 
o Use for dynamic memory allocation such as malloc(), realloc() and free().  

 Data Segment 

o Use for storing global or static variables that initialize by programmer. 

 Code Segment 

o Use for storing codes of main program or main program instructions. 
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5.4:    Memory Unit Interface 
 

 

Figure 5.4.1:The block diagram of memory system. 

 

 

u_mem_sys 

 

u_mem_sys_i_sdrcntr_ack 

u_mem_sys_i_sdrcntr_data[31:0] 

u_mem_sys_i_pc[31:0] 

u_mem_sys_i_dmem_addr[31:0] 

u_mem_sys_i_store_data[31:0] 

u_mem_sys_i_mem_re 

u_mem_sys_i_mem_we 

u_mem_sys_i_test_insert_data_en 

u_mem_sys_i_test_data[31:0] 

u_mem_sys_i_test_addr[31:0] 

u_mem_sys _i_cp0_entryLo [31:0] 

u_mem_sys _i_cp0_entryHi[31:0] 

u_mem_sys _i_cp0_random [31:0] 

u_mem_sys _i_cp0_status [31:0] 

u_mem_sys _i_cp0_bAddr [31:0] 

u_mem_sys_i_clk 

u_mem_sys_i_reset 

 

u_mem_sys_o_instruction [31:0] 

u_mem_sys_o_loaded_data [31:0] 

u_mem_sys_o_immu_is_stall 

u_mem_sys_o_dmmu_is_stall 

u_mem_sys_o_mem_is_stall 

u_mem_sys_o_sdrctnr_host_ld_mode 

u_mem_sys_o_sdrctnr_stb 

u_mem_sys_o_sdrctnr_cyc 

u_mem_sys_o_sdrctnr_we 

u_mem_sys_o_sdrctnr_sel [3:0] 

u_mem_sys_o_sdrctnr_addr [31:0] 

u_mem_sys_o_sdrctnr_data [31:0] 

u_mem_sys_o_cp0_is_mtc0 

u_mem_sys_o_cp0_is_eret 

u_mem_sys_o_cp0_reg_data [31:0] 

u_mem_sys_o_cp0_reg_address [4:0] 

u_mem_sys_o_cp0_tlb_page_fault 

u_mem_sys_o_cp0_tlb_miss 

u_mem_sys_o_cp0_tlb_addr_excep 
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I/O Description 

Memory System’s Input Pin Description 

Pin Name: 

u_mem_sys_i_sdrcntr_ack 

Source  Destination: 

SDRAM CNTR Memory 

System 

Registered:  

No 

Pin Function: 

Acknowledge signal to indicate read or write to SDRAM is done.  

Pin Name: 

u_mem_sys_i_sdrcntr_data [31:0] 

Source  Destination: 

SDRAM CNTR Memory 

System 

Registered:  

No 

Pin Function: 

32 bit data read from SDRAM. 

Pin Name: 

u_mem_sys_i_pc [31:0] 

Source  Destination: 

Data Path UnitMemory 

System 

Registered:  

No 

Pin Function: 

32 bits virtual address from program counter. 

Pin Name: 

u_mem_sys_i_dmem_addr [31:0] 

Source  Destination: 

Data Path UnitMemory 

System 

Registered:  

No 

Pin Function: 

32 bits virtual address from ALB. 

Pin Name: 

u_mem_sys_i_store_data [31:0] 

Source  Destination: 

Data Path UnitMemory 

System 

Registered:  

No 

Pin Function: 

32 bits data to be store in data cache or SDRAM.  

Pin Name: 

mem_sys_i_mem_re 

Source  Destination: 

Data Path Unit Memory 

System 

Registered:  

No 

Pin Function: 

Data cache read control signal. 

0: Read Disable 

1: Read Enable 

Pin Name: 

u_mem_sys_i_mem_we 

Source  Destination: 

Data Path Unit Memory 

System 

Registered:  

No 

Pin Function: 

Data cache write control signal. 

0: Write Disable 

1: Write Enable 

Pin Name: 

u_mem_sys_i_test_insert_data_en 

Source  Destination: 

External Memory System 

Registered:  

No 

Pin Function: 
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Control signal to allow data input into SDRAM manually. 

0: Data input Disable. 

1: Data input Enable. 

 

Pin Name: 

u_mem_sys_i_test_data [31:0] 

Source  Destination: 

External Memory System 

Registered:  

No 

Pin Function: 

32 bits TEST data to be write into SDRAM.  

 

Pin Name: 

u_mem_sys_i_test_addr [31:0] 

Source  Destination: 

SDRAM CNTR Memory 

System 

Registered:  

No 

Pin Function: 

32 bits TEST address to indicate location to store TEST data.  

 

Pin Name: 

u_mem_sys _i_cp0_entryLo [31:0] 

Source  Destination: 

CP0 Memory System 

Registered:  

No 

Pin Function: 

32 bits EntryLo register from CP0. 

 

Pin Name: 

u_mem_sys _i_cp0_entryHi[31:0] 

Source  Destination: 

CP0 Memory System 

Registered:  

No 

Pin Function: 

32 bits EntryHi register from CP0. 

Pin Name: 

u_mem_sys _i_cp0_random [31:0] 

Source  Destination: 

CP0  Memory System 

Registered:  

No 

Pin Function: 

32 bits Random register from CP0. 

 

Pin Name: 

u_mem_sys _i_cp0_status [31:0] 

Source  Destination: 

CP0  Memory System 

Registered:  

No 

Pin Function: 

32 bits Status register from CP0. 

Pin Name: 

u_mem_sys _i_cp0_bAddr [31:0] 

Source  Destination: 

CP0  Memory System 

Registered:  

No 

Pin Function: 

32 bits bAddr register from CP0. 
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Pin Name: 

u_mem_sys_i_clk 

Source  Destination: 

System ClockMemory 

System 

Registered:  

No 

Pin Function: 

System clock signal. 

 

Pin Name: 

u_mem_sys_i_reset 

Source  Destination: 

System ResetMemory 

System 

Registered:  

No 

Pin Function: 

System reset signal. 

 

Table 5.4.2: Memory System’s Input Pin Description 

 

Memory System’s Output Pin Description 

Pin Name: 

u_mem_sys_o_instruction [31:0] 

Source  Destination: 

Memory System Data 

Path Unit 

Registered:  

No 

Pin Function: 

32 bits instruction read from instruction cache.  

 

Pin 

Name:u_mem_sys_o_loaded_data 

[31:0] 

Source  Destination: 

Memory System Data 

Path Unit 

Registered:  

No 

Pin Function: 

32 bit data read from data cache. 

