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Abstract

This project is to enhance the RISC32 architecture that developed in UniversitiTunku
Abdul Rahman under Faculty of Information and Communication Technology. After
reviewing previous work, the RISC32 processor has a readily available SDRAM
Controller and 128MB SDRAM functional model provided by Micron but it has not been
integrated into the processor yet.

Therefore this project is initiated to integrate the main memory into the processor. The
existing SDRAM Controller is build based on Wishbone Compatible Standard while the
processor side is not. Therefore, a bus interface unit should be design in order to establish
a communication platform for the processor and main memory.Other than that, caches
design should be taken into consideration when we are designing the bus interface unit
due to whenever there is a cache miss, the processor need to get the data or instruction
from SDRAM. This design modeled using Verilog, High Level Description Language

and connects to other component.
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Chapter 1: Introduction

1.1: Background

As modern day systems are gradually becoming more and more complex due to
their wide functionalities, memory plays an important role in the performance of the
system. Many computations executed on current machine are often limited by the
response of the memory system rather than the speed of processor [1]. At early in the
1960’s, it was the time cache memories were proposed and being introduced into the
memory hierarchy as high speed memory buffers used to hold the contents of recently
accessed main memory locations. It was already known at that time that recently used
information such as instructions and data is likely to be used again in the near future[1-2].
With this method, although cache memory would only hold a small fraction of the
contents of main memory, a disproportionate fraction of all memory references would be
satisfied by information contained within the cache [5-7]. However, this introduction
could not solve the problem perfectly since the size of the cache is inversely proportional
to the speed of the memory. As the cache size reduced, miss rate which indicates the
chance of data needed was not available inside cache will be increase. When cache miss
happens, instruction or data has to be read from the main memory which indicates that
several processes have to go through in order to handle cache miss[7]. This is
unavoidable as long as we are using cache memory inside our system and this has comes
to our topic, main memory integration which responsible to handle the data or instruction

transfers between SDRAM and cache memory when cache miss happens.
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1.2: Motivation and Problem Statement

Recently, a RISC32 project has been developed in the Faculty of Information and
Communication Technology, UniversitiTunku Abdul Rahman. The project is based on
the RISC architecture. The main reasons for initiating this project are:

e Microchip design companies develop microprocessors cores as IP for commercial
purposes. The microprocessor IP includes information on the entire design
process for the front-end (modeling and verification) and back-end (layout and
physical design) IC design. These are trade secrets of a company and certainly not
made available in the market at an affordable price for research purposes.

o Several freely available microprocessor cores can be found in [1]. Unfortunately,
these processors do not implement the entire MIPS Instruction Set Architecture
(ISA) and lack comprehensive documentation. This makes them unsuitable for
reuse and customization.

e Verification is vital for proving the functionality of any digital design. The
microprocessor cores mentioned above are handicapped by incomplete and poorly
developed verification specifications. This hampers the verification process,
slowing down the overall design process.

e The lack of well-developed verification specifications for these microprocessor
cores will inevitably affect the physical design phase. A design needs to be
functionally proven before the physical design phase can proceed smoothly.
Otherwise, if the front-end design has to be changed, the physical design process

has to be redone.

The RISC32 project will aim to provide a solution to the above problems by creating a
32-bit RISC core-based development environment to assist research work in the area of
soft-core and also application specific hardware modeling. Currently, a basic central
processing unit (CPU) and SDRAM Controller and SDRAM providedby MICRON
Technology Inc. has been modeled at the Register Transfer Level (RTL) using Verilog
HDL and both of them have been combined together and had gone through a series of

simulation test. However, several design issues were found in the existing RISC32
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Memory System [9].0ne of the issues is although the SDRAM Controller and SDRAM
has been modeled, it is not ready to integrate into basic CPU that has been modeled
previously due to the outputs of CPU is not compatible to current SDRAM since the
current RICS32 processor is using a 32 bits address which will cover up to 4GB of
memory space. Hence, an additional circuit has been to add on to the current design
which acts as a platform for current SDRAM, TLB, MMU, CACHE and others basic
CPU to communicate with each others. With all these problems, it is imperative for us to
reanalyze and refurbish the foundation of the Memory System before any memory

integration can be done.

1.3: Project Scope

This project aims to integrate existing SDRAM Controller and conventional SDRAM
into the 32 bits 5-stage pipelined RISC processor.
The scope of this project involves:

1) Designing a bus interface unit which compatible to SDRAM controller, 64MB
SDRAM behavioral model provided by MICRON Technology Inc and CPU.

2) The implementation of an industry standard WISHBONE SoC interface in the bus
interface unit design to ensure portability.

3) Verify its behavior and functionality at chip level together withTLB, MMU,
CACHE, SDRAM controller, 64MB SDRAM behavioral model provided by
MICRON Technology Inc and CPU. Timing analysis and synthesis is outside the
scope of this project.

BIT (Hons) Computer Engineering
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1.4: Project Objectives

The project’s objectives include:

Analyze the existing Memory System organization, interfacing and the
functionality of a SDRAM and SDRAM Controller. Analysis on the existing
MIPS Memory System will be done.

SDRAM Bus Interface Unit Design — This part includes the development of chip
specification and the microarchitecture specification of the SDRAM Bus Interface
Unit based on WISHBONE Soc Interface.

TLB Design — This part include the development of microarchitecture
specification of the TLB which used to act as a cache for keeping page table
entries.

MMU Design — This part include the development of microarchitecture
specification of MMU (Memor y Management Unit) which responsible to conduct
a page table walk through.

Integration with Cache — This part will include the integration of cache together
with existing 64MB of SDRAM, SDRAM Controller, TLB and MMU.
Verification — Test case will be developed to test the SDRAM and SDRAM
controller as a whole by simulating Wishbone master interface signal based on
Bus Functional Model and to test whether the design is workable, Iw and sw

instructions should be used inside the test case..
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1.5: Significance and Impact

As a synopsis to the problem statement, there is a lack of well-developed and well-
founded 32-bit RISC microprocessor core-based development environment. The
development environment refers to the availability of the following:

e A well-developed design document, which includes the chip specification,
architecture specification and micro-architecture specification.

e A fully functional well-developed 32-bit RISC architecture core in the form of
synthesis-ready RTL written in Verilog.

e A well-developed verification environment for the 32-bit RISC core. The
verification specification should contain suitable verification methodology,
verification techniques, test plans, testbench architectures etc.

e A complete physical design in FPGA with documented timing and resource usage
information.

The RISC32 project is an effort to develop the environment mentioned above: to be used
as a multi-cycle pipelined RISC microprocessor core-based platform to support hardware
modeling research work.

With the existing well-developed basic RISC32 RTL model (which has been fully
functionally verified), the verification environment and the design documents, a
researcher can develop his research specific RTL model as part of the RISC32
environment (whether directly modifying the internals of the processor or interface to the
processor) and can quickly verify his model to obtain results, without having to worry
about the development of the verification environment and the modeling environment.
This can hasten the research work significantly. Relating exclusively to this project, the
establishment of a strong foundation of the Memory System is important. By building the
SDRAM Bus Interface Unit which act as a communicator between SDRAM and CPU, a
solid ground will be formed whereby the next designer can focus on fixing other parts of
the Memory System.

BIT (Hons) Computer Engineering
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Chapter 2: Literature Review

2.1: MIPS

MIPS (Microprocessor without Interlocked Pipelined Stage) is a RISC (Reduced
Instruction Set Computers) processor which use hardware implementation to
directlyexecute instructions, without microprogrammed control. MIPS is widely used in
digitalconsumer, networking, personal entertainment, communications and business
applications [2], such as Sony Playstation 2, Sony Playstation Portable (PSP) and Linksys
wireless router which primarily used in MIPS implementations. MIPS can be develop

using Verilog — a hardware description language (HDL).

2.2: Memory Hierarchy

When we are discussing about the performance issues in computer architectural
design, algorithm predictions, and the low level programming constructs which involve
locality of reference, the term, memory hierarchy will always been used in the computer

architecture.
More Costly

Access
Times

Less Costly

Figure 2.2.1: The Memory Hierarchy(Adapted from [6])
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As shown in the diagram above, the memory hierarchy in computer storage is actually
distinguishes each level by access time, cost per unit and capacity. Besides, in order to
produce a faster access time memory, controlling technology plays an important role in it
and therefore, each level of memory hierarchy also can be used to distinguish controlling
technology [2,3,6,8].

2.3: Cache and Main Memory Interfacing

From [7], we know that processor is connected to the main memory by a bus
system and the bandwidth of the bus system has a significant impact on miss penalty.
This is because the clock rate for bus is usually much slower than the processor as much
as a factor of 10. Therefore, selection of memory organization to be use in processor

plays an important role in deciding the performance of the processor.

CPU CPU CPU
lk :E‘ ] “]i ____.;I'J . J:'x,‘_ f-':L
_— Multiplexor T
Cache I TT  TIT TI T Cache
| Cache |
Hf’/hﬁ"“x_ﬁ ___.__—-—'—'___'_'__ __‘_'__—-—-—.___‘___ ?-’__,-—" S
Bus Bus Bus
~— e T~
Memory Memory || Memory || Memary || Memory
bank 0 || bank1 bank 2 bank 3
b. Wide memory organization ¢. Interleaved memory organization
Memory
a. One-word-wide

memory organization

Figure 2.3.1: Memory Organization (Adapted from [7])
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Figure on previous page shows three types of available memory organizations
which are one-word-wide memory, wide memory and interleaved memory organization.
To have a deeper understanding towards the memory organization, let us go through a
simple example [7]. Assume that a processor need

e 1 memory bus clock cycle to send the address to main memory.
e 15 memory bus clock cycles for each DRAM access initiated.

e 1 memory bus clock cycle to send a word of data.
Assume that we are going to send 4 words from main memory to cache.

The miss penalty can be calculated by using the equation below:

Miss Penalty =

Send address (1 bus cycle) + Access 1 word in DRAM (15 bus cycles)
+ Send a word from DRAM to Cache (1 bus cycle)

With all the information given above, we can evaluate the performance of the memory
organization shows in Figure 2.3.1.

For a one-word-wide memory organization, since it can only fetch one word per
time, in another word, it means that the main memory needs to be access 4 times in order

to fetch all the data require to the cache. Therefore,
Miss Penalty = 1 + (4 * 15) + (4 * 1) = 65 bus cycles.

For a wide memory organization, it is capable to fetch all the require data in one

shot since it has a very high bandwidth of bus system. Therefore,
Miss Penalty = 1 + (1 * 15) + (1 * 1) = 17 bus cycles.

Lastly, a interleaved memory organization, which capable to read multiple words

in main memory in a single bus cycle and transfer the data back word by word. Therefore,

Miss Penalty = 1 + (1 * 15) + (4 * 1) = 21 bus cycles.

BIT (Hons) Computer Engineering
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The calculations above shows that a wide memory organization has the least miss
penalty but keep in mind that a huge bus system is not easy to manage and it require a
high cost to implement. For the interleaved memory organization, although it is slower
than wide memory organization, it is using a shared bus system among the memory banks.
This reduces the cost to implement but this will results in a similar performance with

wide memory organization.

2.4: DRAM

Dynamic Random-Access Memory (DRAM) is a type of random access memory
that will stores each bit of data in a separate of capacitor within an integrated circuit. It is
a non-volatile memory that the data stored inside will be lost once the power supply been
turned off. Due to the characteristic of capacitor which is charging and discharging, these
states are taken to represent two values of bit which are 0 and 1. DRAM is always cost
lesser than Static Random Access Memory (SRAM) due to its simple structural which
only consists of one transistor and one capacitor per bit comparing to SRAM which is
using 4 or 6 transistors depends on the design [6-8]. With this structure, DRAM can be
designed to reach a very high density but as a tradeoff, the accessing time of DRAM is
slower than SRAM. Other than that, since capacitors leak charge, the information stored

inside will eventually fades unless the capacitor is being refreshed periodically.

WL

Select—I— l Ma | b— dd% Ma l
. a T T

T, T Me
M | L ™a

Storage |
capacitor —
—— Data BL - BL

DRAM SRAM

Figure 2.4.1:The structure of DRAM and SRAM.  (Adapted from [7])
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2.5: SDRAM

Synchronous Dynamic Random Access Memory (SDRAM) is a DRAM that is
synchronized with the system bus. The previous DRAM we had discussed has an
asynchronous interface in which it responds as quickly as possible to changes in control
input while SDRAM has a synchronous interface, meaning it will wait for a rising edge

of clock signal before responding to control input[5].

— bal[1:0]

4 adr [11:0]

1 dg[31:0]

4 dgm [3:0]

— cs_n

— we_n

—{ cas_n

—{ ras n

— clk SD AN

Figure 2.5.1: Block diagram of 128Mb banks SDRAM(Adapted from [9])

Pin Name | Size Description

ba [1:0] 2 bits Bank Address: Define to which device bank the ACTIVE,
READ, WRITE or PRECHARGED is being applied.

adr [31:0] | 12 bits | Address Bus: Used as an input to send column address, row
address and configuration setting to the SDRAM.

dg [31:0] 32 bits | Data Line: 32 bits bidirectional data line to/from SDRAM.

dgm [4:0] | 4 bits Data Mask: Used to select which byte of the 32 bits bidirectional

data line, dq, is valid.

cs n 1 bits Chip Select: When this signal is high, the chip ignores all other
inputs except clock signal, and acts as if a NOP command is
received.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR Page 10




Main Memory Integration | 2013

we_n 1 bits Write Enable: Along with /RAS and /CAS, this selects one of 8
commands. This generally distinguishes read-like commands
from write-like commands.

cas_n 1 bits Column Address Strobe: Along with /RAS and /WE, this selects
one of 8 commands.

ras_n 1 bits Row Address Strobe: Along with /CAS and /WE, this selects
one of 8 commands.

clk 1 bits Clock Signal: Used to synchronize with the CPU bus system.

Table2.5.1: 1/O description table of SDRAM.

The SDRAM has adopted bidirectional data line, dq, for write transfer and read
transfer. This is because the SDRAM can only do one of the operations at a time. The
granularity of a bus is defined as the smallest transfer can be done by that bus. This is
accomplished using the data masking pin, dgm(3:0). The data masking pin is used to
select which byte of the 32-bit bidirectional data line, dqg, is valid.

For example, if dgm = 0001 (binary), the valid 8-bit data is located at dq(7:0).
Here is another example, if dgm = 1100 (binary), the valid 16-bit data is located at
dg(31:16). As mentioned, since the smallest transfer is 8-bit, the granularity of this
SDRAM is 8-bit. As a comparison, the customized SDRAM has a granularity of 32-bit
for its 32-bit write data line and 256-bit granularity for its 256-bit read data line. This also
means that the customized SDRAM cannot support byte addressing.

There are several functions available to control the activity of SDRAM by varying
the control signals such as ¢s_n, ras_n, cas_n, we_n. These control signals are normally
issued by a SDRAM Controller.
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The table below provided a quick reference of available command for SDRAM:

NAME (FUNCTION) CS|RAS | CAS| WE | DQM | ADDR | DQs | NOTE
COMMAND INHINIT (NOP) | H X X X X X X

NO OPERATION (NOP) L H H H X X X

ACTIVE (Select bank and L L H H X Bank/Row X 3
active row)

READ (Select bank and L H L H LH" | Bank/Col X 4
column, and start READ

burst)

WRITE (Select bank and L H L L LH' | Bank/Col | Valid 4
column, and start WRITE

burst)

BURST TERMIINATE L H H L X X Active
PREGHARGE (Deactivate L L H L X Code X 5
row in bank or banks)

AUTO PRECHARGE or L L L H X X X 6,7
SELF REFRESH (Enter self

refresh mode)

LOAD MODE REGISTER L L L L X Op-code X 2
Write Enable/Output Enable - - - - L - Active 8
Write Inhibit/Output High-Z - - - - H - High-Z §

Table2.5.2: Truth Table — Command and DQM operation. (Adapted from [4])

Other than that, by using adr[11:0] pin of the SDRAM, we can configure the
mode register which used to define the specific mode of operation for SDRAM via the
LOAD MODE REGISTER command and the information stored will be retain until it
has been reprogrammed or the device has been powered off. The definition includes the
selection of burst length, burst type, CAS latency, operating mode and write burst mode.