 

Pin Name: 

u_mem_sys_o_immu_is_stall 

Source  Destination: 

Memory System Control 

Unit 

Registered:  

No 

Pin Function: 

Stall signal for CPU when ITLB miss. 

0: Stall Disable 

1: Stall Enable 

 

Pin Name: 

u_mem_sys_o_dmmu_is_stall 

Source  Destination: 

Memory System Control 

Unit 

Registered:  

No 

Pin Function: 

Stall signal for CPU when DTLB miss. 

0: Stall Disable 

1: Stall Enable 
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Pin Name: 

u_mem_sys_o_mem_is_stall 

 

Source  Destination: 

Memory System Control 

Unit 

Registered:  

No 

Pin Function: 

Stall signal for CPU when icache and dcache miss. 

0: Stall Disable 

1: Stall Enable 

 

Pin Name: 

u_mem_sys_o_sdrctnr_host_ld_mode 

Source  Destination: 

Memory System  

SDRAM CNTR 

Registered:  

No 

Pin Function: 

Asserted to load a new mode into the SDRAM. 

 

Pin Name: 

u_mem_sys_o_sdrctnr_stb 

Source  Destination: 

Memory System  

SDRAM CNTR 

Registered:  

No 

Pin Function: 

Asserted to indicate the SDRAM controller is selected.  

 

Pin Name: 

u_mem_sys_o_sdrctnr_cyc 

Source  Destination: 

Memory System  

SDRAM CNTR 

Registered:  

No 

Pin Function: 

Asserted to indicate valid bus cycle is in progress. 

 

Pin Name: 

u_mem_sys_o_sdrctnr_we 

 

Source  Destination: 

Memory System  

SDRAM CNTR 

 

Registered:  

Yes 

Pin Function: 

Asserted to indicate write cycle, deasserted to indicate read cycle. 

 

 

Pin Name: 

u_mem_sys_o_sdrctnr_sel [3:0] 

Source  Destination: 

Memory System  

SDRAM CNTR 

 

Registered:  

No 

Pin Function: 

Used to indicate where valid data is placed on the input data line during WRITE 

cycle and where it should present on the output data line during READ cycle. 
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Pin Name: 

u_mem_sys_o_sdrctnr_addr [31:0] 

Source  Destination: 

Memory System  

SDRAM CNTR 

 

Registered:  

No 

Pin Function: 

32-bit addresses to SDRAM Controller for read or write. 

 

Pin Name: 

u_mem_sys_o_sdrctnr_data [31:0] 

Source  Destination: 

Memory System  

SDRAM CNTR 

 

Registered:  

No 

Pin Function: 

32-bit data to be written into SDRAM. 

 

Pin Name: 

u_mem_sys_o_cp0_is_mtc0 

Source  Destination: 

Memory System CP0 

Registered:  

No 

Pin Function: 

Write enable signal to CP0. 

0: Write Disable. 

1: Write Enable. 

 

Pin Name: 

u_mem_sys_o_cp0_is_eret 

Source  Destination: 

Memory System CP0 

Registered:  

Yes 

Pin Function: 

Restart instruction signal for CP0. 

0: Normal operation. 

1: Restart exception instruction. 

 

Pin Name: 

u_mem_sys_o_cp0_reg_data [31:0] 

 

Source  Destination: 

Memory System CP0 

Registered:  

No 

Pin Function: 

32 bits data to be written into CP0 register. 

 

 

Pin Name: 

u_mem_sys_o_cp0_reg_address [4:0] 

 

Source  Destination: 

Memory System CP0 

Registered:  

No 

Pin Function: 

5 bits address to indicate which register of CP0 should be update. 

 

Pin Name: 

u_mem_sys_o_cp0_tlb_page_fault 

Source  Destination: 

Memory System CP0 

Registered:  

No 

Pin Function: 

Page fault signal for CP0 to update CAUSE register. 
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Pin Name: 

u_mem_sys_o_cp0_tlb_miss 

 

Source  Destination: 

Memory System CP0 

Registered:  

No 

Pin Function: 

Status signal to indicate tlb miss. 

 

Pin Name: 

u_mem_sys_o_cp0_tlb_addr_excep 

Source  Destination: 

Memory System CP0 

Registered:  

No 

Pin Function: 

Status signal to indicate address exception occur in TLB. 

 

Ttable 5.4.3: Memory System’s Output Pin Description 

 

5.5:    Memory System Operating Procedure 

1. Start the system 

2. Porting appropriate instruction, data, first level page table, second level page table 

into SDRAM. 

3. Reset the system for at least 2 clocks 

4. While release the reset, the system will automatically run the program inside 

instruction cache 

5. Observe the waveform from the development tools. 
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Chapter 6: Architecture Specification 

6.1:  Unit Partition of Memory System  

 

Figure 6.1.1: Unit partition of memory system.
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6.2 Design hierarchy 
Chip Partitioning at System 

Level 

Unit Partitioning at 

Architecture Level 

Block and Functional Block 

Partitioning at RTL Level 

(Micro-Architecture Level) 

c_risc32_full u_data_path_full b_reg_file 

b_alb_32 

b_mult_32 

b_branch_pred 

u_ctrl_path_full b_alb_ctrl 

b_iag_ctrl 

b_main_ctrl 

b_fwrd 

b_itl_ctrl 

u_mem_sys b_cache (for instruction) 

b_cache (for data) 

b_tlb (for instruction) 

b_tlb (for data) 

b_mmu (for instruction) 

b_mmu  (for data) 

u_cp0 b_cp0_dc 

b_cp0_regfile 

Structural description Structural 

description/Behavioral 

description 

Behavioral description 

Table 6.1.1: Formation of a design hierarchy for Full RISC32 microprocessor through 

top down design methodology  

*Note that this design is provided as a mindset for future improvement. 

*Since the memory system is not ready yet to connect with current RISC32, the following 

will be discussing what had been done in this project. 
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Figure 6.2.1: Full RISC32’s Architecture and Micro-Architecture Partitioning 

c_risc32_full 

u_cp(u_ctrl_path_full) 

b_fwr(b_fwrd) 

b_mc(b_main_ctrl) 

b_icb(b_itl_ctrl) 

b_alc(b_alb_ctrl) 

b_iac(b_iag_ctrl) 

b_rf(b_reg_file) 

u_dp(u_data_path_full) 

b_bpb(b_bran_pred) b_alb(b_alu_32) b_mul(b_mult_32) 

b_dc(b_cache) b_ic(b_cache) 

u_mem(u_memory) 

b_dtlb(b_tlb) b_itlb(b_tlb) b_dmmu(b_mmu) 

b_immu(b_mmu) 

b_cp0_regfile (b_cp0_regfile) b_cp0_dc (b_cp0_dc) 

u_cp0(u_cp0) 

b_sdc_mc b_sdc_fsm 

u_sdram_controller 

b_sdc_dp_buf b_sdc_sdram_if b_sdc_addr_mux 

b_obrt_top_obrt_unit 

u_sdram 

Physical Memory 
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6.3: Memory Unit 
 

*Refer to chapter 4, Memory System Specification. 

6.4: CP0 unit 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.1: Block diagram for co-processor 0 which used to process and store 

exception/interrupt information. 

 

 

 

 

 

 

 

 

u_cp0 
 

u_cp0_i_mtc0 

u_cp0_i_is_eret 

u_cp0_i_current_pc_2_EPC[31:0]    

u_cp0_i_intr_vector[5:0]     

u_cp0_i_overflow_signal 

u_cp0_i_reg_data[31:0]    

u_cp0_i_reg_address[4:0]     

u_cp0_i_tlb_miss 

u_cp0_i_tlb_addr_excep 

u_cp0_i_page_fault 

u_cp0_i_sys_clock 

u_cp0_reg_i_sys_reset 

 

u_cp0_o_cp0_reg_data[31:0]   

u_cp0_o_excep_handler_address[31:0]   

u_cp0_o_entryLo_reg_data[31:0]   

u_cp0_o_entryHi_reg_data[31:0]   

u_cp0_o_random_reg_data[31:0]   

u_cp0_o_baddr_reg_data[31:0]   

u_cp0_o_status_reg_data[31:0]   

u_cp0_o_is_intr 

u_cp0_o_is_overflow           
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Overview of CP0’s register used in Memory System 

 

 

 

1. Random Register 

 

 
 

Figure 6.4.2: Random register structure. 

 

*Note that, 

 SLOT – 6 bits value used to choose which TLB entries to be overwrite when TLB 

miss occurs. This value is increment every clock cycle. 

 

 

 

 

 

2. Status Register 

 

 
 

Figure 6.4.3: Statusregister structure. 

 

*Note that, 

 abcdTEMZSI–Not related in this project. Set to 0. 

 B - Boot flag. 

 H - Hardware interrupt enable bit, lines 0-5. 

 F - Software interrupt enable bit, lines 0-1. 

 KU - 1 if user mode, 0 if kernel mode. 

 IE - 1 if interrupts enabled, 0 if disabled. See below regarding o/p/c. 

 

 

 

 

 

 

 

 

 

 



Main Memory Integration 2013 
 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology, UTAR Page 65 

 

3. EntryLo Register 

 

 
 

Figure 6.4.4: EntryLo register structure. 

 

*Note that, 

 PPAGE - Physical page number for TLB entry. 

 N - Noncached; if set, accesses via TLB entry will be uncached. 

 D - Dirty; if set, write accesses via TLB entry will be permitted; otherwise 

exception occurs. 

 V - Valid; if set, accesses via TLB entry will be permitted; otherwise exception 

occurs. 

 G - Global; if set, the ASID field will be ignored when matching TLB entry. 

 

4. EntryHi Register 

 

Figure 6.4.5: EntryHi register structure. 

 

*Note that, 

 VPAGE - virtual page number for TLB entry. 

 ASID - address space ID for TLB entry. 

5. Baddr Register 

 

 
 

Figure 6.4.6: Baddrregister structure. 

 

*Note that Baddr register is used to store PC value where exception occurs. 
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I/O Description 

CP0’s Input Pin Description 

Pin Name: 

u_cp0_i_mtc0 

Source  

Destination:ControlPath 

Unit  Co-Processor 0 

Unit 

 

Registered:  

No 

Pin Function: 

1 bit flag indicate instruction mtc0. 

0: Not mtc0 instruction 

1: mtc0 instruction 

 

Pin Name: 

u_cp0_i_is_eret 

Source  

Destination:Control 

PathUnit Co-Processor 0 

Unit 

 

Registered:  

No 

Pin Function: 

1 bit flag indicate instruction eret. 

0: not eret instruction 

1: eret instruction 

 

Pin Name: 

u_cp0_i_current_pc_2_EPC [31:0]    

Source  

Destination:Datapath 

Unit Co-Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

32 bit of current Program Counter (PC) value. 

 

Pin Name: 

u_cp0_i_intr_vector [5:0]     

Source  

Destination:Externaldevice

 Co-Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

Each bit of this input is indicating interrupt signal from external device. 
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Pin Name: 

u_cp0_i_overflow_signal 

Source  

Destination:Datapath 

Unit Co-Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

1 bit flag indicate overflow happen. 

0: no overflow happen 

1: overflow happened 

 

Pin Name: 

u_cp0_i_reg_data [31:0]    

Source  

Destination:Datapath 

Unit Co-Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

32 bit data to be store in CP0 register file. 

 

Pin Name: 

u_cp0_i_reg_address [4:0]     

Source  

Destination:Datapath 

Unit Co-Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

Address indicates CP0 register file location. 

  

Pin Name: 

u_cp0_i_tlb_miss 

Source  Destination: 

Memory Unit  Co-

Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

1 bit flag to indicate TLB miss. 

0: No TLB miss occurs. 

1: TLB miss occurs. 

 

Pin Name: 

u_cp0_i_tlb_addr_excep 

Source  Destination: 

Memory Unit  Co-

Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

1 bit flag to indicate TLB address exception. 

0: No TLB address exception occurs. 

1: TLB address exception occurs. 
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Pin Name: 

u_cp0_i_page_fault 

Source  Destination: 

Memory Unit  Co-

Processor 0 Unit 

 

Registered:  

No 

Pin Function: 

1 bit flag to indicate page fault. 

0: No page fault occurs. 

1: Page fault occurs. 

 

Pin Name: 

u_cp0_i_sys_clock 

Source  Destination: 

Micro-processor  Co-

Processor 0 Unit 

Registered:  

No 

Pin Function: 

Synchronous System clock. 

 

Pin Name: 

u_cp0_reg_i_sys_reset 

Source  Destination: 

Micro-processor  Co-

Processor 0 Unit 

Registered:  

No 

Pin Function: 

Global reset signal. 

 

Table 6.4.1: CP0’s Input Pin Description 

 

CP0’s Output Pin Description 

Pin Name: 

u_cp0_o_cp0_reg_data [31:0]   

Source  Destination: 

Co-processor 0 

UnitDatapath Unit 

Registered:  

No 

Pin Function: 

32 bit Co-processor 0 registers value to be store in main Register File. 