Burst is a technique used to continuous read or write data from the memory
depends on the burst length. For example, if we set the burst length to be 4 and it is a
READ operation, the data inside SDRAM will be read 4 times continuously. The
sequences of the data read or write will be either in sequential or interleaved order which
shows in Table 2.4.3.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR Page 12



Main Memory Integration | 2013

AlZ A1 A1 AQ AR AT A5 ] Ad AJ A2 Al Al Agdress Bus
Mode Regisier [x)
*Shouid be program l
M1Z, M11, M0 ="0¢
bo ersure compatiblity Burst Length
with future device
M2 M1 MWD MG =1 M3 =1
o o a 1 1
o a1 2 2
o 1 @ 4 4
o 1 1 8 B
1 0 0 FReserved Resened
1 0 1 FReserved Resened
1 1 0 Reserved Resened
1 1 1 Fulpage Resened
L
M2 [Surst Type
o Sequemial
1 Imareaved
¥
M3 MS M4 CASLatency
0 0 [0 Feserved
0 0 1 Reseved
0 1 0O 2
o 1 1 3
1 0 0 Reserved
1 o 1 Reserved
1 1 0 Reserved
1 1 1 Reserved

L
] Wilrite Burst Mode
a
1

Figure 2.5.2: Mode Register Definition Diagram. (Adapted from [4])

The description of each definition shown above will be discussed as below:

e Burst Length

Used to determine maximum number of column locations that can be accessed for

a given READ or Write command.
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e Burst Type
Used to select either sequential or interleaved burst to be adopted by SDRAM.
The ordering of accesses within a burst is determined by burst length, burst type,
starting column address.

e CAS Latency
Delay in clock cycles between registration of a READ command and the
availability of the first piece of output data. It can only be set to 2 or 3 clock
cycles.

e Operating Mode
Used to select which operating mode should the SDRAM be. Currently there is
only normal operating mode is available for use.

e Writing Burst Mode
When it is ‘0, the burst length is programmed via M0O-M2 applies to both READ
and WRITE burst.
When it is ‘1°, the programmed burst length applies to READ bursts, but write
accesses are single-location (non-burst) accesses.

Burst Startng Column Order of Accesses Within a Burst
Length Address: Type = Sequential Tvpe = interleaved
AD
2 0 0-1 0-1
1 1-0 1-0
Al AD
0 0 0-1-2-3 0-1-2-3
4 0 1 1-2-3-0 1-0-3-2
1 0 2-3-0-1 2-3-0-1
1 1 3-0-1-2 3-2-1-0
Al Al A0
] 0 0 0-1-2-34-5-6-7 0-12-34567
] 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
] 1 0 2-3-4-5-6-T-0-1 2-3-0-1-6-7-4-5
5 ] 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 0 6-7-0-1-2-3-4-5 67452301
1 1 1 7-0-1-2-34-5-6 T-6-5-4-3-2-1-0
Cn. Cn -+ 1. Cn_ 2
Full Page n=A0A11/9%8 Cp+3, C,+4.. Not supported
() {location 0-v) Ty — 1,
G

Table2.5.3: Burst Definition Table.(Adapted from [4])
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2.6: SDRAM Controller

The SDRAM Controller is used to acts as a communicator between the host and
SDRAM. As the SDRAM Controller receive the operation command from the host, it

will interpret it and translate into a control signal which acts as an input to the SDRAM.

The SDRAM Controller has been previously modeled based on industry standard
WISHBONE SoC interface [9].

ASSSYERENN

ip_wb_clk op_sdr_cs_n
ip_wb_rst op_sdr_ras_n
op_wb_ack op_sdr_cas_n
ip_wb_stb op_sdr_we_n
ip_wb_cyc op_sdr_dqgm[3:0]
ip_wb_we op_sdr_bal1:0]
ip_wb_sel[3:0] op_sdr_addr[11:0]

1p_wb_addr[31:0]

1o_sdr_dq[31:0]

1p_wb_dat[31:0]
op_wb_dat[31:0]
ip_host_ld_mode

BRRM

sdram_controller

Figure 2.6.1: Block diagram of SDRAM Controller.

(Modified from [9])

Pin Name Size (bits) Description

ip_wb_clk 1 Clock signal to synchronize to the system.

ip_wb_rst 1 Synchronous reset to reinitialize the system.

ip_wb_cyc 1 Asserted to indicate valid bus cycle is in progress.

ip_wb_stb 1 Asserted to indicate the SDRAM controller is
selected.

ip_wb_we 1 Asserted to indicate that the current cycle is READ.
Deasserted to indicate current cycle is WRITE.

op_wb_ack 1 Asserted to indicate that the current READ or
WRITE operation is successful.
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ip_whb_sel [3:0] 4 Used to indicate where valid data is placed on the
input data line (ip_wb_dat) during WRITE cycle and
where it should present on the output data line
(op_wb_dat) during READ cycle.

ip_wb_addr [31:0] |32 Used to pass the memory address from the host.

ip_wb_dat [31:0] 32 Used to pass WRITE data from the host.

op_whb_dat [31:0] 32 Used to output READ data from the SDRAM.

ip_host_ld_mode 1 Asserted to load a new mode into the SDRAM.

op_sdr_cs n 1 SDRAM chip select.

op_sdr_ras_n 1 SDRAM row address select.

op_sdr_cas_n 1 SDRAM column address select.

op_sdr_we_n 1 SDRAM write enable.

op_sdr_addr [11:0] | 12 Address output to the SDRAM.

op_sdr_ba [1:0] 2 Bank Address output to SDRAM.

op_sdr_dgm [3:0] 4 Used to select which bits of the data line (io_sdr_dq)
to be masked.

i0_sdr_dq [31:0] 32 Bidirectional data line to receive READ data or send
WRITE data.

Table2.6.1: 1/0O pin description of SDRAM Controller.

*Note that ip represents input, op represents output, wb represents WISHBONE, sdr
represents SDRAM.

By using this SDRAM Controller, we can make a direct LOAD MODE
REGISTER command straight from the host. To load the configuration to the SDRAM,
the host nee to asserted for the pin ip_host_Id_mode. This can help in speeding upwhen
configuring SDRAM since in the reality not only one SDRAM will be connected to this
SDRAMController
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Figures 2.6.2: The Microarchitecture of SDRAM Controller.
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The figure on the previous page shows the microarhitecture of the SDRAM Controller.
Inside the figure, the block sdc_obrt_top_obrt_unit is used to track the row status of all of
the banks. Block sdc_mc is responsible to store the status of the SDRAM configuration
and also the power up status to indicate if the SDRAM controller is executing the
initialization protocol or not.The address multiplexer, sdc_addr_mux partitions the
WISHBONE address input line into row address, bank address and column address. Then,
it multiplexes the configuration mode, row address and column address. It also decodes
the WISHBONE Select input pin and converts it to equivalent masking output.

Besides, block sdc_dp_buf is used to controls the flow of the data between
SDRAM and Host while block sdc_sdram_ifis the SDRAM Interface Block that

synchronizes all the signals to the negative edge before sending them out the SDRAM.

Other than that, SDRAM Controller also responsible to instruct the SDRAM to
initiate a precharge in order to maintain the information stored inside each cell. Otherwise,
the information stored inside each cell will be lost due to the characteristic of capacitor
which is the voltage will slowly leak off.The finite state machine below shows how the
SDRAM Controllerhandles the timing and the state changes that forms the protocols of
the SDRAM. It helps in decide which protocol to be executed and what commands to be
sent to the SDRAM by using the sdc_fsm block.
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ip_whb_rst

. Iw_tmr_done
Iw_tmr_done “

ip_fsm_pu_stat
&!w_pu_ref ip_host_ld_mode&ip_ fsm_any_bank_open) |
(w_ref_req&ip_ fsm_any_bank_open) |

((w_rd_req | w_wr_req) & 'ip_ fsm_row_same)

!w_tmr_done @

W_rd_req&
ip_ fsm_row_same
&ip_ fsm_bank_open

Iw_tmr_done

Iw_tmr_done

w_wr_req&w._
brst_active

lw_rd_req&w_b
rsp’ active

Iw_brst_active

Figure 2.6.3: Sub Module of SDRAM Controller —
Protocol Controller Block Finite State Machine (Adapted from [9])
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State Definitions of Protocol Controller Block

State Name Definition

INIT Initialization

INIT_W Wait for power up delay. The delay needed is dependence on the
SDRAM manufacturer

PRECH Send Precharge command

PRECH W Wait row precharge delay time

AREF Send Auto-Refresh command

AREF W Wait refresh delay time

LMR Send Load Mode command

IDLE O Wait operation to complete

IDLE Wait for new operation

ACT Send Active command

WRITE Send Write command

WRITE_LOOP | Write data

READ Send Read Command

READ W Wait CAS Latency

READ LOOP Read data

BT Send Burst Terminate command

Table 2.6.2: State Definitionsof Protocol Controller Block(Adapted from [9])

Output or Behaviors of Protocol Controller Block Corresponding to the States

State Name

Correspondence Output Behaviors

INIT

op_fsm_cmd<= "CMD_NOP;
r_brst_cnt<=0;

r_pu_cnt<=2;

r_ri_cnt<= 'REF_INTERVAL;
r_tmr_val<= "WAIT_150us;
op_whb_ack<=0;

INIT_W

op_fsm_cmd<= "CMD_NOP;

PRECH

op_fsm_cmd<= 'CMD_PRECH,;
op_fsm_bank_clr<= I(w_ref _req | ip_fsm_pu_stat);
op_fsm_bank_clr_all<= (w_ref _req |ip_fsm_pu_stat |
ip_host_Id_mode);

op_fsm_al0 _cmd <= (w_ref req|ip_fsm_pu_stat |
ip_host_Id_mode);

r_tmr_val<= "TRP_DEF - 13°dl,;

PRECH_W

op_fsm_Id_mode_reg<= ip_host_ld_mode;
op_fsm_cmd<= "CMD_NOP;
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AREF

op_fsm_cmd<= "CMD_AREF,;
r_pu_cnt<= ip_fsm_pu_stat? r_pu_cnt—1:r_pu_cnt;
r_ri_cnt<= "'REF_INTERVAL;
r_tmr_val<=tRFC constant — 1;

AREF_W

op_fsm_cmd<= ‘CMD_NOP;
r_ri_cnt<= "REF_INTERVAL;

LMR

op_fsm_cmd<= '"CMD_LMR;

op_fsm_Imr_sel<=1;
op_fsm_pu_done<=ip_fsm_pu_stat? 1: O;

r_tmr val<= {2°b00, 'TMR DEF} —13°dl;
op_wb_ack<=ip_wb_cyc&ip_wb_stb&ip_host_Id_mode;

IDLE_0O

op_fsm_cmd<= ‘CMD_NOP;

IDLE

op_fsm_cmd<= ‘CMD_NOP;

ACT

op_fsm_cmd<= ‘CMD_ACT;
op_fsm_bank_act<= 1
op_fsm_row_sel<=1,

r_tmr val<= {1’b0,TRCD_DEF} —13’dl;

WRITE

op_fsm_cmd<= "CMD_WR,;
r_brst_cnt<=r_brst val - 1;

r tmr val<= {2°’b00,"TWR _DEF} — 13°dl;
op_fsm_woe<=1;
op_wb_ack<=ip_wb_cyc&ip_wb_stb;

WRITE_LOOP

op_fsm_cmd<= "CMD_NOP;
r_brst_cnt<=r_brst cnt - 1;

r_tmr val<= {2°’b00,"TWR _DEF} — 13°dl;
op_fsm_woe<=1;
op_whb_ack<=ip_wb_cyc&ip_wb_stb;

READ

op_fsm_cmd<= 'CMD_RD;
r_brst_cnt<=r_brst val;
r tmr val<= {1’b0,ip_fsm cfg mode[6:4]} — 13°dI;

READ W

op_fsm_cmd<= "CMD_NOP;

READ_LOOP

op_wb_ack<=ip_wb_cyc&ip wb_stb&r roe;
op_fsm_cmd<= ‘CMD_NOP;
r_brst_cnt<=r_brst_cnt —1;

r roe<=1;
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BT op_fsm_cmd<= "CMD_BT;
r_brst_cnt<=0;

Table 2.6.3: Output or Behaviors of Protocol Controller BlockCorresponding
to the States (Adapted from [9])

With the help of the protocol controller block, all the states and operations need to
be done by SDRAM have been fully specify and been show clearly. With the aid of this
sub module, the SDRAM Controller can initiate a refreshing circuit whenever it is
necessary without receiving any command from the CPU. Due to the complexity of finite
state machine, in order to have a ease way to understand what Protocol Controller do,
process of understanding how the protocol controller had been conducted and as a result,

individual process has been successfully been figured out.
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Initialization Protocol

Ip_whb_rst

/

lw_tmr_done !.

Figures 2.6.4: This protocol follows the recommended SDRAM initialization requirement
given by MICRON.

Iw_tmr_done

w_ref_req |
ip_pu_stat

PRECH_W

Iw_tmr_done
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Keep Bank and Row Open Access Protocol

(ip_host_Id_mode&ip_ fsm_any_bank_open) |
(w_ref_req&ip_ fsm_any_bank_open) |
((w_rd_req | w_wr_req) & lip_ fsm_row_same)

lw_tmr_done

(w_rd_req | w_wr_req)
& lip_ fsm_bank_open

Figure 2.6.5: Keep Bank and Row Open Access Protocol to to achieve fast access cycle
for same row accesses.
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Load Mode Protocol (Initialization Stage)

Ip_whb_rst

lw_tmr_done l/
Iw_tmr_done

AREF @

4\
ip_fsm_pu_stat w_ref req |
&!w_pu_ref _ @

ip_pu_stat

PRECH_W

Vv_tmr_done

Figure 2.6.6: Load Mode Protocol when in the initialization stage.
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Load Mode Protocol (Post Initialization Stage)

(ip_host_Id_mode&ip_ fsm_any_bank_open) |
Ww_ref_req&ip_ fsm_any_bank_open) |
w_rd_req | w_wr_req) & lip_ fsm_row_same)

Iw_tmr_done
ip_host_Id_mode

LMR

ip_host_ld_mode& lip_fsm_any_bank_ope

Figure 2.6.7: Load Mode Protocol when in the post initialization stage.
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Auto Refresh Protocol (Post Initialization Stage)

Iw_tmr_done

N\

w_ref_req |
ip_pu_stat

ip_host_Id_mode&ip_ fsm_any_bank_open) |
Ww_ref req&ip_ fsm_any bank_open) |
_rd_req | w_wr_req) & lip_ fsm_row_same)

PRECH_W

;

w_ref_req&!ip_fsm_
anybank_open

Iw_tmr_done

Figure 2.6.8: Auto Refresh Protocol when in the post initialization stage.
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Read Protocol

Iw_tmr_done
(ip_host_Ild_mode&ip_ fsm_any_bank_open) |
(w_ref_req&ip_ fsm_any_bank_open) |
((w_rd_req | w_wr_req) & !ip_ fsm_row_same)
@ Iw_tmr_done

@ w_rd_req&
ip_ fsm_row_same

&ip_ fsm_bank_open

Iw_tmr_done

'w_rd_req&
w_brst_active

READ_LOOP

w lw_brst_active

Figure 2.6.9: Read Protocol.
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Write Protocol

lw_tmr_done
(ip_host_Id_mode&ip_ fsm_any_bank_open) |
(w_ref_req&ip_ fsm_any_bank_open) |
((w_rd_req | w_wr_req) & lip_ fsm_row_same)
@ Iw_tmr_done

/\
Coe 3

(w_rd_req | w_wr_req)
& lip_ fsm_bank_op

wW_wr_req&
ip_ fsm_row_same
&ip_ fsm_bank_open

WRITE_LOOP

Iw_brst_acjife

lw_rd_req&w_b
rst_active

Figure 2.6.10: Write Protocol.
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2.7: Problem in Existing Memory System

For the existing memory system, they are actually using physical address to access
the information resides in either SDRAM or caches. For this design, it is only capable to

work with a single user program. The problem arises when,

> Run multiple programs simultaneously.
o For example, when UserA start up a process and UserB also start a process,
how are we going to manage both of the memory spaces required by both

of the process to ensure they are not overlaying each others?