 

Pin Name: 

u_cp0_o_excep_handler_address 

[31:0]   

 

Source  Destination: 

Co-processor 0 

UnitDatapath Unit 

Registered:  

No 

Pin Function: 

32 bit Program Counter (PC) address. 
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Pin Name: 

u_cp0_o_entryLo_reg_data [31:0] 

Source  Destination: 

Co-processor 0 Unit 

Memory Unit 

Registered:  

No 

Pin Function: 

32 bits EntryLo register data. 

 

Pin Name: 

u_cp0_o_entryHi_reg_data 

[31:0]   

 

Source  Destination: 

Co-processor 0 Unit 

Memory Unit 

Registered:  

No 

Pin Function: 

32 bits EntryHi register data. 

Pin Name: 

u_cp0_o_random_reg_data 

[31:0]   

 

Source  Destination: 

Co-processor 0 Unit 

Memory Unit 

Registered:  

No 

Pin Function: 

32 bits Random Register Data. 

 

Pin Name: 

u_cp0_o_baddr_reg_data[31:0]   

 

Source  Destination: 

Co-processor 0 Unit 

Memory Unit 

Registered:  

No 

Pin Function: 

32 bits Baddr register data. 

 

Pin Name: 

u_cp0_o_status_reg_data 

[31:0]   

 

Source  Destination: 

Co-processor 0 Unit 

Memory Unit 

Registered:  

No 

Pin Function: 

32 bits Status register data. 
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Pin Name: 

u_cp0_o_is_intr 

 

Source  Destination: 

Co-processor 0 

UnitControlPath Unit 

Registered:  

No 

Pin Function: 

1 bit signal to Control Unit to indicate interrupt happen. 

0: No interrupt 

1: Interrupt happened 

  

Pin Name: 

u_cp0_o_is_overflow           

 

Source  Destination: 

Co-processor 0 

UnitControlPath Unit 

Registered:  

No 

Pin Function: 

1 bit signal to Control Unit to indicate overflow happen. 

0: No Overflow 

1: Overflow happened 

 

Table 6.4.2: CP0’s Output Pin Description 
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6.5: SDRAM Controller 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5.1: Block diagram for SDRAM controller.[Modified from [9]] 

 

*Note that for the previous design of SDRAM Controller is based on 16MB of SDRAM 

provided by Micron. In order to communicate with a 64MB SDRAM, some modification 

had been made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u_sdram_controller 

ip_host_ld_mode 

ip_wb_stb 

ip_wb_cyc 

ip_wb_we 

ip_wb_sel[3:0] 

ip_wb_addr[31:0] 

ip_wb_data[31:0] 

op_wb_ack 

op_wb_data[31:0] 

ip_wb_clk 

ip_wb_rst 

 

op_sdr_cs_n 

op_sdr_ras_n 

op_sdr_cas_n 

op_sdr_we_n 

op_sdr_dqm[3:0] 

op_sdr_ba[1:0] 

op_sdr_addr[13:0] 

io_sdr_dq[31:0] 
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I/O Description 

SDRAM Controller’s Input Pin Description 

Pin Name: 

ip_host_ld_mode 

Source  Destination: 

Memory Unit  SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Asserted to load a new mode into the SDRAM. 

 

Pin Name: 

ip_wb_stb 

Source  Destination: 

Memory Unit  SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Asserted to indicate the SDRAM controller is selected.  

 

Pin Name: 

ip_wb_cyc 

Source  Destination: 

Memory Unit  SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Asserted to indicate valid bus cycle is in progress. 

 

Pin Name: 

ip_wb_we 

Source  Destination: 

Memory Unit  SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Asserted to indicate that the current cycle is READ. Deasserted to indicate current 

cycle is WRITE. 

 

Pin Name: 

ip_wb_sel[3:0] 

Source  Destination: 

Memory Unit  SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Used to indicate where valid data is placed on the input data line (ip_wb_dat) during 

WRITE cycle and where it should present on the output data line (op_wb_dat) during 

READ cycle. 

 

Pin Name: 

ip_wb_addr[31:0] 

Source  Destination: Memory 

Unit  SDRAM Controller 

Registered:  

No 

Pin Function: 

Used to pass the memory address from the host. 
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Pin Name: 

ip_wb_data[31:0] 

Source  Destination: 

Memory Unit  SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Used to pass WRITE data from the host. 

 

Pin Name: 

ip_wb_clk 

Source  Destination: Memory 

Unit  SDRAM Controller 

Registered:  

No 

Pin Function: 

Clock signal to synchronize to the system. 

 

Pin Name: 

ip_wb_rst 

Source  Destination: System 

Clock SDRAM Controller 

Registered:  

No 

Pin Function: 

Synchronous reset to reinitialize the system. 

 

Table 6.5.1: SDRAM Controller’s Input Pin Description 

SDRAM Controller’s Output Pin Description 

Pin Name: 

op_wb_ack 

Source  Destination: 

SDRAM Controller  

Memory Unit 

Registered:  

No 

Pin Function: 

Asserted to indicate that the current READ or WRITE operation is successful. 

 

Pin Name:  

op_wb_data[31:0] 

 

Source  Destination: 

SDRAM Controller  

Memory Unit 

Registered:  

No 

Pin Function: 

Used to output READ data from the SDRAM. 

 

Pin Name: 

op_sdr_cs_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM chip select. 
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Pin Name: 

op_sdr_ras_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM row address select. 

 

Pin Name: 

op_sdr_cas_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM column address select. 

 

Pin Name: 

op_sdr_we_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM write enable. 

 

Pin Name: 

op_sdr_dqm[3:0] 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

Used to select which bits of the data line (io_sdr_dq) to be masked.  

 

Pin Name: 

op_sdr_ba[1:0] 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

Bank Address output to SDRAM. 

 

Pin Name: 

op_sdr_addr[13:0] 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

14 bits address output to the SDRAM. 

 

Pin Name: 

io_sdr_dq[31:0] 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

Bidirectional data line to receive READ data or send WRITE data. 

Table 6.5.2: SDRAM Controller’s Output Pin Description 
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6.6: 64 MB SDRAM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6.1: Block diagram for SDRAM. .[Modified from [9]] 

I/O Description 

SDRAM’s Input Pin Description 

Pin Name: 

op_sdr_cs_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM chip select. 

 

Pin Name: 

op_sdr_ras_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM row address select. 

 

Pin Name: 

op_sdr_cas_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM column address select. 

 

 

 

 

 

u_sdram  

ba[1:0] 

adr[13:0] 

dq[31:0] 

dqm[3:0] 

cs_n 

we_n 

cas_n 

ras_n 

clk 
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Pin Name: 

op_sdr_we_n 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

SDRAM write enable. 

 

Pin Name: 

op_sdr_dqm[3:0] 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

Used to select which bits of the data line (io_sdr_dq) to be masked.  

 

Pin Name: 

op_sdr_ba[1:0] 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

Bank Address output to SDRAM. 

 

Pin Name: 

op_sdr_addr[13:0] 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

14 bits address output to the SDRAM. 

 

Pin Name: 

io_sdr_dq[31:0] 

 

Source  Destination: 

SDRAM Controller  

SDRAM 

Registered:  

No 

Pin Function: 

Bidirectional data line to receive READ data or send WRITE data. 

 

Table 6.6.1: SDRAM’s Input Pin Description 
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Chapter 7: Micro-Architecture Specification 

Figure 7.1.1: Partition of Memory System 
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7.1 Translation Lookaside Buffer (TLB) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.2:Block diagram for TLB. 

 Translation Lookaside Buffer is just like a cache which holds some of the page 

table entries which can be reside either in physical memory or disk. Its responsibility 

including translate virtual address given by CPU into a physical address and ensure each 

user process does not able to access to kernel segment. In this project, assume that 

instruction TLB and data TLB is the same. 

Feature: 

1. Consist of 64 entries. 

2. Fully associative. 

3. Capable to handle TLB Miss together with MMU (Memory Management Unit). 

 

 

 

 

 

 

 

b_tlb 
 

b_tlb_i_cp0_entryLo [31:0] 

b_tlb_i_cp0_random[31:0] 

b_tlb_i_cp0_entryHi[31:0] 

b_tlb_i_cp0_status[31:0] 

b_tlb_i_cp0_bAddr[31:0] 

b_tlb_i_cpu_vaddr[31:0] 

b_tlb_i_mmu_tlbwr 

b_tlb_i_sys_clock 

b_tlb_i_sys_reset 

 

b_tlb_o_c_paddr[31:0] 

b_tlb_o_tlb_miss 

b_tlb_o_addr_excep 
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Address Translation Scenario 

 Based on what we had discussed in previous chapter, we know that the address 

translation is important for us to get the physical address which used to either write or 

read data. Figure 5.3.1 and 5.4.1 give a clearer picture which told us that the cache miss 

and TLB miss are the independent event that a cache miss only can occur when there is a 

TLB hit. On the other way is means that the data must be present inside the main memory 

only we can access to cache. To further discuss about this, the table below provide us a 

simplest way to examine the relationship between cache and TLB. 

TLB Page Table Cache Events Possible? If so, under what circumstance? 

 

hit hit miss Possible, although the page table is never really check 

after TLB hits. 

 

miss hit hit Possible, although TLB misses, entry found in page 

table; after retry, data found in cache. 

 

miss hit miss Possible, although TLB misses, entry found in page 

table; after retry, data misses in cache. 

 

miss miss miss Possible, TLB misses follow by page fault, data must 

misses in cache. 

 

hit hit hit Possible, although the page table is never really check 

after TLB hits. 

 

hit miss miss Impossible, TLB must misses if page is not present in 

main memory. 

 

hit miss hit Impossible, TLB must misses if page is not present in 

main memory. 

 

miss miss hit Impossible, data must misses in cache if page is not 

present in main memory. 

 

Table 7.1.1: Possible combinations of events in the TLB, virtual memory system and 

cache. 
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I/O Description 

TLB’s Input Pin Description 

Pin Name: 

b_tlb_i_cp0_entryLo [31:0] 

Source  Destination:  

CP0  TLB 

Registered:  

No 

Pin Function: 

32 bits EntryLo register from CP0. 

 

Pin Name: 

b_tlb_i_cp0_random [31:0] 

Source  Destination: 

CP0  TLB 

Registered:  

No 

Pin Function: 

32 bits Random register from CP0. 

 

Pin Name: 

b_tlb_i_cp0_entryHi [31:0] 

Source  Destination: 

CP0  TLB 

Registered:  

No 

Pin Function: 

32 bits EntryHi register from CP0. 

 

Pin Name: 

b_tlb_i_cp0_status [31:0] 

Source  Destination: 

CP0  TLB 

Registered:  

No 

Pin Function: 

32 bits Status register from CP0. 

 

Pin Name: 

b_tlb_i_cp0_bAddr [31:0] 

Source  Destination: 

CP0  TLB 

Registered:  

No 

Pin Function: 

32 bits Baddr register from CP0. 

 

 

 

 

Pin Name: 

b_tlb_i_cpu_vaddr [31:0] 

Source  Destination: 

CPU  TLB 

Registered:  

No 

Pin Function: 

32 bits address virtual address from CPU. 
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Pin Name: 

b_tlb_i_mmu_tlbwr 

Source  Destination: 

MMU  TLB 

Registered:  

No 

Pin Function: 

1 bit flag to enable write to TLB entry. 

0: Write Disable. 

1: Write Enable. 

 

Pin Name: 

b_tlb_i_sys_clock 

Source  Destination: 

System Clock  TLB 

Registered:  

No 

Pin Function: 

System clock signal 

 

Pin Name: 

b_tlb_i_sys_reset 

Source  Destination: 

System Reset  TLB 

Registered:  

No 

Pin Function: 

System reset signal 

 

Table 7.1.2: TLB’s Input Pin Description 

 

TLB’s Output Pin Description 

Pin Name: 

b_tlb_o_c_paddr [31:0] 

Source  Destination: 

TLB  Cache  

Registered:  

No 

Pin Function: 

32 bits physical address output to cache. 

 

 

Pin Name: b_tlb_o_tlb_miss Source  Destination: 

TLBCP0 & MMU 

Registered:  

No 

Pin Function: 

1 bit flag to indicate TLB miss. 

0: No TLB miss. 

1: TLB miss. 
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Pin Name: 

b_tlb_o_addr_excep 

Source  Destination: 

TLBCP0 

Registered:  

No 

Pin Function: 

1 bit flag to indicate TLB address exception. 

0: No TLB address exception. 

1: TLB address exception. 

 

Table 7.1.3: TLB’s Output Pin Description 

 

Functionality 

 

1. Compare with Status register to determine TLB address exception. 

2. Able to translation virtual address to physical address based on the TLB entries. 

3. Send out miss signal when there are no entries matched. 
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7.2 Memory Management Unit (MMU) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.1: Block diagram for MMU. 

 Memory Management Unit is responsible to handle the page table walk through 

when TLB Miss occurs. In this project, two-level page table is used. Therefore, for each 

time TLB miss and invoke MMU to handle Page Table Entries (PTE) transfer, physical 

memory has to be access twice to get the appropriate PTE. 