» Run a program in which its size is larger than SDRAM.

o For example, the size of main memory used in the memory system is
64MB, so how are going to start a process when the process required more
than 64MB of memory?

*Noted that all the process that is currently running need to be in main

memory.

To solve the problems, we can enlarge our main memory or the programmer needs
to bear the responsibility to divide the program that they had written into few sections and
transfer them into main memory. As the program proceeds, new sections will be added
into main memory by replacing those sections that are currently unused. There is some
disadvantage for both of solution which is

» Cost of enlarging main memory.

» As program become more and more complex, it is impossible for programmers to
handle the division of the program.
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2.8: Introduction of Virtual Memory

To solve the problems discussed in the previous session, the best solution is using
a virtual memory which is a technique that used main memory, also called as physical
memory to act as a “cache” for disk. As what we had been discussed earlier, the access
time is increasing as going down from the memory hierarchy like what is illustrated by
the figure below,

/ SECU‘DdarJ'-
. Storage
— Mhain .
= g2 =1 MMemory (Disk)
£ s O (DRAND
5| °S
Speed (ns): 1s 10s 100s 10,000,000s
(10s ms)
Size (byvtes): 100s Ks Ms Gs

Figure 2.8.1:Access time and size of memory as going down from memory hierarchy.

Physical
Memory

Virtual Address

Disk

Figure 2.8.2: The basic concept of virtual memory.

Previously, as the size of physical memory grows, the access time is becoming
slower and slower. Therefore, cache has been introduced to solve this problem which a
portion of the data in main memory will be stored inside cache. Same theory we apply on
the disk, we use the main memory to act as a cache for disk in order to speed up the
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processing speed. In this design, the address used will be virtual address and it need to go
through address translation before it can be to access memory.

DISK
ADDRESS
TASK 1 | VIRTUAL _— -
-ADDRESS -
™~ < TASK 1 TASK 2
ADDRESS o
TRANSLATION /  ppysicaL TASK 2 R
" ADDRESS TASK 1 Sk
WAIN SWAP
ADDRESS _ PHYSICAL—— MEMORY
ADDRESS
VRTUAL \ TRANSLATION SPACE
S 1A TASK 2
TASK 2 0
TASK 2
S~ DISK

“—___ ADDRESS -

Figure 2.8.3: The overall picture of how virtual memory works.

2.9: Overview of Virtual Address Space

For main memory and caches access, both of them must receive a physical address
in order to proceed. When we adopt the virtual memory, all of the address generated by
the program counter will become a virtual address and translation of address need to be
made in order to access physical memory and cache.

Virtual Address I:> Address Translation I::> Physical Address
Address generated by Address used to access

PC or ALB. caches and physical
memory.
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For virtual memory, the memory space is divided into a few segments as shown in figure

below,

Kernel Space 0xC000.0000

Mapped (kseg2) 1 GB

Unmapped uncached (kseg1) %512 MB

0xA000.0000

Unmapped cached (ksegO) %512 MB

\/ 0x8000.0000

User Space 32-bit user space ;s
kuseg
\/ 0x0000.0000
Figure 2.9.1: The virtual address space based on MIPS.
*Note that,

e kseg2 is mapped and cacheable. It is used for kernel data structures such as page
table.

o ksegl is unmapped and uncacheable. Access to this space doesn’t go through
Translation Lookaside Buffer, TLB. It is used for disk buffer, 1/0 register and
ROM code.

e ksegO is unmapped and cacheable. It is used for kernel instruction and data.

e kuseg is mapped and cacheable. It is used for current user process.
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2.10: Concept of Address Translation

Address Translation is a process which converts virtual address generated by CPU
to physical address. Although the concept at work in virtual memory and in caches are the
same, their different historical roots have led to different terminology in which the virtual
memory block is called as a page while virtual memory miss is called as page fault.

Virtual addresses Physical addresses
. Address translation )
o—. |
— . Pages in
—e— > Main
O Memory
L
=
_/
’,__-
"4
* —
\ J Disk addresses

Pages in Virtual Memory

Figure 2.10.1: Address translation flow between pages in virtual memory and pages in
main memory.

Based on the figure shown, we can actually notice that both virtual memory and
physical memory are broken into pages so that the virtual page can exactly mapped to the
physical page. As we all known, the size of virtual memory is actually larger than size of
main memory. Therefore, it is possible for a page to be absent which means the virtual
page is not mapping to a page inside physical memory, mapped instead on disk. It is
possible for two virtual pages points to the same physical page and with this capability, it
allows two different programs to share data or codes.
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Virtual address

313029 28 27 ssvcacisssscsnicnaaanss 15141312 11 109 8 sesssvisnas 3210

Virtual page number Page offset

29 28 27 rermerrergererrerreres 15141312 111098 evvgroeres 3210

Physical page number Page offset

Physical address

Figure 2.10.2: An example address translation mechanism.
*Note that,

e Virtual Page Number (VPN) is used to index a page table to find out appropriate
Physical Page Number (PPN) for that particular virtual address.

e Page offset is representing the Page Size.
o For example in this case,

Number of bits used as page offset = 12 bits
Page Size = 2712
= 4KB

e By observing the length of Physical Page Number, we can actually compute the
size of main memory they are using which is

o Number of page in main memory = 2718 = 256K physical page
Page Size = 4KB
Size of main memory = 256K x 4KB
= 512MB
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2.11: Introduction of Page Table

For the previous session, we keep on discuss about address translation, a process
to convert virtual address to physical address but what is the procedure for the translation?
In order to map VPN to PPN, page table, which is a table of entries contain the
information required for the translation is used.

Valid Physical Page Number

Figure 2.11.1: The contents of page table entry.
*Note that,

e Valid, is used to show the location of the page reside.
o ‘I’indicate the page reside in physical memory.
o ‘0’ indicate the page reside in disk.
¢ Physical Page Number is a part of physical address to be output to concatenate
with the page offset.

By using page table, we can compute the physical address based on a given virtual
address from kuseg. Below shows the example of how to do address translation using
page table.

}

0x12345678  Virtual Address

0x12345 0Ox678

—

WHICH
PAGE? Address

0523000 0x0732678
swapped

Table entry #12345 ggg%ggg

swapped

WHICH
BYTE?

PAGE TABLE PHYSICAL

(1M ENTRIES MEMORY
@ 4 BYTES PAGE
= 4 MB) (4 KB)

Figure 2.11.2: The usage of page table in address translation.
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Inside the figure, since we are using just only one page table which all called as 1-level
page table, therefore, the size of the page table will be

Number of entries in page table = 2 20
= M

Size of each entry in page table = 4B

Max. Size of page table = 4B x 1M
= 4MB

That is waste of memory in which too much of spaces are wasted to build up a page table.
Therefore, another technique is used to reduce the wastage of memory which called as 2-
level page table. The concept of using 2-level page table is the first level of page table is
will contain the page table entries as below

Valid Page Table Base Register

Figure 2.11.3: The contents of first level page table entry.
*Note that,

e Valid, is used to show the location of the page reside.
o ‘I’indicate the second level page table reside in physical memory.
o ‘0’ indicate the second level page table reside in disk.

e Page Table Base Register is a pointer to the second level page table.

Valid Physical Page Number

Figure 2.11.4: The contents second level page table entry.

*Note that,

e Valid, is used to show the location of the page reside.
o ‘I’ indicate the page reside in physical memory.
o ‘0’ indicate the page reside in disk.
e Physical Page Number is a part of physical address to be output to concatenate
with the page offset.
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By using the 2-level page table technique, we need to segment out the virtual address into,

Virtual Page Number

1% Level Page Table | 2" Level Page Table Page Offset
Index Index
(10 bits) (10 bits) (12 bits)

Figure 2.11.5: Segmentation of virtual address.

*Note that,

e 1% Level Page Table Index is used to locate the address of 2™ level Page Table.
e 2" Level Page Table Index is used to select the appropriate page table entries.

By segmenting the virtual page number into 1% level page table index and 2™ level
page table index, we will be able to locate desired page table entries as below,

0x12345678 Virtual Address

£

0x048 0x345 Ox678

-

WHICH
PAGE WHICH Address
TABLE? 0512000 PAGE? 0523000 Ox0732678

swapped

swapped

0065000 Address 0073000
13,2593”;;;";";{;” swappea 0x0541D14 | swapped
+0x120
Address Address
0x0541000 0x0732000
PAGE PAGE TABLE PHYSICAL
DIRECTORY (1K ENTRIES MEMORY
(1K ENTRIES @ 4 BYTES
@ 4 BYTES = 4KB)
~ 4KB)

Figure 2.11.6: The usage of 2-level page table in address translation.
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As shown in figure, the size of page table has been increase significantly compare with
the 1-level page table. A more detail calculation shown as below

Number of entries in 1* level page table = 2710
= 1K
Number of entries in 2" level page table = 2710
1K
Size of each entry in page table = 4B
Size of each level page table = 4B x 1K
= 4KB
Total size of page table = 4KB + 4KB
= 8KB

Previously if we are using the 1-level page table, we need to allocate 4MB space
for the page table for each of the process. On the other hand, when we are using 2-level
page table, we just need to allocate 8KB space for page table and the page table can be
created based on demand. Besides, by using this mechanism, the size of page table will be
uniform with the page size whether in virtual memory or physical memory.

2.12: Introduction of Translation Lookaside Buffer

For previous sessions, we had discussed how to use a page table to allocate pages
that reside in the physical memory. By using the 2-level page table, although we can save
the memory spaces that required to store the page table, the access time in order to get the
physical pages is becoming longer compare with 1-level page table.

1-level Page Table

i.  Given avirtual address.
ii.  Use VPN to find out the PPN which used to concatenate with the page offset to
form physical address.
iii.  Use physical address get data for physical memory.

2-level Page Table

i.  Given avirtual address.
ii.  Use 1% level page table index to allocate the address of 2™ level page table.
iii.  Use 2" level page table index to find out the PPN which is used to concatenate
with the page offset to form physical address.
iv.  Use physical address to get data from physical memory.

Based on both of the scenario discussed above, we can notice that 2-level page table need
one more access to the physical memory compare with the 1-level page level. As we are
increasing the level of page table, although the size of page table required for each
process will decrease, the number of access to physical memory will increase. This is very
inefficient and therefore, Translation Lookaside Buffer (TLB) is used to solve this
problem.
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The key to improving the performance is to rely the locality of reference to the
page table. When a translation for a virtual page number is used, it will probably be
needed again in the near future. With this concept, TLB has been introduced which is a
special cache for translation that whole part of the page table entries in order to speed up
the address translation. In order to enable a faster access table, TLB usually only contain
very less entries which is around 48-128 entries and due to this, TLB usually be
implemented as a fully associative cache which all of the entries inside TLB will be
compare in one shot. This will result in a faster searching speed but it may require a lot of
hardware support in order to build it.

One-way set associative
(direct mapped)

Block Tag Data

0
Two-way set associative
1
2 Set Tag Data Tag Data
9 0
4 1
5 2
6 3
7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

NN N N N N I

Figure 2.12.1:Example of how an eight-block cache configure as direct mapped, two-way
set associative, four-way set associative and fully associative cache.
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Block# 01234567

Data

Tag

Search

Direct mapped

2

!

Set #

Data

Tag

Search

Set associative

0o 1 2

1
2

i

Data

Tag

Fully associative

;
2

e T

Figure 2.12.2: Example of how a searching works on eight-block cache based on direct

mapped, two-way set associative and fully associative configuration.

Now, for us to start implementing TLB, the first thing we need to do is identify the
contents of each entry in TLB. For a basic TLB, we must have VPN, PPN and also some
control bits used to indicate the status of each entry such as, valid bit, dirty bit and so on
based on the design needs.

Virtual Page Number

(20 bits)

Control Bits

Physical Page Number
(20 bits)

Figure 2.12.3: The contents TLB entry.
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!

0x12345678  vsiptyal Address

LOW 12
BITS OF
ADDRESS

0x12345 OXB78  \HICH T

’ BT R 0x05493678
—— PAGE FRAME (,HI A5
DiGE PAGENAME ~ CONTROL  ADDRESS e OF
e (20 BITS) BITS (20 BITS) ATRESS
T 0x23471 0x00374000
i 0x12345 0x05493000 J
ENTRIES|  Ox5F873 0x09875000
SEARCHALL 48 —
FOR A MATCH

Figure 2.12.4: Usage of TLB in address translation by using 48 entries and fully
associative TLB.

*Note that,

e VPN is included inside as part of the TLB entry contents which is different from
the page table entry.

e VPN doesn’t segment into 1™ page table index and 2" page table index. This is
because when we are using TLB, it is containing the information in 2™ level page
table only.

e Control bits can be any bits which used to represent the status of each entry based
on the design needs.

o Example of control bits will be

= Valid Bit, which used to represent the location of the page whether
in physical memory or disk.

= Dirty bit, which used to represent whether the entry has been
modified or not. Usually used for write back policy in cache.

= Ref bit, which is a LRU status where the entry with the smallest ref
will be replace when the CPU going to bring in a new page from
disk or physical memory.
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2.13: Virtually Addressed and Physically Addressed Cache

The placement of TLB can be either in series with caches or parallel with caches.
Both of the design have their pros and con. When we set the TLB in front of the cache,
this will mean that all of the address need to be translates into physical address before
access into cache. By using this design, the processing speed will be reduced because we
need to access to TLB first then only can access cache which means we need to times two
the access time to a cache. Although the processing speed will be reduce, this method will
be much simpler compare with a virtually addressed cache which will be discussed later.

PA
Memory

Figure 2.13.1: The design of physically addressed cache.

*Note that all of the virtual addresses have to be translated by TLB before accessing
cache or main memory.

There is another design of the placement of TLB which is the TLB works parallel
with the caches. This will reduce the processing time because the address translation and
the data searching can be done in parallel. Although this method can enhance the
efficiency of the processor, the design is more complex compare with physically address
cache because the lower 12 bits, page offset is used to search the data in cache and the tag
inside cache entries is output from the cache to compare with the PFN output from TLB
to determine whether it is a cache hit or miss. Problem arises when we have two cache
entries with the same page offset, which will cause an aliasing effect. Therefore,
additional logic needs to be added to eliminate this problem.

VA
cru L PM
| TLB I}

Figure 2.13.2:The design of virtually addressed cache.

*Note that the virtual address output from CPU is directly input to cache and TLB.
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Chapter 3 - Methodology& Development tools

3.1: Methodology

A top down design approach was adopted as the main design methodology in this project.
In this project, more focuses were put onto the functionality of the design. In the earlier
phase of the project, a study was done on the performance analysis and the behavioral
correctness of the previous memory system. However, from the analysis, we have found
out the need to build a new Memory System Bus Interface Unitin order to integrate the
current memory system to the basic CPU.This requires us to implement the system by

using top down methodology.

In the top down methodology, the first step involves the gathering of the requirements of
the SDRAM and SDRAM Controller. The requirements gathered will be analyzed and
studied so that a specification can be created. This specification describes the
input/outputs, registers, functions, and the constraints of the design. The requirements can
be obtained from users, market demands and datasheets. In this project, the requirements
are mainly defined from the SDRAM datasheets [12].

The reason for this is to ensure that the integration of memory system to32 bits RISC
pipelined processor can be successfully done. Besides, studies were done on the ways to
maximize the utilization of the 4 banks in the SDRAM. These studies were elaborated

Chapter 2 literature review.
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Capturing reguirements

!

Specification

|
+"' F Y
RTL Design

L
RTL Functional Verification

}

Meet
Reguirements?

no

Synthesis

Figure 3.1.1: The top down approach adopted in this project

After capturing the requirements of the design, a specification is build. This specification
specifies the functions of all the modules, data flows between input pins, output pins,
registers and such. Basically, it is a detailed description of the design in Register Transfer

Level (RTL). Logic is described in terms of data flow and algorithms.

From the requirements, RTL codes are written. These codes are then simulated to verify
their functionality up to clock cycle accuracy. Sub-blocks that don’t perform as specified

are to be debugged and have their RTL codes fixed the requirements are met.

After the main task of defining the functionality is completed, the design will synthesize
into gate-level representation. Design synthesis is outside the scope of this project thus

will not be pursued.
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3.2: Development Tools

ModelSim XE 3 — Starter 6.4b will be used to code the RTL model of the design. Besides,
it will also be used to carry out the functional and timing simulation. ModelSim provides
an user friendly debug environments. Graphical waveform to display the simulation
results is integrated into ModelSim.

The starter edition placed a 10000 lines limit to the code. Based on the scope of this
project, it is expected that this limit will not be reached. Besides, it is free thus being

chosen as the main tool for this project.
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Chapter 4: Handling Virtual Memory

4.1: Address Translation to Instruction Cache without TLB

Virtual Address

Page Fault Exception

Get Physical Page
Number from 2" level

Virtual Page Number
1% Level Page Table Index | 2" Level Page Table Index Page Offset
(10 hits) (10 hits) (12 hits)
N [ |
| |
= | |
. | |
AN Get Page Table Base I L———1
*o| Register from 1* level : :
Page Table. | |
L - [
[ I
l |
| I
No Yes : :
| I
[ I
v A A 4 [
I
I
|
[
[

Page Table.
v
Try Read Data from Physical
Instruction Cache. Address
Stall ('ZPU while No
Reading Block.
Yes
Deliver Data to CPU.
Figure 4.1.1:Address Translation to Instruction Cache without TLB.
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4.2: Address Translation to Data Cache without TLB

Virtual Address

Virtual Page Number
1% Level Page Table Index | 2" Level Page Table Index Page Offset
(10 bits) (10 bits) (12 bits)
AN [ |
AR I [
.. Get Page Table Base I I
\‘ Register from 1* level : b———=
Page Table. |
e e
I
|
|
No Yes
A\ 4 A 4 *

Page Fault Exception

Get Physical Page
Number from 2" level

Try Read Data from
Instruction Cache.

Stall CPU while No
Reading Block.

Writeable

Page Table.
4 Physical

Address

\ 4

Yes Write
; Protection
Deliver Data to CPU. Try Write Data to Data Exception
Cache.
Stall CPU while No
Reading Block.
lYes
Write Data in Cache and
Update Dirty Bits.
Figure 4.2.1:Address Translation to Data Cache without TLB.
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4.3: Address Translation to Instruction Cache with TLB

Virtual Address

Virtual Page Number
1% Level Page Table Index | 2" Level Page Table Index Page Offset
(10 bits) (10 bits) (12 bits)
\\ _/
__________ \\/’—__________
TLB Access

¢ Physical
Try Read Data from
Instruction Cache.

A 4

TLB Miss Exception

Stall CPU while
Reading Block.

No

Yes

Deliver Data to CPU.

Figure 4.3.1: Address Translation to Instruction Cache with TLB.
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4.4: Address Translation to Instruction Cache with TLB

Virtual Address

Virtual Page Number
1% Level Page Table Index | 2" Level Page Table Index Page Offset
(10 bits) (10 bits) (12 bits)
\\ _/
__________ \\/’—__________
TLB Access

\ 4

TLB Miss Exception

Try Read Data from
Instruction Cache.

Stall CPU while No
Reading Block.

Yes

Deliver Data to CPU.

Stall CPU while No
Reading Block.

Physical
Address

Writeable

\ 4

Figure 4.4.1: Address Translation to Data Cache with TLB.
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Protection
Try Write Data to Data Exception
Cache.
lYes
Write Data in Cache and
Update Dirty Bits.
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Chapter 5: Memory System Specification

5.1: Features of Memory System

RISC32 with Integrated Main Memory

SDRAM

Yes, 64MB

Instruction TLB

Yes, 64 entries

Data TLB Yes, 64 entries
Instruction Cache 2MB
Data Cache 2MB
Data Bus Width 32bits
Instruction Width 32bits

Table 5.1.1: The features of recent RISC32.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Page 50



Main Memory Integration | 2013

5.2: Naming Convention

Module

Instantiation

Pin

Abbreviation:

— [Ivl]_[mod. name]

— [Ivl]_[abbr. mod. name]

— [Ivl]_[abbr. mod. name]_[Type]_[pin name]

— [Ivl]_[abbr. mod. name]_[Type]_|[stage]_[pin name]

Description Case Available Remark
Ivl level lower c : Chip
u: Unit
b : Block
mod. name Module lower all any
Name
abbr. mod. | Abbreviated | lower all any maximum 3 characters
name module
name
Type Pin type lower 0 : output
i input
r: register
W : wire
f- :function
stage Stage name | lower all if, id, ex,
mem, wb
pin name Pin name lower all any Several word separate by

[T

Table 5.2.1: Naming convention.
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5.3: Memory Map

Segment Address Purpose
kseg2 — 1GB OXFFFF FFFF Kernel module,
Page Table allocated here
0xC000 0000
ksegl — 512MB OxBFFF FFFF Boot Rom
I/0 Register (if below 512MB)
0xA000 0000
kseg0 — 512MB OX9FFF FFFF Direct view of memory to 512MB
kernel code and data.
Exception and Page Table Base
Register allocated here.
0x8000 0000
kuseg — 2GB OX7FFF FFFF Stack Segment starts from the ending
address and expand down.
Heap Segment starts from the starting
address and expand top.
0x1000 8000
0x1000 7FFF Data segmentand Dynamic library
code.
0x1000 0000
OX09FFF FFFF Code Segment, where the main
program stored.
0x0040 0000
0x003F FFFF Reserved
0x0000 0000

Table 5.3.1:The memory map used in this project.
*Note that,

e Stack Segment
o Use for storing automatic variables, which are variables that allocated
and de-allocated automatically when program flow.
e Heap Segment
o Use for dynamic memory allocation such as malloc(), realloc() and free().
e Data Segment
o Use for storing global or static variables that initialize by programmer.

e Code Segment
o Use for storing codes of main program or main program instructions.
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5.4: Memory Unit Interface

u_mem_sys i_sdrcntr_ack
u_mem_sys_i_sdrcntr_data[31:0]
u_mem_sys i pc[31:0]
u_mem_sys i_dmem_addr[31:0]
u_mem_sys_i_store_data[31:0]
u_mem_sys_i_mem_re
u_mem_sys i_mem_we
u_mem_sys i test insert_data en
u_mem_sys _i_test data[31:0]
u_mem_sys i_test addr[31:0]
u_mem_sys i_cp0_entryLo [31:0]
u_mem_sys _i_cp0_entryHi[31:0]
u_mem_sys _i_cp0_random [31:0]
u_mem_sys _i_cp0_status [31:0]
u_mem_sys i_cp0_bAddr [31:0]
u_mem_sys_i_clk

u_mem_sys i_reset

u_mem_sys

u_mem_sys_o_instruction [31:0]
u_mem_sys o loaded data [31:0]
u_mem_sys o_immu_is_stall
u_mem_sys_o_dmmu_is_stall
u_mem_sys_o_mem_is_stall
u_mem_sys o_sdrctnr_host_Id_mode
u_mem_sys o_sdrctnr_stb
u_mem_sys_o_sdrctnr_cyc
u_mem_sys_o_sdrctnr_we
u_mem_sys o_sdrctnr_sel [3:0]
u_mem_sys_o_sdrctnr_addr [31:0]
u_mem_sys_o_sdrctnr_data [31:0]
u_mem_sys o _cpO_is_mtc0
u_mem_sys_o_cpO0_is_eret
u_mem_sys o _cp0_reg_data [31:0]
u_mem_sys o0_cpO_reg_address [4:0]
u_mem_sys_o_cp0_tlb_page_fault
u_mem_sys _o_cpO_tlb_miss

u_mem_sys o_cp0_tlb_addr_excep

Figure 5.4.1:The block diagram of memory system.
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1/0O Description

Memory System’s Input Pin Description

Pin Name: Source - Destination: Registered:
u_mem_sys_i_sdrcntr_ack SDRAM CNTR-> Memory | No
System
Pin Function:
Acknowledge signal to indicate read or write to SDRAM is done.
Pin Name: Source - Destination: Registered:
u_mem_sys_i_sdrcntr_data [31:0] SDRAM CNTR-> Memory | No
System
Pin Function:
32 bit data read from SDRAM.
Pin Name: Source - Destination: Registered:
u_mem_sys_i_pc [31:0] Data Path Unit->Memory No
System
Pin Function:
32 bits virtual address from program counter.
Pin Name: Source - Destination: Registered:
u_mem_sys_i_dmem_addr [31:0] Data Path Unit->Memory No
System
Pin Function:
32 bits virtual address from ALB.
Pin Name: Source - Destination: Registered:
u_mem_sys_i_store_data [31:0] Data Path Unit->Memory No
System
Pin Function:
32 bits data to be store in data cache or SDRAM.
Pin Name: Source - Destination: Registered:
mem_sys_i_mem_re Data Path Unit> Memory | No
System
Pin Function:
Data cache read control signal.
0: Read Disable
1: Read Enable
Pin Name: Source - Destination: Registered:
u_mem_sys_i_mem_we Data Path Unit> Memory | No
System
Pin Function:
Data cache write control signal.
0: Write Disable
1: Write Enable
Pin Name: Source - Destination: Registered:
u_mem_sys_i_test_insert_data_en External> Memory System | No
Pin Function:
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Control signal to allow data input into SDRAM manually.
0: Data input Disable.
1: Data input Enable.

Pin Name: Source - Destination: Registered:
u_mem_sys_i_test data [31:0] External> Memory System | No
Pin Function:

32 bits TEST data to be write into SDRAM.

Pin Name: Source - Destination: Registered:

u_mem_sys i test addr [31:0] SDRAM CNTR-> Memory | No
System

Pin Function:

32 bits TEST address to indicate location to store TEST data.

Pin Name: Source - Destination: Registered:
u_mem_sys _i_cpO_entryLo [31:0] CPO ->Memory System No

Pin Function:
32 bits EntryLo register from CPO.

Pin Name: Source - Destination: Registered:
u_mem_sys _i_cpO_entryHi[31:0] CP0O ->Memory System No

Pin Function:
32 bits EntryHi register from CPO.

Pin Name: Source - Destination: Registered:
u_mem_sys _i_cp0_random [31:0] CP0O - Memory System No

Pin Function:
32 bits Random register from CPO.

Pin Name: Source - Destination: Registered:
u_mem_sys _i_cp0_status [31:0] CP0O > Memory System No
Pin Function:

32 bits Status register from CPO.

Pin Name: Source - Destination: Registered:
u_mem_sys _i_cp0_bAddr [31:0] CP0O > Memory System No

Pin Function:
32 bits bAddr register from CPO.
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Pin Name: Source - Destination: Registered:
u_mem_sys_i_clk System Clock->Memory No
System
Pin Function:
System clock signal.
Pin Name: Source - Destination: Registered:
u_mem_sys_i_reset System Reset->Memory No
System
Pin Function:
System reset signal.
Table 5.4.2: Memory System’s Input Pin Description
Memory System’s Output Pin Description
Pin Name: Source - Destination: Registered:
u_mem_sys_o_instruction [31:0] Memory System-> Data No
Path Unit
Pin Function:
32 bits instruction read from instruction cache.
Pin Source - Destination: Registered:
Name:u_mem_sys_o_loaded_data Memory System-> Data No
[31:0] Path Unit
Pin Function:
32 bit data read from data cache.
Pin Name: Source - Destination: Registered:
u_mem_sys_o_immu_is_stall Memory System-> Control | No
Unit
Pin Function:
Stall signal for CPU when ITLB miss.
0: Stall Disable
1: Stall Enable
Pin Name: Source - Destination: Registered:
u_mem_sys_o_dmmu_is_stall Memory System—> Control | No
Unit
Pin Function:
Stall signal for CPU when DTLB miss.
0: Stall Disable
1: Stall Enable
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Pin Name: Source - Destination: Registered:
u_mem_sys_o_mem_is_stall Memory System-> Control | No
Unit
Pin Function:
Stall signal for CPU when icache and dcache miss.
0: Stall Disable
1: Stall Enable
Pin Name: Source > Destination: Registered:
u_mem_sys_o_sdrctnr_host_Id_mode | Memory System > No
SDRAM CNTR
Pin Function:

Asserted to load a new mode into the SDRAM.

Pin Name: Source - Destination: Registered:

u_mem_sys_o_sdrctnr_stb Memory System - No
SDRAM CNTR

Pin Function:

Asserted to indicate the SDRAM controller is selected.

Pin Name: Source - Destination: Registered:

u_mem_sys_o_sdrctnr_cyc Memory System > No
SDRAM CNTR

Pin Function:

Asserted to indicate valid bus cycle is in progress.

Pin Name: Source - Destination: Registered:

u_mem_sys_o_sdrctnr_we Memory System - Yes
SDRAM CNTR

Pin Function:

Asserted to indicate write cycle, deasserted to indicate read cycle.

Pin Name: Source - Destination: Registered:

u_mem_sys_o_sdrctnr_sel [3:0] Memory System - No
SDRAM CNTR

Pin Function:

Used to indicate where valid data is placed on the input data line during WRITE
cycle and where it should present on the output data line during READ cycle.
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Pin Name: Source - Destination: Registered:

u_mem_sys_o_sdrctnr_addr [31:0] Memory System - No
SDRAM CNTR

Pin Function:

32-bit addresses to SDRAM Controller for read or write.

Pin Name: Source - Destination: Registered:

u_mem_sys_o_sdrctnr_data [31:0] Memory System - No
SDRAM CNTR

Pin Function:

32-bit data to be written into SDRAM.

Pin Name: Source - Destination: Registered:

u_mem_sys_o_cp0_is_mtcO Memory System - CPO No

Pin Function:

Write enable signal to CPO.

0: Write Disable.

1: Write Enable.

Pin Name: Source > Destination: Registered:

u_mem_sys_o_cp0_is_eret Memory System >CP0 | Yes

Pin Function:

Restart instruction signal for CPO.

0: Normal operation.

1: Restart exception instruction.

Pin Name: Source - Destination: Registered:

u_mem_sys_o_cp0_reg_data [31:0] Memory System ->CP0O | No

Pin Function:

32 bits data to be written into CPO register.

Pin Name: Source - Destination: Registered:

u_mem_sys o _cp0_reg_address [4:0] Memory System ->CPO | No

Pin Function:

5 bits address to indicate which register of CPO should be update.