 

 

 

 

 

u_mmu 

 

u_mmu_i_sdrcntr_ack 

u_mmu_i_sdrcntr_data[31:0] 

u_mmu_i_vaddr[31:0] 

u_mmu_i_tlb_miss 

u_mmu_i_sys_clock 

u_mmu_i_sys_reset 

 

u_mmu_o_tlb_page_fault 

u_mmu_o_tlb_write_enable 

u_mmu_o_cp0_rwen 

u_mmu_o_cp0_is_mtc0 

u_mmu_o_cp0_is_eret 

u_mmu_o_cp0_reg_address[4:0]   

u_mmu_o_cp0_reg_data[31:0] 

u_mmu_o_cpu_stall 

u_mmu_o_sdrctnr_host_ld_mode 

u_mmu_o_sdrctnr_stb 

u_mmu_o_sdrctnr_cyc 

u_mmu_o_sdrctnr_we 

u_mmu_o_sdrctnr_sel[3:0]   

u_mmu_o_sdrctnr_addr[31:0] 

u_mmu_o_sdrctnr_data[31:0] 

 



Main Memory Integration 2013 
 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology, UTAR Page 84 

 

I/O Description 

MMU’s Input Pin Description 

Pin Name: 

u_mmu_i_sdrcntr_ack 

Source  Destination: 

SDRAM 

ControllerMMU 

Registered:  

No 

Pin Function: 

Acknowledge signal from SDRAM Controller asserted to indicate whether completion 

of read or write operation. 

 

Pin Name: 

u_mmu_i_sdrcntr_data[31:0] 

Source  Destination: 

SDRAM 

ControllerMMU 

Registered:  

No 

Pin Function: 

32 bits read data from SDRAM Controller. 

 

Pin Name: 

u_mmu_i_vaddr[31:0] 

Source  Destination: 

Data Path UnitMMU 

Registered:  

No 

Pin Function: 

32 bits virtual address from data path unit. 

 

Pin Name: 

u_mmu_i_tlb_miss 

Source  Destination: 

TLBMMU 

Registered:  

No 

Pin Function: 

TLB miss signal from TLB. 

 

Pin Name: 

u_mmu_i_sys_clock 

Source  Destination: 

System ClockMMU 

Registered:  

No 

Pin Function: 

System Clock Signal. 

 

 

Pin Name: 

u_mmu_i_sys_reset 

Source  Destination: 

System ResetMMU 

Registered:  

No 

Pin Function: 

System Reset Signal. 

 

Table 7.2.1: MMU’s Input Pin Description 
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MMU’s Output Pin Description 

Pin Name: 

u_mmu_o_tlb_page_fault 

Source  Destination: 

MMU CP0 

Registered:  

No 

Pin Function: 

1 bit signal asserted to indicate page fault happen. 

 

Pin Name: 

u_mmu_o_tlb_write_enable 

Source  Destination: 

MMU TLB 

Registered:  

No 

Pin Function: 

1 bit signal asserted toenable write in TLB. 

 

Pin Name: 

u_mmu_o_cp0_rwen 

Source  Destination: 

MMU Multiplexer 

Registered:  

No 

Pin Function: 

1 bit signal to select which data should go to CP0 between IMMU and DMMU. 

 

Pin Name: 

u_mmu_o_cp0_is_mtc0 

Source  Destination: 

MMU CP0 

Registered:  

No 

Pin Function: 

Instruction signal to insert data into CP0 register file. 

 

 

 

Pin Name: 

u_mmu_o_cp0_is_eret 

 

Source  Destination: 

MMU CP0 

Registered:  

No 

Pin Function: 

1 bit signal to indicate end of TLB miss by sending the signal to CP0 and CP0 will 

restart the instruction by loading address store in EPC register. 

 

Pin Name: 

u_mmu_o_cp0_reg_address[4:

0]   

Source  Destination: 

MMU CP0 

Registered:  

No 

Pin Function: 

5 bits register address to be update. 
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Pin Name: 

u_mmu_o_cp0_reg_data[31:

0] 

Source  Destination: 

MMU CP0 

Registered:  

No 

Pin Function: 

32 bits register data to be update in CP0 register file. 

 

Pin Name: 

u_mmu_o_cpu_stall 

Source  Destination: 

MMU Control Unit 

Registered:  

No 

Pin Function: 

Stall signal to control unit when TLB miss. 

 

Pin Name: 

u_mmu_o_sdrctnr_host_ld_

mode 

Source  Destination: 

MMU SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Asserted to load a new mode into the SDRAM. 

 

 

 

Pin Name: 

u_mmu_o_sdrctnr_stb 

 

Source  Destination: 

MMU SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Asserted to indicate the SDRAM controller is selected.  

 

Pin Name: 

u_mmu_o_sdrctnr_cyc 

 

Source  Destination: 

MMU SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Asserted to indicate valid bus cycle is in progress. 

 

Pin Name: 

u_mmu_o_sdrctnr_we 

Source  Destination: 

MMU SDRAM 

Controller 

Registered:  

No 

Pin Function:  

Asserted to indicate that the current cycle is READ. Deasserted to indicate current 

cycle is WRITE. 
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Pin Name: 

u_mmu_o_sdrctnr_sel[3:0

]   

 

Source  Destination: 

MMU SDRAM 

Controller 

Registered:  

No 

Pin Function: 

Used to indicate where valid data is placed on the input data line (ip_wb_dat) during 

WRITE cycle and where it should present on the output data line (op_wb_dat) during 

READ cycle. 

 

Pin Name: 

u_mmu_o_sdrctnr_add

r[31:0] 

 

Source  Destination: 

MMU SDRAM 

Controller 

Registered:  

No 

Pin Function: 

32 bits address to read or write from SDRAM. 

 

 

Pin Name: 

u_mmu_o_sdrctnr_dat

a[31:0] 

Source  Destination: 

MMU SDRAM 

Controller 

Registered:  

No 

Pin Function: 

32 bits data to be write into SDRAM. 