Pin Name: Source -> Destination: Registered:

u_mem_sys_o_cp0_tlb_page fault Memory System »>CP0O | No

Pin Function:

Page fault signal for CPO to update CAUSE register.
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Pin Name: Source > Destination: Registered:
u_mem_sys_o_cpO0_tlb_miss Memory System ->CP0O | No

Pin Function:

Status signal to indicate tlb miss.

Pin Name: Source - Destination: Registered:
u_mem_sys_o_cp0_tlb_addr_excep Memory System ->CPO | No

Pin Function:

Status signal to indicate address exception occur in TLB.

Ttable 5.4.3: Memory System’s Output Pin Description

5.5: Memory System Operating Procedure

1. Start the system

2. Porting appropriate instruction, data, first level page table, second level page table

into SDRAM.

3. Reset the system for at least 2 clocks

4. While release the reset, the system will automatically run the program inside

instruction cache

5. Observe the waveform from the development tools.
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Chapter 6: Architecture Specification

6.1: Unit Partition of Memory System

ip_host_ld mode
ip_wh_sth
ip_wh_cye
ip_wh =
ip_wh ==l
ip_wh_addr
ip_wh_data
op_wh_ack
wh_data
ip_wh_elk
ip_wh_r=t

BEEEEEE
I

o_sdr_ cntr

7:5 o_dp cpl_daca

o_dp_sxcep_harndles_adds

—cur
intr

i dp epe
i_exe imez
i_eu_ovezflow

u_cpl_i_sy=_clock
u_cpl_i, [E—

o cpl

C1 1
sy=_clock sys rescet

Figure 6.1.1: Unit partition of memory system.
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6.2 Design hierarchy

Chip Partitioning at System Unit Partitioning at Block and Functional Block
Level Architecture Level Partitioning at RTL Level
(Micro-Architecture Level)

c_risc32_full u_data_path_full b_reg_file

b_alb_32

b_mult_32

b_branch_pred

u_ctrl_path_full b_alb_ctrl

b_iag_ctrl

b_main_ctrl

b_fwrd

b_itl_ctrl

u_mem_sys b_cache (for instruction)

b_cache (for data)

b_tlb (for instruction)

b_tlb (for data)

b_mmu (for instruction)

b_mmu (for data)

u_cp0 b_cp0_dc
b_cp0_regfile
Structural description Structural Behavioral description
description/Behavioral
description

Table 6.1.1: Formation of a design hierarchy for Full RISC32 microprocessor through
top down design methodology

*Note that this design is provided as a mindset for future improvement.

*Since the memory system is not ready yet to connect with current RISC32, the following
will be discussing what had been done in this project.
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c_risc32_full

b_iac(b_iag_ctrl)

u_cp(u_ctrl_path_full)

b_ich(b_itl_ctrl)

b_mc(b_main_ctrl

b_alc(b_alb_ctrl)

b_fwr(b_fwrd)

u_dp(u_data_path_full)

b_rf(b_reg_file)| | b_alb(b_alu_32)

b_bpb(b_bran_pred

b_mul(b_mult_32)

u_mem(u_memory)

b_ic(b_cache)

b_dc(b_cache)

b_immu(b_mmu

b_dmmu(b_mmu)

b_itlb(b_tlb)

b_dtlb(b_tlb)

b _cp0_dc (b_cp0_dc)

u_cpO(u_cp0)

b cpO regfile (b _cp0 redfile)

Phvsical Memorv

u sdram controller

b sdc fsm

b sdc mc

b_obrt_top_obrt_unit

b sdc addr mux

b sdc sdram if

b sdc dp buf

u sdram

Figure 6.2.1: Full RISC32’s Architecture and Micro-Architecture Partitioning
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6.3: Memory Unit

*Refer to chapter 4, Memory System Specification.

6.4: CPO unit
u_cp0

u_cp0_i_mtcO u_cp0_o_cp0_reg_data[31:0]
u_cpO_i_is_eret u_cp0_o_excep_handler_address[31:0]
u_cp0_i_current_pc_2_EPC[31:0] u_cp0_o_entryLo_reg_data[31:0]
u_cpO_i_intr_vector[5:0] u_cp0_o_entryHi_reg_data[31:0]
u_cp0_i_overflow_signal u_cp0_o_random_reg_data[31:0]
u_cp0_i_reg_data[31:0] u_cp0_o_baddr_reg_data[31:0]
u_cpO_i_reg_address[4:0] u_cp0_o_status_reg_data[31:0]
u_cp0_i_tlb_miss u_cp0_o_is_intr
u_cpO_i_tlb_addr_excep u_cp0_o_is_overflow
u_cp0_i_page fault
u_cp0_i_sys clock
u_cp0_reg_i_sys_reset

Figure 6.4.1: Block diagram for co-processor 0 which used to process and store
exception/interrupt information.
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Overview of CP0’s register used in Memory System

1. Random Register
31 30292827 26252423222120191817 16151413 121110 9 §8 7 6 5 4 3 2 1 0

0 SLOT 0

Figure 6.4.2: Random register structure.

*Note that,

e SLOT - 6 bits value used to choose which TLB entries to be overwrite when TLB
miss occurs. This value is increment every clock cycle.

2. Status Reqister
31 3029 28 27 26 2524 232221 201918171615 1413121110 9 8 7 6 5 4 3 2 1 0O

dcba 0 BTEMZSITHHHHHHFF 0 KUolEoKUplEpKUclEe

Figure 6.4.3: Statusregister structure.
*Note that,

o abcdTEMZSI-Not related in this project. Set to 0.

e B -Bootflag.

e H - Hardware interrupt enable bit, lines 0-5.

o F - Software interrupt enable bit, lines 0-1.

e KU -1 if user mode, O if kernel mode.

o |E-1ifinterrupts enabled, O if disabled. See below regarding o/p/c.
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3. EntryLo Register
31 30 29 28 27 26 25 24 232221 201918171615 14 123121110 %9 8 7 6 5 4 3 2 1 0
PPAGE NDVG 0

Figure 6.4.4: EntryLo register structure.
*Note that,

e PPAGE - Physical page number for TLB entry.

¢ N - Noncached; if set, accesses via TLB entry will be uncached.

e D - Dirty; if set, write accesses via TLB entry will be permitted; otherwise
exception occurs.

e V-Valid; if set, accesses via TLB entry will be permitted; otherwise exception
occurs.

e G - Global; if set, the ASID field will be ignored when matching TLB entry.

4. EntryHi Reqister

31 30 29 28 27 26 25 24 23 22 21 20191817 16 151413121110 9 8 7 6 5 4 3 2 1 0
VPAGE ASID 0

Figure 6.4.5: EntryHi register structure.
*Note that,

e VPAGE - virtual page number for TLB entry.
e ASID - address space ID for TLB entry.

5. Baddr Register

31 30 29 28 27 26 2524 232221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 0
BADVADDR

Figure 6.4.6: Baddrregister structure.

*Note that Baddr register is used to store PC value where exception occurs.
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1/0O Description

CPO0’s Input Pin Description

Pin Name: Source > Registered:
u_cp0_i_mtcO Destination:ControlPath No
Unit - Co-Processor 0
Unit
Pin Function:
1 bit flag indicate instruction mtcO.
0: Not mtcO instruction
1: mtcO instruction
Pin Name: Source 2> Registered:
u_cp0_i_is_eret Destination:Control No
PathUnit-> Co-Processor 0
Unit
Pin Function:
1 bit flag indicate instruction eret.
0: not eret instruction
1: eret instruction
Pin Name: Source = Registered:
u_cp0_i_current_pc_2 EPC [31:0] Destination:Datapath No
Unit-> Co-Processor 0 Unit
Pin Function:
32 bit of current Program Counter (PC) value.
Pin Name: Source = Registered:
u_cp0_i_intr_vector [5:0] Destination:Externaldevice | No
—> Co-Processor 0 Unit
Pin Function:
Each bit of this input is indicating interrupt signal from external device.
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Pin Name: Source 2> Registered:
u_cp0_i_overflow_signal Destination:Datapath No
Unit-> Co-Processor 0 Unit

Pin Function:

1 bit flag indicate overflow happen.
0: no overflow happen

1: overflow happened

Pin Name: Source 2> Registered:
u_cp0_i_reg_data [31:0] Destination:Datapath No
Unit-> Co-Processor 0 Unit

Pin Function:
32 bit data to be store in CPO register file.

Pin Name: Source 2> Registered:
u_cp0_i_reg_address [4:0] Destination:Datapath No
Unit-> Co-Processor 0 Unit

Pin Function:
Address indicates CPO register file location.

Pin Name: Source - Destination: Registered:
u_cp0_i_tlb_miss Memory Unit 2 Co- No
Processor 0 Unit

Pin Function:

1 bit flag to indicate TLB miss.
0: No TLB miss occurs.

1: TLB miss occurs.

Pin Name: Source = Destination: Registered:
u_cp0_i_tlb_addr_excep Memory Unit = Co- No
Processor 0 Unit

Pin Function:

1 bit flag to indicate TLB address exception.
0: No TLB address exception occurs.

1: TLB address exception occurs.
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Pin Name: Source > Destination: Registered:
u_cp0_i_page_fault Memory Unit - Co- No
Processor 0 Unit
Pin Function:
1 bit flag to indicate page fault.
0: No page fault occurs.
1: Page fault occurs.
Pin Name: Source - Destination: Registered:
u_cp0_i_sys clock Micro-processor - Co- No
Processor 0 Unit
Pin Function:
Synchronous System clock.
Pin Name: Source - Destination: Registered:
u_cp0_reg_i_sys_reset Micro-processor > Co- No
Processor 0 Unit
Pin Function:
Global reset signal.
Table 6.4.1: CP0’s Input Pin Description
CP0’s Output Pin Description
Pin Name: Source - Destination: Registered:
u_cp0_o_cp0_reg_data [31:0] Co-processor 0 No
Unit-> Datapath Unit
Pin Function:
32 bit Co-processor 0 registers value to be store in main Register File.
Pin Name: Source - Destination: Registered:
u_cp0_o_excep_handler_address Co-processor 0 No
[31:0] Unit->Datapath Unit
Pin Function:
32 bit Program Counter (PC) address.
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Pin Name: Source - Destination: Registered:

u_cp0_o_entryLo_reg_data [31:0] | Co-processor 0 Unit-> No
Memory Unit

Pin Function:

32 bits EntryLo register data.

Pin Name: Source = Destination: Registered:

u_cp0_o_entryHi_reg_data Co-processor 0 Unit-> No

[31:0] Memory Unit

Pin Function:

32 bits EntryHi register data.

Pin Name: Source - Destination: Registered:

u_cp0_o_random_reg_data Co-processor 0 Unit-> No

[31:0] Memory Unit

Pin Function:

32 bits Random Register Data.

Pin Name: Source => Destination: Registered:

u_cp0_o_baddr_reg_data[31:0] Co-processor 0 Unit=> No
Memory Unit

Pin Function:

32 bits Baddr register data.

Pin Name: Source = Destination: Registered:

u_cp0_o_status_reg_data Co-processor 0 Unit-> No

[31:0] Memory Unit

Pin Function:

32 bits Status register data.
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Pin Name: Source - Destination: Registered:
u_cp0_o_is_intr Co-processor 0 No
Unit->ControlPath Unit
Pin Function:
1 bit signal to Control Unit to indicate interrupt happen.
0: No interrupt
1: Interrupt happened
Pin Name: Source > Destination: Registered:
u_cp0_o_is_overflow Co-processor 0 No
Unit-> ControlPath Unit
Pin Function:
1 bit signal to Control Unit to indicate overflow happen.
0: No Overflow
1: Overflow happened
Table 6.4.2: CPO’s Output Pin Description
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6.5: SDRAM Controller

u_sdram_controller

ip_host_ld_mode op_sdr_cs_n
ip_whb_stb op_sdr_ras_n
ip_wb_cyc op_sdr_cas_n
ip_wb_we op_sdr_we_n
ip_wb_sel[3:0] op_sdr_dgm[3:0]
ip_wb_addr[31:0] op_sdr_ba[1:0]
ip_wb_data[31:0] op_sdr_addr[13:0]
op_wb_ack i0_sdr_dq[31:0]

op_whb_data[31:0]
ip_wb_clk

ip_whb_rst

Figure 6.5.1: Block diagram for SDRAM controller.[Modified from [9]]

*Note that for the previous design of SDRAM Controller is based on 16MB of SDRAM
provided by Micron. In order to communicate with a 64MB SDRAM, some modification
had been made.
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1/0O Description

SDRAM Controller’s Input Pin Description

Pin Name: Source - Destination: Registered:

ip_host_ld_mode Memory Unit > SDRAM No
Controller

Pin Function:

Asserted to load a new mode into the SDRAM.

Pin Name: Source - Destination: Registered:

ip_wb_stb Memory Unit > SDRAM No
Controller

Pin Function:

Asserted to indicate the SDRAM controller is selected.

Pin Name: Source - Destination: Registered:

ip_wb_cyc Memory Unit > SDRAM No
Controller

Pin Function:

Asserted to indicate valid bus cycle is in progress.

Pin Name: Source - Destination: Registered:

ip_wb_we Memory Unit > SDRAM No
Controller

Pin Function:

Asserted to indicate that the current cycle is READ. Deasserted to indicate current

cycle is WRITE.

Pin Name: Source - Destination: Registered:

ip_whb_sel[3:0] Memory Unit > SDRAM No
Controller

Pin Function:

Used to indicate where valid data is placed on the input data line (ip_wb_dat) during
WRITE cycle and where it should present on the output data line (op_whb_dat) during

READ cycle.
Pin Name: Source - Destination: Memory | Registered:
ip_wb_addr[31:0] Unit > SDRAM Controller No

Pin Function:

Used to pass the memory address from the host.
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Pin Name: Source - Destination: Registered:

ip_wb_data[31:0] Memory Unit > SDRAM No
Controller

Pin Function:

Used to pass WRITE data from the host.

Pin Name: Source - Destination: Memory | Registered:

ip_wb_clk Unit > SDRAM Controller No

Pin Function:

Clock signal to synchronize to the system.

Pin Name: Source - Destination: System Registered:

ip_whb_rst Clock-> SDRAM Controller No

Pin Function:

Synchronous reset to reinitialize the system.

Table 6.5.1: SDRAM Controller’s Input Pin Description

SDRAM Controller’s Qutput Pin Description

Pin Name: Source - Destination: Registered:

op_wb_ack SDRAM Controller > No
Memory Unit

Pin Function:

Asserted to indicate that the current READ or WRITE operation is successful.

Pin Name: Source - Destination: Registered:

_ SDRAM Controller > No

op_wb_data[31:0] Memory Unit

Pin Function:

Used to output READ data from the SDRAM.

Pin Name: Source - Destination: Registered:

op_sdr_cs_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM chip select.
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Pin Name: Source - Destination: Registered:

op_sdr_ras_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM row address select.

Pin Name: Source - Destination: Registered:

op_sdr_cas_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM column address select.

Pin Name: Source - Destination: Registered:

op_sdr_we_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM write enable.

Pin Name: Source - Destination: Registered:

op_sdr_dgm[3:0] SDRAM Controller > No
SDRAM

Pin Function:

Used to select which bits of the data line (io_sdr_dq) to be masked.

Pin Name: Source - Destination: Registered:

op_sdr_ba[1:0] SDRAM Controller > No
SDRAM

Pin Function:

Bank Address output to SDRAM.

Pin Name: Source - Destination: Registered:

op_sdr_addr[13:0] SDRAM Controller 2> No
SDRAM

Pin Function:

14 bits address output to the SDRAM.

Pin Name: Source - Destination: Registered:

io_sdr_dq[31:0] SDRAM Controller > No

SDRAM

Pin Function:

Bidirectional data line to receive READ data or send WRITE data.

Table 6.5.2: SDRAM Controller’s Output Pin Description
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6.6: 64 MB SDRAM

ba[1:0]

dq[31:0]

cs_n
we n
cas_n
ras_n
clk

u_sdram

adr[13:0]

dgm[3:0]

Figure 6.6.1: Block diagram for SDRAM. .[Modified from [9]]

1/O Description

SDRAM’s Input Pin Description

Pin Name: Source - Destination: Registered:

op_sdr_cs_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM chip select.

Pin Name: Source - Destination: Registered:

op_sdr_ras_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM row address select.

Pin Name: Source - Destination: Registered:

op_sdr_cas_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM column address select.
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Pin Name: Source - Destination: Registered:

op_sdr_we_n SDRAM Controller > No
SDRAM

Pin Function:

SDRAM write enable.

Pin Name: Source - Destination: Registered:

op_sdr_dgm[3:0] SDRAM Controller > No
SDRAM

Pin Function:

Used to select which bits of the data line (io_sdr_dq) to be masked.

Pin Name: Source - Destination: Registered:

op_sdr_ba[1:0] SDRAM Controller > No
SDRAM

Pin Function:

Bank Address output to SDRAM.

Pin Name: Source - Destination: Registered:

op_sdr_addr[13:0] SDRAM Controller 2> No
SDRAM

Pin Function:

14 bits address output to the SDRAM.

Pin Name: Source - Destination: Registered:

io_sdr_dq[31:0] SDRAM Controller > No
SDRAM

Pin Function:

Bidirectional data line to receive READ data or send WRITE data.

Table 6.6.1: SDRAM’s Input Pin Description
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Chapter 7: Micro-Architecture Specification
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Figure 7.1.1: Partition of Memory System
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7.1 Translation Lookaside Buffer (TLB)

b_tlb
b_tlb_i_cpO_entryLo [31:0] b_tlb_o_c_paddr[31:0]
b_tlb_i_cp0_random[31:0] b tlb o tlb_miss
b tlb_i_cp0_entryHi[31:0] b_tlb_o_addr_excep

b_tlb_i_cp0_status[31:0]
b_tlb_i_cp0_bAddr[31:0]
b_tlb_i_cpu_vaddr[31:0]
b_tlb_i_mmu_tlbwr
b_tlb_i_sys clock

b tlb_ i _sys reset

Figure 7.1.2:Block diagram for TLB.

Translation Lookaside Buffer is just like a cache which holds some of the page
table entries which can be reside either in physical memory or disk. Its responsibility
including translate virtual address given by CPU into a physical address and ensure each
user process does not able to access to kernel segment. In this project, assume that
instruction TLB and data TLB is the same.

Feature:

1. Consist of 64 entries.
2. Fully associative.
3. Capable to handle TLB Miss together with MMU (Memory Management Unit).
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Address Translation Scenario

Based on what we had discussed in previous chapter, we know that the address
translation is important for us to get the physical address which used to either write or
read data. Figure 5.3.1 and 5.4.1 give a clearer picture which told us that the cache miss
and TLB miss are the independent event that a cache miss only can occur when there is a
TLB hit. On the other way is means that the data must be present inside the main memory
only we can access to cache. To further discuss about this, the table below provide us a
simplest way to examine the relationship between cache and TLB.

TLB | Page Table | Cache | Events Possible? If so, under what circumstance?

hit hit miss | Possible, although the page table is never really check
after TLB hits.

miss hit hit | Possible, although TLB misses, entry found in page
table; after retry, data found in cache.

miss hit miss | Possible, although TLB misses, entry found in page
table; after retry, data misses in cache.

miss miss miss | Possible, TLB misses follow by page fault, data must
misses in cache.

hit hit hit | Possible, although the page table is never really check
after TLB hits.
hit miss miss | Impossible, TLB must misses if page is not present in
main memory.
hit miss hit Impossible, TLB must misses if page is not present in
main memory.
miss miss hit Impossible, data must misses in cache if page is not

present in main memory.

Table 7.1.1: Possible combinations of events in the TLB, virtual memory system and
cache.
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1/0O Description

TLB’s Input Pin Description

Pin Name: Source - Destination: Registered:
b_tlb_i_cpO_entryLo [31:0] CP0O > TLB No
Pin Function:

32 bits EntryLo register from CPO.

Pin Name: Source - Destination: Registered:
b_tlb_i_cp0_random [31:0] CP0O > TLB No
Pin Function:

32 bits Random register from CPO.

Pin Name: Source - Destination: Registered:
b_tlb_i_cpO_entryHi [31:0] CPO > TLB No
Pin Function:

32 bits EntryHi register from CPO.

Pin Name: Source - Destination: Registered:
b_tlb_i _cp0_status [31:0] CP0O > TLB No
Pin Function:

32 bits Status register from CPO.

Pin Name: Source - Destination: Registered:
b_tlb_i_cpO_bAddr [31:0] CP0O > TLB No
Pin Function:

32 bits Baddr register from CPO.

Pin Name: Source - Destination: Registered:
b_tlb_i_cpu_vaddr [31:0] CPU > TLB No
Pin Function:

32 bits address virtual address from CPU.
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Pin Name: Source - Destination: Registered:
b_tlb_i_mmu_tlowr MMU - TLB No
Pin Function:
1 bit flag to enable write to TLB entry.
0: Write Disable.
1: Write Enable.
Pin Name: Source - Destination: Registered:
b_tlb_i_sys clock System Clock - TLB No
Pin Function:
System clock signal
Pin Name: Source - Destination: Registered:
b_tlb_i_sys reset System Reset > TLB No
Pin Function:
System reset signal
Table 7.1.2: TLB’s Input Pin Description
TLB’s Output Pin Description
Pin Name: Source - Destination: Registered:
b tlb_o c paddr[31:0] TLB - Cache No
Pin Function:
32 bits physical address output to cache.
Pin Name: b_tlb_o_tlb_miss Source - Destination: Registered:
TLB->CPO & MMU No

Pin Function:

0: No TLB miss.
1: TLB miss.

1 bit flag to indicate TLB miss.
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Pin Name:
b tlb_o addr_excep

Source = Destination:
TLB-=>CPO

Registered:
No

Pin Function:

1: TLB address exception.

1 bit flag to indicate TLB address exception.
0: No TLB address exception.

Table 7.1.3: TLB’s Output Pin Description

Functionality

1. Compare with Status register to determine TLB address exception.

2. Able to translation virtual address to physical address based on the TLB entries.
3. Send out miss signal when there are no entries matched.
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7.2 Memory Management Unit (MMU)

u_mmu

u_mmu_o_tlb_page fault
u_mmu_i_sdrentr_ack
u_mmu_o_tlb_write_enable
u_mmu_i_sdrentr_data[31:0]
u_mmu_o_cp0_rwen
u_mmu_i_vaddr[31:0]
u_mmu_o_cp0_is_mtcO
u_mmu_i_tlb_miss
u_mmu_o_cpO_is_eret
u_mmu_i_sys_clock
u_mmu_o_cp0_reg_address[4:0]
u_mmu_i_sys_reset
u_mmu_o_cp0_reg_data[31:0]

u_mmu_o_cpu_stall
u_mmu_o_sdrctnr_host_Id_mode
u_mmu_o_sdrctnr_stb
u_mmu_o_sdrctnr_cyc
u_mmu_o_sdrctnr_we
u_mmu_o_sdrctnr_sel[3:0]
u_mmu_o_sdrctnr_addr[31:0]

u_mmu_o_sdrctnr_data[31:0]

Figure 7.2.1: Block diagram for MMU.

Memory Management Unit is responsible to handle the page table walk through
when TLB Miss occurs. In this project, two-level page table is used. Therefore, for each
time TLB miss and invoke MMU to handle Page Table Entries (PTE) transfer, physical
memory has to be access twice to get the appropriate PTE.
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1/0O Description

MMU’s Input Pin Description

Pin Name:
u_mmu_i_sdrcntr_ack

Source - Destination:
SDRAM
Controller>MMU

Registered:
No

Pin Function:

Acknowledge signal from SDRAM Controller asserted to indicate whether completion

of read or write operation.

Pin Name: Source - Destination: Registered:
u_mmu_i_sdrentr_data[31:0] SDRAM No
Controller>MMU
Pin Function:
32 bits read data from SDRAM Controller.
Pin Name: Source - Destination: Registered:
u_mmu_i_vaddr[31:0] Data Path Unit>MMU No
Pin Function:
32 bits virtual address from data path unit.
Pin Name: Source - Destination: Registered:
u_mmu_i_tlb_miss TLB->MMU No
Pin Function:
TLB miss signal from TLB.
Pin Name: Source -> Destination: Registered:
u_mmu_i_sys_clock System Clock>MMU No
Pin Function:
System Clock Signal.
Pin Name: Source - Destination: Registered:
u_mmu_i_sys_reset System Reset->MMU No
Pin Function:
System Reset Signal.
Table 7.2.1: MMU'’s Input Pin Description
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MMU’s Output Pin Description

Pin Name: Source - Destination: Registered:
u_mmu_o_tlb_page fault MMU-> CPO No

Pin Function:

1 bit signal asserted to indicate page fault happen.

Pin Name: Source - Destination: Registered:
u_mmu_o_tlb_write_enable MMU-> TLB No

Pin Function:

1 bit signal asserted toenable write in TLB.

Pin Name: Source > Destination: Registered:
u_mmu_o_cp0_rwen MMU-> Multiplexer No

Pin Function:

1 bit signal to select which data should go to CP0O between IMMU and DMMU.

Pin Name: Source - Destination: Registered:
u_mmu_o_cp0_is_mtc0 MMU-> CPO No

Pin Function:

Instruction signal to insert data into CPO register file.

Pin Name: Source - Destination: Registered:
u_mmu_o_cp0_is_eret MMU-> CPO No

Pin Function:

1 bit signal to indicate end of TLB miss by sending the signal to CP0O and CPO will
restart the instruction by loading address store in EPC register.

Pin Name:
u_mmu_o_cp0_reg_address[4:
0]

Source = Destination:
MMU-> CPO

Registered:
No

Pin Function:

5 bits register address to be update.
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Pin Name: Source - Destination: Registered:
u_mmu_o_cp0_reg_data[31: MMU-> CPO No

0]

Pin Function:

32 bits register data to be update in CPO register file.

Pin Name: Source - Destination: Registered:
u_mmu_o_cpu_stall MMU-> Control Unit No
Pin Function:

Stall signal to control unit when TLB miss.

Pin Name: Source > Destination: Registered:
u_mmu_o_sdrctnr_host_Id_ MMU-> SDRAM No

mode Controller

Pin Function:

Asserted to load a new mode into the SDRAM.

Pin Name: Source - Destination: Registered:

u_mmu_o_sdrctnr_sth MMU-> SDRAM No
Controller

Pin Function:

Asserted to indicate the SDRAM controller is selected.

Pin Name: Source - Destination: Registered:

u_mmu_o_sdrctnr_cyc MMU-> SDRAM No
Controller

Pin Function:

Asserted to indicate valid bus cycle is in progress.

Pin Name: Source - Destination: Registered:
u_mmu_o_sdrctnr_we MMU-> SDRAM No

Controller
Pin Function:
Asserted to indicate that the current cycle is READ. Deasserted to indicate current
cycle is WRITE.
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Pin Name:
u_mmu_o_sdrctnr_sel[3:0

]

Source = Destination:
MMU-> SDRAM
Controller

Registered:
No

Pin Function:

Used to indicate where valid data is placed on the input data line (ip_wb_dat) during
WRITE cycle and where it should present on the output data line (op_whb_dat) during

32 bits data to be write into SDRAM.

READ cycle.
Pin Name: Source - Destination: Registered:
u_mmu_o_sdrctnr_add MMU-> SDRAM No
r[31:0] Controller
Pin Function:
32 bits address to read or write from SDRAM.
Pin Name: Source - Destination: Registered:
u_mmu_o_sdrctnr_dat MMU-> SDRAM No
a[31:0] Controller
Pin Function:

Table 7.2.2: MMU'’s Output Pin Description
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Memory Management Unit (MMU) Protocol

u_mmu i tlb miss

INIT . .
u_mmu i tlb miss .
\ B lu_mmu_i_sdrentr_ack
READ_ﬁ

u_mmu_i_sw

CHECEK VALID

K /\iu_mmu_i_s drentr_ack
No

READ PTE
u_mmu i sdrontr ack
PAGE FAULT

UPDATE ENTRYLO

Figure 7.2.2: MMU protocol.
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Output for each state in MMU protocol

State Output

INIT u mmu o tlb page fault <= 1'b0;
u mmu o tlb write enable <= 1'b0;
u mmu o cpl0 rwen <= 1'b0;
u mmu o cpO is eret <= 1'b0;
u mmu o cpO is mtcO <= 1'b0;
u mmu o cpO reg address <= 5'bz;
u mmu o cpO reg data <= 32'bz;
u mmu o cpu stall <= 1'b0;
u mmu o sdrctnr host 1d mode <= 1'b0;
u mmu o sdrctnr stb <= 1'b0;
u mmu_ o sdrctnr cyc <= 1'b0;
u mmu_ o sdrctnr we <= 1'b0;
u mmu_o sdrctnr sel <= 4'b0;
u mmu_ o sdrctnr addr <= 32'bz;
u mmu o sdrctnr data <= 32'bz;

READ PTBR u mmu o tlb page fault <= 1'b0;
u mmu o tlb write enable <= 1'b0;
u mmu_ o cpO rwen <= 1'b0;
u mmu o cpO is eret <= 1'b0;
u mmu o cpO is mtcO <= 1'b0;
u mmu o cpO reg address <= 5'bz;
u mmu o cp0 reg data <= 32'bz;
u mmu o cpu stall <= 1'bl;
u mmu o sdrctnr host 1d mode <= 1'b0;
u mmu o sdrctnr stb <= 1'bl;
u mmu o sdrctnr cyc <= 1'bl;
u mmu o sdrctnr we <= 1'b0;

u mmu o sdrctnr sel
u_mmu_o sdrctnr addr

<= 4'bl1l11;

{6'00,14" b00 OOOO 0000 0000,u mmu i vaddr[31:22],2'

b0};
u mmu o sdrctnr data <= 32'bz;
CHECK VALID u mmu o tlb page fault <= 1'b0;
u mmu o tlb write enable <= 1'b0;
u mmu o cpl0 rwen <= 1'b0;
u mmu o cpO is eret <= 1'b0;
u mmu o cpO is mtcO <= 1'b0;
u mmu o cpO reg address <= 5'bz;
u mmu o cpO reg data <= 32'bz;
u mmu o cpu stall <= 1'bl;
u mmu_ o sdrctnr host 1d mode <= 1'b0;
u mmu_ o sdrctnr stb <= 1'b0;
u mmu_o sdrctnr cyc <= 1'b0;
u mmu_ o sdrctnr we <= 1'b0;
u mmu o sdrctnr sel <= 4'b0;
u mmu o sdrctnr addr <= 32'bz;
u mmu o sdrctnr data <= 32'bz;
PAGE FAULT u mmu o tlb page fault <= 1'bl;
u mmu o tlb write enable <= 1'b0;
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u mmu o cpO rwen <= 1'b0;
u mmu o cpO is eret <= 1'b0;
u mmu o cpO0 is mtcO <= 1'b0;
u mmu o cpO reg address <= 5'bz;
u mmu o cp0O reg data <= 32'bz;
u mmu o cpu stall <= 1'bl;
u mmu o sdrctnr host 1d mode <= 1'b0;
u mmu o sdrctnr stb <= 1'b0;
u mmu o sdrctnr cyc <= 1'b0;
u mmu_ o sdrctnr we <= 1'b0;
u mmu o sdrctnr sel <= 4'b0;
u mmu_ o sdrctnr addr <= 32'bz;
u mmu_ o sdrctnr data <= 32'bz;
READ PTE u mmu o tlb page fault <= 1'b0;
u mmu o tlb write enable <= 1'b0;
u mmu o cpO rwen <= 1'b0;
u mmu o cpO is eret <= 1'b0;
u mmu o cpO is mtcO <= 1'b0;
u mmu o cpO reg address <= 5'bz;
u mmu o cp0O reg data <= 32'bz;
u mmu o cpu stall <= 1'bl;
u mmu o sdrctnr host 1d mode <= 1'b0;
u mmu o sdrctnr stb <= 1'bl;
u mmu_ o sdrctnr cyc <= 1'bl;
u mmu o sdrctnr we <= 1'b0;

u mmu o sdrctnr sel
u mmu o sdrctnr addr

<= 4'bll1l1l;