 

Table 7.2.2: MMU’s Output Pin Description 
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Memory Management Unit (MMU) Protocol 

 

Figure 7.2.2: MMU protocol. 
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Output for each state in MMU protocol 

State Output 
INIT u_mmu_o_tlb_page_fault       <=  1'b0; 

u_mmu_o_tlb_write_enable     <=  1'b0; 

u_mmu_o_cp0_rwen             <=  1'b0; 

u_mmu_o_cp0_is_eret          <=  1'b0;  

u_mmu_o_cp0_is_mtc0          <=  1'b0; 

u_mmu_o_cp0_reg_address      <=  5'bz; 

u_mmu_o_cp0_reg_data         <= 32'bz; 

u_mmu_o_cpu_stall            <=  1'b0; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b0; 

u_mmu_o_sdrctnr_cyc          <=  1'b0; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b0; 

u_mmu_o_sdrctnr_addr         <= 32'bz; 

u_mmu_o_sdrctnr_data         <= 32'bz; 

 
READ_PTBR u_mmu_o_tlb_page_fault       <=  1'b0; 

u_mmu_o_tlb_write_enable     <=  1'b0; 

u_mmu_o_cp0_rwen             <=  1'b0;  

u_mmu_o_cp0_is_eret          <=  1'b0; 

u_mmu_o_cp0_is_mtc0          <=  1'b0; 

u_mmu_o_cp0_reg_address      <=  5'bz; 

u_mmu_o_cp0_reg_data         <=  32'bz; 

u_mmu_o_cpu_stall            <=  1'b1; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b1; 

u_mmu_o_sdrctnr_cyc          <=  1'b1; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b1111; 

u_mmu_o_sdrctnr_addr         <= 

{6'b0,14'b00_0000_0000_0000,u_mmu_i_vaddr[31:22],2'

b0}; 

u_mmu_o_sdrctnr_data         <= 32'bz; 

 
CHECK_VALID u_mmu_o_tlb_page_fault       <=  1'b0; 

u_mmu_o_tlb_write_enable     <=  1'b0; 

u_mmu_o_cp0_rwen             <=  1'b0; 

u_mmu_o_cp0_is_eret          <=  1'b0;  

u_mmu_o_cp0_is_mtc0          <=  1'b0; 

u_mmu_o_cp0_reg_address      <=  5'bz; 

u_mmu_o_cp0_reg_data         <= 32'bz; 

u_mmu_o_cpu_stall            <=  1'b1; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b0; 

u_mmu_o_sdrctnr_cyc          <=  1'b0; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b0; 

u_mmu_o_sdrctnr_addr         <= 32'bz; 

u_mmu_o_sdrctnr_data         <= 32'bz; 

 
PAGE_FAULT u_mmu_o_tlb_page_fault       <=  1'b1; 

u_mmu_o_tlb_write_enable     <=  1'b0; 
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u_mmu_o_cp0_rwen             <=  1'b0; 

u_mmu_o_cp0_is_eret          <=  1'b0;  

u_mmu_o_cp0_is_mtc0          <=  1'b0; 

u_mmu_o_cp0_reg_address      <=  5'bz; 

u_mmu_o_cp0_reg_data         <= 32'bz; 

u_mmu_o_cpu_stall            <=  1'b1; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b0; 

u_mmu_o_sdrctnr_cyc          <=  1'b0; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b0; 

u_mmu_o_sdrctnr_addr         <= 32'bz; 

u_mmu_o_sdrctnr_data         <= 32'bz; 

 
READ_PTE u_mmu_o_tlb_page_fault       <=  1'b0; 

u_mmu_o_tlb_write_enable     <=  1'b0; 

u_mmu_o_cp0_rwen             <=  1'b0; 

u_mmu_o_cp0_is_eret          <=  1'b0; 

u_mmu_o_cp0_is_mtc0          <=  1'b0; 

u_mmu_o_cp0_reg_address      <=  5'bz; 

u_mmu_o_cp0_reg_data         <=  32'bz; 

u_mmu_o_cpu_stall            <=  1'b1; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b1; 

u_mmu_o_sdrctnr_cyc          <=  1'b1; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b1111; 

u_mmu_o_sdrctnr_addr         <= 

{6'b0,u_mmu_r_buffer[13:0],u_mmu_i_vaddr[21:12],2'b

0}; 

u_mmu_o_sdrctnr_data         <= 32'bz; 
UPDATE_ENTRYL

O 
u_mmu_o_tlb_page_fault       <=  1'b0; 

u_mmu_o_tlb_write_enable     <=  1'b0; 

u_mmu_o_cp0_rwen             <=  1'b1; 

u_mmu_o_cp0_is_eret          <=  1'b0; 

u_mmu_o_cp0_is_mtc0          <=  1'b1; 

u_mmu_o_cp0_reg_address      <=  5'b00010; 

u_mmu_o_cp0_reg_data         <= 

{u_mmu_r_buffer[19:0],u_mmu_r_buffer[23:20],8'b0}; 

u_mmu_o_cpu_stall            <=  1'b1; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b0; 

u_mmu_o_sdrctnr_cyc          <=  1'b0; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b0; 

u_mmu_o_sdrctnr_addr         <= 32'bz; 

u_mmu_o_sdrctnr_data         <= 32'bz; 

 
UPDATE_TLB u_mmu_o_tlb_page_fault       <=  1'b0; 

u_mmu_o_tlb_write_enable     <=  1'b1; 

u_mmu_o_cp0_rwen             <=  1'b0; 

u_mmu_o_cp0_is_eret          <=  1'b0; 

u_mmu_o_cp0_is_mtc0          <=  1'b0; 

u_mmu_o_cp0_reg_address      <=  5'b0; 

u_mmu_o_cp0_reg_data         <= 32'bz; 
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u_mmu_o_cpu_stall            <=  1'b1; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b0; 

u_mmu_o_sdrctnr_cyc          <=  1'b0; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b0; 

u_mmu_o_sdrctnr_addr         <= 32'bz; 

u_mmu_o_sdrctnr_data         <= 32'bz; 

 
RESTART_INS u_mmu_o_tlb_page_fault       <=  1'b0; 

u_mmu_o_tlb_write_enable     <=  1'b0; 

u_mmu_o_cp0_rwen             <=  1'b1; 

u_mmu_o_cp0_is_eret          <=  1'b1; 

u_mmu_o_cp0_is_mtc0          <=  1'b0; 

u_mmu_o_cp0_reg_address      <=  5'b0; 

u_mmu_o_cp0_reg_data         <= 32'bz; 

u_mmu_o_cpu_stall            <=  1'b1; 

u_mmu_o_sdrctnr_host_ld_mode <=  1'b0; 

u_mmu_o_sdrctnr_stb          <=  1'b0; 

u_mmu_o_sdrctnr_cyc          <=  1'b0; 

u_mmu_o_sdrctnr_we           <=  1'b0; 

u_mmu_o_sdrctnr_sel          <=  4'b0; 

u_mmu_o_sdrctnr_addr         <= 32'bz; 

u_mmu_o_sdrctnr_data         <= 32'bz; 

 

Table 7.2.3: Output for each state in MMU protocol 
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Chapter 8: Verification Specification 

8.1: Test Plan of Memory Unit 

Test Case Expected Result 

Load Page Table and Page 

to SDRAM. 