{6'"b0,u mmu r buffer[13:0],u mmu i vaddr[21:12],2'b

0}s

u mmu o sdrctnr data <= 32'bz;
UPDATE ENTRYL | u mmu o tlb page fault <= 1'b0;
©) u mmu o tlb write enable <= 1'b0;

u mmu o cpO rwen <= 1'bl;

u mmu o cpO is eret <= 1'b0;

u mmu o cpO is mtcO <= 1'bl;

u mmu o cpO reg address
u mmu o cpO reg data

{u mmu r buffer[19:0],u mmu r buf

<= 5'b00010;

fer[23:20]1,8'b0};

u mmu o cpu stall <= 1'bl;
u mmu_ o sdrctnr host 1d mode <= 1'b0;
u mmu_ o sdrctnr stb <= 1'b0;
u mmu_ o sdrctnr cyc <= 1'b0;
u mmu_ o sdrctnr we <= 1'b0;
u mmu_ o sdrctnr sel <= 4'b0;
u mmu_ o sdrctnr addr <= 32'bz;
u mmu o sdrctnr data <= 32'bz;
UPDATE TLB u mmu o tlb page fault <= 1'b0;
u mmu o tlb write enable <= 1'bl;
u mmu o cpO rwen <= 1'b0;
u mmu o cpO is eret <= 1'b0;
u mmu o cpO is mtcO <= 1'b0;
u mmu o cpO reg address <= 5'b0;
u mmu o cp0 reg data <= 32'bz;
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u mmu o cpu stall <= 1'bl;
u mmu o sdrctnr host 1d mode <= 1'b0;
u mmu o sdrctnr stb <= 1'b0;
u mmu_ o sdrctnr cyc <= 1'b0;
u mmu_ o sdrctnr we <= 1'b0;
u mmu o sdrctnr sel <= 4'b0;
u mmu o sdrctnr addr <= 32'bz;
u mmu o sdrctnr data <= 32'bz;
RESTART INS u mmu o tlb page fault <= 1'b0;
u mmu o tlb write enable <= 1'b0;
u mmu o cpO rwen <= 1'bl;
u mmu o cpO is eret <= 1'bl;
u mmu o cpO0 is mtcO <= 1'b0;
u mmu o cpO reg address <= 5'b0;
u mmu o cpO reg data <= 32'bz;
u mmu o cpu_ stall <= 1'bl;
u mmu o sdrctnr host 1d mode <= 1'b0;
u mmu o sdrctnr stb <= 1'b0;
u mmu o sdrctnr cyc <= 1'b0;
u mmu o sdrctnr we <= 1'b0;
u mmu o sdrctnr sel <= 4'b0;
u mmu_ o sdrctnr addr <= 32'bz;
u mmu o sdrctnr data <= 32'bz;

Table 7.2.3: Output for each state in MMU protocol
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Chapter 8: Verification Specification

8.1: Test Plan of Memory Unit

Test Case Expected Result

Load Page Table and Page o
to SDRAM.

Observe from SDRAM read/write transcript to
ensure the data had been successfully written into
SDRAM.

Instruction TLB Miss e Instruction MMU read First Level Page Table Entry.
e Instruction MMU read Second Level Page Table
Enrty.
e IMMU stall signal deasserted.
Data TLB Miss e Data MMU read First Level Page Table Entry.

Data MMU read Second Level Page Table Enrty.
DMMU stall signal deasserted.

Instruction Cache Miss °

Instruction Cache sends address to read from
SDRAM.

SDRAM response by sending back data and
acknowledge signal.

Repeat Step 1 and 2 for 8 times.

Instruction output from instruction cache.

Data Cache Miss .

Data Cache sends address to read from SDRAM.
SDRAM response by sending back data and
acknowledge signal.

Repeat Step 1 and 2 for 8 times.

Data output from data cache.

Table 8.1.1

: Test Plan of Memory Unit
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8.1.1: Test Procedure
1. System reset.

2. Porting appropriate data to CPO registers.
3. Insert data into SDRAM by using the test signal, u_mem_sys_test_insert_data_en,
u_mem_sys_i_test data and u_mem_sys i test_addr.
e Atleast 3 data needed to get the memory system run.
i. First level Page Table.
ii. Second level Page Table.
Iii. 8 sequential data to be read by cache when cache misses.

4. System reset and let the memory system run itself.
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8.2: Simulation Result for Memory System

8.2.1: Load Page Table and Page to SDRAM

$+4494334333000

$49443343334000

Stbumen_seedth roumen_ses i clk
Stbumen_swedth 1w menn_ses @ reset
Abumem_swedw_op_wb_ack
Aboumem_syedwedr_dg
Abowmem_syadth 1w mem_sys i test addr

Abow mem_syedth 1w mem_sys i test data
Athumen_swsdtho rowmeni_sys i test_inzert_data_en
Stheu_mern_spsth_w_umem_sys_o_sdrotnr_data
Ao memn_spaAth w0 menn_syps_o_sdretnr_addr
Stbumenn_swesth we o mern_sys_o_sdictnr_host_ld_mode
Stbumen_sweth weumern_sps_o_sdictir_stb
Abumem_swedth we o mem_sps_o_sdictnr_cec

Abu menm_seedth we o mem_sps_o_sdictnr_we
Abowmem_syadthowe o mem_sys_o_sdictor_sel

0
1
0

Zzzzzzze
00000aoa
00000aoa
0

MM HHHRR
MM HHHRR

0
b
%
%
f

00... 100000004

00.... ME0003Hf

ISO003HE

00000004

Figure 8.2.1: System Reset, follow by loading First Level Page Table Entry into SDRAM.

At umern_spsth_r u_menn_zws i clk

b men_sysdth 1o memspe i reset

Abu mem_syedw op wb ack

Abou mem_syedw zdr_dg

Abou mem_seeAb o mem_sye i_test_addr

Atbu mem_syedth o mem_sye i_test_data
Athwmenn_sypsAth o mem_svs i_test_inzert_data_en
Sthou_mern_sysdth wou_mem_sps o_sdrctnr_data
Sthou_mern_sysdth wou_men_sps o_sdrcthr_addr
Atbw memn_syedth we - mem_sye o sdrctar_host_ld_mode
b menm_syedthowe - mem_sye o sdrotnr_sth

Abu mem_syedthowe - mem_sye o sdrotnr_cpc

b men_syedtbowe - mem_sye o sdrctnr_we
Stbeumem_syedthw_u mem_spe o sdrctir_zel

1]
1]
1
B0003ftf
00000004
20003t

1

20003t
00000004

1]
1
1
1
f

L L L L L L L
[ 1

! [

00... {00000004

00.... JB0003H

|

{0003

100000004

Figure 8.2.2: After 19 clock cycles, First Level Page Table Entry successfully loaded into SDRAM.
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@ Mtb_u_mem_sys/tb__u_mem_sys_i_ck 0 . - r-—r i —r 7 I 7 I I I

0 Mb_u_mern_sya/tb_r_u_mern_sys_i_reset 1]

& M mem_sys/w_op_wh_ack 1 T
B Ab_u mem_spsfu_sdr_dy 80003k (BO0F0Z345 (FOfOFOFD__}
B b mem_sps/th r_u_mem_sps i test_addr 00000004 [T 102345560
B Abou mem_sps/th r_u_mem_sps | test_data B0003Hf BOf0Z2345 {IOFOARD

0 Mtb_u_mern_sye/tb_r_u_mem_sys_i_test_inzert_data_en 1
M Atb_u_memn_spsfthoweumem_sys_o_sdrctrr_data BO00:3x 2002345 TN ]

M Atb_u_memn_spsfthow umem_sys_o_sdrctr_addr 00ooonoa (03K008 102345550

* Mb_u_mem_sys/th_w_u_mem_sys_o_sdrctrr_host_Id_mode |0

@ Mb_u_mem_sys/th_w_u_mem_sys_o_sdrctrr_sth 1

@ M_u_mem_sys/th_w_u_mem_sys_o_sdretnr_cyc 1

0 Mb_u_mern_syz/tb_w_u_mer_sys_o_sdrctnr_we 1
M Atb_u_memn_spsfthow_u_mem_sys_o_sdrctir_sel f f

Figure 8.2.3: Loading Second Level Page Table Entry into SDRAM.

& Atb_u_mem_sys/th_r_u_mem_sps_i o - rrrrrrr LIt

‘ Mb_u_mem_sysAthor_u_mem_sys_i_reset 1]

& Ab_u_mem_spsiw_op_wh_ack 1 —r1r - [ ] [ ] 1
B /tb_u_mem _sys/u_sch_dy fOKaOHD T (FOfOFO oz FoE ) (FOROROE
B Atb_u_mem_sys/th r_u_mem sys | test_addr 02345660 02345560 J0Z345664 02345665 0234566 02345670
B th_u_mem_sys/th_r_u_mem_sps | test_data FOFCFOFD FOF CEC) JEOFOFOFT JFOFOrZ | T NIE] Y

Q Mbumem_spsdthru_mer_svs itest insert_data_en 1
B Ab_u_mem_sus Mt w_u_mer_sys_o_sdrctr_data O OFOFD FOFOFOA JIOMMH JOIOz NN JIOFOE
B4 Ab_u_mem_susMtb_w_u_mem_sys_o_sdrctr_addr 02345660 02345560 02345664 J0Z3456E8 J0Z3456EC 02345670

' Abu_mem_spsAbow u_mem_sys_o_sdretnr_host_ld_mode |0

0 Mb_u_mem_sysAth_w_u_mem_sys_o_sdrctnr_sth 1

* Mb_u_mem_spsdth_w_u_mem_sys_o_sdrctni_cyc 1

Q Mb_u_mem_sysAth_w_u_mem_sys_ o_sdrctnr_we 1
M Ab_u_mem_sysAth wou_mem_sys_o_sdrctn_sel f f

Figure 8.2.4: Loading Pages into SDRAM (Part 1).
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@ tb_u_mem_sys/tb_s_u_mem_sys_{_ck 0 ||_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—u
@ Ab_u_mer_sps/tb_r_u_mem_sps_i_resst ] ]
& /th_u_merm_sys/w_op_wh_ack 1 ﬂ_l—\—l—l—,—‘ 1
B b u_mem_sysiw_sdi_dq FOROFORS Orarag FOFCFOS (FOROFOfE (fOROf
B4 Ah_u_mem_sps/th 1 u_mem_sys_i_test_addr 02345670 2345670 102345674 02345678 0234567
B4 Ab_u_mem_susAb_r_u_mem_sus_i_test_data fOFDFOF (] {0 TNTTATEAES JEOFOMOF7
0 b u_mem_sys/th_r_u_mem_sys_i_test_inzert_data_en 1
B4 Ab_u_mem_sys/tb_w_u_mem_sys_o_sdrchrr_data FOFDIFOF OFOFd VFOFOFOES VFOFOFOES JEOFROT )
M Ab_umenn_sys/th_w_u_mem_sps o_sdictnr_addr 02345670 2345671 102345674 02345678 0234567 } {
Q Mbu_rmern_sys/tb_w_u_mem_sys_osdrctnr_host_ld_mode |0
0 b u_mem_sys/th_w_u_mem_sys_o_sdrctn_sth 1
f b u_mem_sys/tb_w_u_mem_sys_o_sdicthi_cyc 1
f b u_rmern_sysdth_w_u_mem_sys_osdroth_we 1 ]
B4 Ab_u_men_sysAb_wu_mem_sps o sdrotrr_sed f il by
Figure 8.2.5: Loading Pages into SDRAM (Part 2) follow by System Reset to initiate the system.
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8.2.2: ITLB MISS

& Abu_mem_sys/th_r_u_mem_sps_i_clk 1 11
@ Ab_u_mem_sps/th_ 1_u_merm_sys i reset I} | [ 1

B Abou_mem_sysn_sdr_addr )| {00000, 00> (00008 10} 00T {02201 0007 {0000j 00T )

M b u_mem_syziw_op_wb_dat BO003K 80,
Q‘ Aboumem_svedw_op_wh_ack 1

B4 Ab_u_mem_sys/w_sdr_dq BO003K 130
Q‘ Abou mem_syadth wou mem_sys o_mem iz stal 1
& Abu_mem_sys/th_w_u_mem_sys_o_immu_is_stal 1
Q‘ Abou mem_sysdtb woumem_sys o_dmmu_iz_stal 1

B Atb_u_mem_sps/tb_r_u_mern_sys_i_store_data 00000000 00000000

M b mem_systhorou_mem_ses | po 00402673 [ 00402578

M b u_mem_sya/th_w u_mem_sys_o_instruction 00000000 00000000

M b u_mem_sys/th_r_u_mem_sys_i_dmem_addr 00402678 00000000 0402673
Q‘ Aboumem_syedth rumem_sys | mem_re 1
@ Ahou_mem_sys/th 1_u_mem_sys_i_mem_we 0

M Mbu mem_sysfth owou mem_sys o loaded data (0000000 00000000

B Ab_u_mem_sys/tb_w_u_mem_sys_o_sdrctn_data ZzzzzEzz B

M Mbu mem_syeth owou mem_sys o sdrctnr_addr (0000004 E (0000... J00J00004 ;
@ Abu_mem_sys/th_ w_u_mem_sys_o_sdrcter_host_ld_made |0
f Aheu_mem_spsdth wou_mem_sps_o sdrothr_sth 1 [ L L
Q Abou_mem_sysdtb_ww_mem_sys_o_sdrctnr_cye 1 [ L L
" Abu_mem_sysdth_w_w_mem_sys_o_sdictnr_we 0 B !