 Observe from SDRAM read/write transcript to 

ensure the data had been successfully written into 

SDRAM. 

Instruction TLB Miss  Instruction MMU read First Level Page Table Entry. 

 Instruction MMU read Second Level Page Table 

Enrty. 

 IMMU stall signal deasserted. 

Data TLB Miss  Data MMU read First Level Page Table Entry. 

 Data MMU read Second Level Page Table Enrty. 

 DMMU stall signal deasserted. 

Instruction Cache Miss  Instruction Cache sends address to read from 

SDRAM. 

 SDRAM response by sending back data and 

acknowledge signal. 

 Repeat Step 1 and 2 for 8 times. 

 Instruction output from instruction cache. 

Data Cache Miss  Data Cache sends address to read from SDRAM. 

 SDRAM response by sending back data and 

acknowledge signal. 

 Repeat Step 1 and 2 for 8 times. 

 Data output from data cache. 

Table 8.1.1: Test Plan of Memory Unit 
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8.1.1: Test Procedure 

1. System reset. 

2. Porting appropriate data to CP0 registers. 

3. Insert data into SDRAM by using the test signal, u_mem_sys_test_insert_data_en, 

u_mem_sys_i_test_data and u_mem_sys_i_test_addr. 

 Atleast 3 data needed to get the memory system run. 

i. First level Page Table. 

ii. Second level Page Table. 

iii. 8 sequential data to be read by cache when cache misses. 

4. System reset and let the memory system run itself. 
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8.2: Simulation Result for Memory System 

8.2.1:  Load Page Table and Page to SDRAM 

 

Figure 8.2.1: System Reset, follow by loading First Level Page Table Entry into SDRAM. 

 

Figure 8.2.2: After 19 clock cycles, First Level Page Table Entry successfully loaded into SDRAM. 
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Figure 8.2.3: Loading Second Level Page Table Entry into SDRAM. 

 

 

Figure 8.2.4: Loading Pages into SDRAM (Part 1). 
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Figure 8.2.5: Loading Pages into SDRAM (Part 2) follow by System Reset to initiate the system. 
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8.2.2: ITLB MISS 

 

Figure 8.2.6: ITLB miss occurs, IMMU take over to fetch First Level Page Table Entry from SDRAM. (Take 19 clock cycles) 
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Figure 8.2.7: IMMU take over to fetch Second Level Page Table Entry from SDRAM. (Take 12 clock cycles) 

 

Figure 8.2.8: Updating ITLB Entry. 
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Figure 8.2.9: ITLB HIT. 
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8.2.3: DTLB MISS 

 

Figure 8.2.10: DTLB miss occurs, DMMU take over to fetch First Level Page Table Entry from SDRAM. (Take 9 clock cycles) 
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Figure 8.2.11: DMMU take over to fetch Second Level Page Table Entry from SDRAM. (Take 9 clock cycles) 

 

Figure8.2.12: Updating DTLB Entry. 



Main Memory Integration 2013 
 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology, UTAR Page 102 

 

 

Figure 8.2.13: DTLB HIT. 
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8.2.4: Instruction Cache Miss 

 

Figure 8.2.14: Instruction cache misses, transferring block from SDRAM (Part 1). (Take 6 clock cycles for first access) 
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Figure 8.2.15: Instruction cache misses, transferring block from SDRAM (Part 2). (Take 4 clock cycles for subsequence access) 
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Figure 8.2.16: Instruction cache misses, transferring block from SDRAM (Part 3). (Take 4 clock cycles for subsequence access) 
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Figure 8.2.17: Instruction cache Hit, instruction is successfully read from cache. 
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8.2.5: Data Cache Miss 

 

Figure 8.2.18: Data cache misses, transferring block from SDRAM (Part 1). (Take 6 clock cycles for first access) 
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Figure 8.2.19: Data cache misses, transferring block from SDRAM (Part 2). (Take 4 clock cycles for subsequence access) 
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Figure 8.2.20: Data cache misses, transferring block from SDRAM (Part 3). (Take 4 clock cycles for subsequence access) 
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Figure 8.2.21: ITLB, DTLB, ICACHE, DCACHE hit. Data and instruction successfully loaded. 
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Figure 8.2.22: SDRAM read/write transcript. 
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Chapter 9: Discussion and Conclusion 

9.1:  Discussion & Conclusion 

 Virtual Memory system is the memory management technique which unavoidable, 

every processor has to use it due to limitation of the size for physical memory. When we 

adopt virtual memory, Translation Lookaside Buffer plays an important role to determine 

the speed of the processor. Although without the existence of Translation Lookaside 

Buffer, processor still can run as usual. Just that for each time of address translation, the 

processor has to access SDRAM twice if we are using two level hierarchy page tables. 

Imagine that for each instruction, we have to spend around 40-50 clock cycles to process 

it, how slow will the processor be. Therefore, Translation Lookaside Buffer is 

implemented to solve this problem. 

 Translation Lookaside Buffer is mainly used to store some of the page table 

entries reside in physical memory. Whenever there is a TLB miss, page table walkthrough 

need to be conducted to fetch the page table entry out from physical memory and update 

TLB. To handle this situation, either software, TLB miss is handling by a series of kernel 

process or hardware, page table walk through is conducted by using hardware. In this 

project, we are using hardware method in which Memory Management Unit has been 

implemented in this project to take care about page table walk through. 

 In this project, 64 entries TLB, MMU, 2MB Cache, 64MB SDRAM has been 

successfully connected and its behavior has been test during the verification stage. 

However, there is some error occurs at cache in which it will sending one time more 

address to SDRAM which causes an invalid READ operation at SDRAM. Although all 

the data had been successfully read into cache, one of the entry does not write into cache 

memory which might causes data loss. 

The following list is the outcome of this project:- 

 Status 

TLB Enhanced & Verified 

MMU Enhanced & Verified 

SDRAM Enhanced & Verified 

Memory Unit Enhanced & Verified 

Table 9.1.1: outcome of this project 
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9.1:  Future Works 

 Memory Unit has been completed and verified. It seems like the cache is not 

operating as expected. This might cause data loss or stalling effect when integrate into 

RISC32 processor and therefore, Memory Unit is not yet integrates into RISC32 

processor. Improvement and fix needed to overcome this problem by conducting a deep 

study on current memory system to figure out the root cause of the problem to ensure a 

workable memory system to be successfully integrated into RISC32 processor. 

 Other than that, during the verification stage, we need to manually load the page 

table information by our own due to absent of operating system. To overcome this 

problem, an operating system should be implemented which will responsible for creation 

of page table and address mapping process. Therefore, it is necessary for future designer 

to understand how the memory system works before starting the design of operating 

system. 
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