B b u_mem_systb_w_u_mem_sps_o_sdretrr_sed f f TG ]

Figure 8.2.6: ITLB miss occurs, IMMU take over to fetch First Level Page Table Entry from SDRAM. (Take 19 clock cycles)
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‘ .-"tb:u:mem:si,ls.-"tb:r_u__me_m_sys_i_c:Ik u]
‘ Atb_u merm_syeAtbho o u mem_svs i reset u]
- Atb o mem_sesde sdr_addr ooonz DIZID'I 00=z [O00Z 3FF__ 000z
B9 Atb_umem_spsde_op_wb_dat Zzzzz=zzz 20... | =INTA
4 Atb o mem_sysfw_op wb ack a
B4 Atbu mem_spsdesdrdg 2002345 20, E0_F
4 Ab oy mem_svedtb w o mem_swes o mem_is_stall 1
f Atb_u merm_sysAtbho v u mem_svs o i is_stall 1
f Atb_u e sysAStbowe o mem_svs o dmmo_isstall 1
M Atb_u mermn_=psStbor o mem_sws | store data aoooooon [RIRIniWIa]n]n]}
M Atb_u merm_=ysStbhor o mem_svs | po a0402678 O04ZE7S
M Atb_u mern_sysSthw o mensws o instruction aoooooon [RIRIniWIa]n]n]}
” Atb_u rern_=psStbor o menn_svs | driernaddr a0402678 Q040267
4 Atb_u_mem_swsdtb_r_u_memn_sws_i_mem_re 1
4 Atbou mem_sysAb_rumern_sys i_memn_we a
B4 Ab u mem_spsdtb w o mem_sws o loaded data uinlulwiululnln} [INN]i/IIN]u]n]
B Ab oy mem_spedtb o w o mem_sws o sdrctnr_data Zzzzzzzz
B Atbumem_sysdthow umem_sws o sdrotnr_addr O3FFF00S [EEEY (OSFFFO0S H
f Atb_u mern_sysstbowe_u e svs o sdrckor_host 1d mode u]
‘ Atb_u e sysStbowe o e svs o sdrckor_ztb 1 | -
‘ Atb_u mermn_syeAtbhowu mem_sve o sdrckhr_coc 1 | -
‘ Atb_u mermn_syeAStbow o mensws o sdrckar_we u]
B Atbu mem_spsdth w o memn_swus o sdrotnn_sel f F ] IF (]
Figure 8.2.7: IMMU take over to fetch Second Level Page Table Entry from SDRAM. (Take 12 clock cycles)
B4 Ab_u_mem_sps/dutu_mem/b_itb/b_th | cp0_béddr |00402675 Q0402678
M M u_mern_syws/dut/u_memdb_ith/b_th_i_cpl_entrHi | 00000340 00000840
M Mb_u_mem_sys/dut/u_mem/b_itlb/b_tb_i_cp0_entryLo| 02345600 02345600
g Mo u_mem_sys/dut/u_mem/b_itb/b_tih_i_cp0_randam J0000Z400 0002500 {00002600 NIIERN] 10000Z800 10000300 10000a00
B /tb_u_mem sps/dub/u_mem/b_Mb/b_th i_cp0_status |00000002 [ 00000000
M Ab_u_menn_sps/dutiu_memsb_tb/b_th | cpu_vaddr | 00402673 00402678
& /th_u_mem_sys/dutdy_memdb_itbeh_th i mmu_ther |1 ]
& /th_u_mem_sys/dutiy_memdb_ith/h_th i sps_clack 1 || | [ |
0 Atb_u_mem_sys/dut/u_memsb_ilb/b Hb_i_sps reset |0
B Atb_u mem sys/dutiu_mem/b_tb/b_th o c_paddr  |00000000 Q0000000 (02345675
& /tb_u_mem_sys/dut/y_mem/b_itb/b_th_o_tb_miss |1 |
B /b u mem sps/dut/u_memb_HbAb_entp[37)0_t. . | Kmmmsmamm PR R (210040202345
Figure 8.2.8: Updating ITLB Entry.
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tb_u_mem_spsth_1_u_mem_sys_i clk 1 L L L L e e
Ath_u_mem_syeAth 1w memn_sys_ireset ]

Mbumem_spsdw_sdr_addr 0001 0007 » 00zz (0002 [3ff {0002  00zz oo
Ab_u_merm_swsAw_op_whb_dat zzzzzeez = B0F..
Ath_u_mem_svzdw_op_wh_ack ] I:‘\ 1]

A umem_sypeAw_sdr_dg zzzzzzzz 0. B0

b u_mem_sysAth w u_mem_sys o_mem_is_stall 1

Jtb_ e b =1 L Il

&
'
¢
oa¢
‘
oa-¢
'
Ll
f Atbu_mem_sysAthwu_mem_sys o_dmmu_is_stall 1
” Abu mem_spsfth rou_mem_sps_ i store_data 00000000 [NTA TR ATAT]
B Ab_u_merm_spsdtb_r_u_mer_sys_i_po 00402678 00402678
B Ab_u_merm_spsdth_w_u_mem_sps_o_instruction nooooooo 00000000 Jo000m000
“ Abu mem_sweth rou_mem_sve_idmer_addr 00402678 00402672
f b u_mem_sysAth 1w memn_sys_ i mem_re 1
' Atbou_mem_sysdth 1w menn_swz_irmer_we u]
M Abw_mem_spsfth w W mem_sys o_loaded_data 00o0aooo 00000000
” Ab u mem_spsdth owoumem_sps o sdrctnr_data 2EEEIEEE
B9 Ab_u_merm_spsdtb_w_u_mem_sps_o_sdrctrr_addr 00000004 00000004 H [D3FFFO03 : (DO0DD00H
f b u_mem_sysAth w u_mem_sys o sdrotir_host_Ild_mode |0
Q Atbou_mem_sysdth w u_mem_sys o_sdrothr_stb 1 LT
f Atb_u_mem_sysAtbhw u_mem_sys o_sdrotir_cyc 1 [
' Abou_mem_sysdtb w u_mem_sys o_sdrothr_we ]
B9 Ab_u_merm_systh_w_u_memm_sps_o_sdrctn_sel f f o 10 i

Figure 8.2.9: ITLB HIT.
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8.2.3: DTLB MISS

@ Ab_u_mem_sys/th_r_u_mem_sps_i_chk 0 I I A o
"‘ Mbou_mem_systb_r o mem_zyz i _reset 0
B Aboumen_spedw sd addr 0om 0002 00zz (0007 {D00mD00T  00zz [00
B¢ b u_mem_sysdw_op_wh_dat zzzzIzEZ =T 80}
& Ab_u_mem_sysdw_op_wh_ack 1] [ ] ]
B¢ b u_mem_sysdw sdi_dq BO003F H (B0_F
"‘ Mb_u_mem_sveth_w_u_mern_sys_o_mern_is_stall 1
o thou_mem_spsth wumem_syz_o_immu_is_st: _I
"‘ Ab_u_mem_sysdtb_w_u_mem_sys_a_dmmu_is_stall 1
B b mem_spslth_r umem_syws | store_data Q0000000 QOo0oo000
l}-“‘ Abu_mem_sveth_r_u_men_svs_i_po 00402673 0402675
B Abou mem_spethowu_mem_sbs o instction Q0000000 QOo0oo000 000000
l}-“‘ b u_mem_svetb_r_u_mer_svs_i_dmem_addr 00402673 0402675
Q‘ b mem_svsth_r_u_men_svs_i_mem_re 1
"‘ Ab_u_mem_sysdth_r u_mem_svs_i|men_we 0
M Mb_u_mem_svsth_w_u_mem_syz_o_loaded_data 0a00aoa0 Q0000000
M Abou_mem_systb_w_u_mem_syz o_sdrctor_data ZzzzEzzz
M b _mem_sveth_w_u_mem_sys_o_sdrctnr_addr nao0aon4 ET (00000004 ; (O3feF0
«" Mbou mem_sys/tb wou mem_syz: o sdrctir_host_ld_mode |0
"‘ Mb_u_mem_svath_w_u_merm_syz:_o_sdrcthr_sth 1 L
"‘ Mbou_mem_svsstb wou_mem_sys o _sdrctnr_cec 1 L
"‘ Ab_u_mem_svedtb_w_u_mem_syz_o_sdrctir_we 0
M Abou_mem_swetb o wou mem_svz_ o sdrctnr_zel f f 10 If T

Figure 8.2.10: DTLB miss occurs, DMMU take over to fetch First Level Page Table Entry from SDRAM. (Take 9 clock cycles)
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Atbw mem_spadth ru mem_sys_iclk
Atbwmem_sysAth 1w mem_sys_i_reset
Stbumern_sysdwsdr_addr

Stbu mern sysdw_op whb dat

Atbu mem p_whb ack
Atbumemn_syedw sdi_dg
Atbu_mem_sypsdthow_u_mem_sys_o mem_is_stall

‘p
‘p
o9
o

Atbu_mem_sypsAthow u_mem_sys o immu_is_stall
Atb_u_mem_sypsAth w_u_mem_sys_o drmu_is_stall
Atb_u_mem_sysdb r_u_mem_sys_ | store_data
Jtbu mem_syzdboru mem sy i po

Jthu mem_sysAbow u_mem_swys o instruction
Stbu mern_sysAbor_u_mem_sys | dmermn_addr

Jtb e merm_spsAtbor U mem_sys i memn_re
Atbumem_sysAtb 1w mem_syes i mem_we
Atbu_mem_syedb ow_uw mem_sys o loaded data
Atb_u_mem_sypedbh w_u mem_sys o sdictir_data
Atb_u_mem_spsdth o w_umem_sys o sdrictor_addr
Atb_u_mem_sypsAth w_u_mem_sys_o sdrctir_host_ld_mode
Atb_u_mem_spsAb w u_mem_sys_o_sdictnr_stb
Atb_u_mem_sypsAth w_u_mem_sys_o sdrictir_cpc
Atbw mem_sysAtbw umemsws_o_sdrictnr_we
Stbumern_sysAtbow umem_sws o sdrctnr_zel
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bICTT{ I (NN ,00zz

8002345 S
|
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Figure 8.2.11: DMMU take over to fetch Second Level Page Table Entry from SDRAM. (Take 9 clock cycles)

B4 tb_u_mem_sps/dutiu_mem/b_diib/b_tb_i_cp0_bAddr 00402678 00402673
M Mb_u_mem_sps/dutiu_mem/b_dtb/b_th i cp0_entryHi Qo0ooa40 noonog4o
M Mb_u_memn_sysddutiu_mem/b_dtb/b_th i cp0_entylo (02345600 (0234500
+ivg M men ut/u_mem/b_dtb/b tb | epl random | 00._.J00003500 JO000;E600 00003700 J00003500 J00003500 30000300 00003600 J00003c00 100003400 0000300 0000300 )i
M Mb_u_mem_sys/dut/u_memsb_dib/b_th i cplstatus 00000000 Qoonoona
M Mb_u_memn_sys/dutiu_mem/b_dtb/btb i cpu_vaddr 00402678 00402673
& b u_menn_sys/dut/u_menm/b_dibsb_Hh_i_mmiu_tbr 1
4 /b u_mem_sys/dut/u_mem/b_dibeb_th_i_sps_clock 1 T T I I T T T
Q‘ Ath_umem_sys/dutiu_mem/b_dib/b_th_isws_reset 0
B M u_mer_spsAduti_mem/b_diib/tb ent[B1)E_HE entp/_me... |Mumsmmmmmmm S MMM HR R IF210040202345
Figure8.2.12: Updating DTLB Entry.
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& /tb_u_mem_sys/th_1_u_mem_sps_i_clk L L L L e e e e e e re ey
' At u_mern_svedtb_ rou_mem_sys i reset 0
B Ab_u_mem_syshw_sdr_addr 2345 0001 ,00zz (0002 T3 0002 \0zz e e (o=
B9 b u mem_sysfw_op wh dat zz7zEzEZ (B0} TE__}
& Mthou_mem_sysdw_op_wh_ack 0 [ ] I‘:“
B Ab_u mem_spsfw sdr_dg zzzzzzzE =T 20|
& Jthou_mem_sps/thow_umem_sps o mern_is_stall 1
# thou mem_spedth_w_u_mem_s i
' At u e
M Ao u_mem_systh 1 u_mem_svs_i_store_data Q0000000 00000000
M AMbou_menn_sysdth 1w mem_sys i po 00402678 00402678
B Ath_u_mem_sys/th_w u_mem_sps o instiuction 00o0ooao 00000000
M b u_mem_sysdtb ru_mem_sys_i_dmem_addr 004026738 00402678
& Jthou_mem_spsthoru_mem_sys_i_mem_re 1
" b u_mem_seedtb_r_u_mem_sys_ | mem_we 0
M Ahou_menn_syedth owou mem_ vz o loaded data Q0000000 Q0oooooo Toooono00
B Ath_u_mem_sys/th_w u_mem_sps o sdictrn_data 00o0ooao Q0000000
B Ab_u mem_spsAth w_u_mem_sys o_sdrchrn_addr 0234567 00000004+ (O3M00S } 0234564
& JMthou_mem_spsthow_umemn_sys o_sdrotrr_host_ld_mode |0
" b u_mem_spetb_w_u_mem_sps o_sdrctrr_sth 1 |
' b u_menn_svedtbow_umem_sys o sdrctnr_oyc 1 |
" b u_mem_spedtb_w_u_mem_sys o_sdrctir_we 0
B b u mem_sys/thow u_mem_sps o sdrctr_sel f ; o r ] i

Figure 8.2.13: DTLB HIT.
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8.2.4: Instruction Cache Miss

$3443388444343340

t POPR.

Atbu_mermn_syeAth 1 u_memn_sps i_clk
Athu_mem_sysAth 1 u_mem_sps_i_reset
Atbu_mem_sweAw edraddr

b u_mem_syz/w_op_wb_dat
Atbu_mem_syzfwop wb_ack

b u_mem_syzhw_zdr_dg
Atbu_mem_syeAtbow_uw_mem_sps o mem_is_stall
Athu_mem_sysAthow_u_mern_sps o immu_is_stall
Abu_mem_syeAthow_u_mem_spe o dmmu_is_stall
b u_mem_syzth 1 u_mern_sys_i_store_data
Atbu_mem_swsAth 1 u_mem_sys i po

b u_mem_syeAth wi_u_mem_sps_o instruction
Stbou_mem_swsAth 1 u_mem_sys | dmerm_addr
Athu_mem_sysAth 1 u_mem_sps i_mem_re
Atbu_mern_systh 1 u_mem_sps i_mem_we

b u_mem_syzthow_u_mem_spz o loaded_data
Stbu_mem_sweAth wu_mem_sps o sdickhr_data
At u_men thr_addr

Atbu_mem_sysfthow_ u_mern_spz o sdrctir_host_|d_mode

Ab_u_mem_sysAtb_w_u_mem_sps_o_sdictnr_sth
Atbu_mer_sysAthow_u_mem_sps o sdrcthr_cyo
Ab_u_mem_sysAtb_w_u_mem_sps_o_sdrctnr_we
Stbu_mem_swsAthow_u_mem_syz o sdrctir_sel

1

0

0o9s
fOFOADED
1
fOFOADED
1
0

0
00000aa0
00402872
00000aa0
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1
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00000aa0

- - —r - r—_r
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00000000 100000000
0000000
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Figure 8.2.14: Instruction cache misses, transferring block from SDRAM (Part 1). (Take 6 clock cycles for first access)
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@ b mem_sysitbr_umem_sys_i ok 1 1N e H s I e N s I s S s N s A s Y e A s s (Y s N
Q b u_mmenn_swsAthroumern_sys | reset ]
B9 b u mem_sysdw sdr_addr 009a [NEE] 0033 10032 0030
B4 /th u mem_sys/w _op_wb_dat zzzzEEEE (fOfofoi ; (OFOMA__; (FOFORZ__¢
@ Jth_u_mem_syshw_op_wh_ack 0 1 [ ] |
B9 Ab u mem_syshw sdr_dg zzzzEEEE [T} (FOfOfO_} (FOfOffZ_}
Q‘ Atb_u_mem_sysAthowe o mem_sys_o_menn_is_stall 1
Q At u_mem_sysAtbwe wmem_sys_o_immu_is_stall ]
" b u_memn_zysAthowe uomem_sps_ o dmmu_iz_stall 0
ﬂ-" At u_mem_sysfth_r_u_men_sys_i_store_data oooaoooo 03000000
M At u_mem_sysAtb__u_mem_sys_i_pc 00402678 054028?8
” At u_mem_syeMb w_umem_sps o_instruction 00000000 EIIJDDEIEIDD
ﬂ-" At u_mern_sysftb o menn_ses i_dmemn_addr 00402678 0134028?8
Q Atbu_mem_sysAb rumem_sve | mem_re 1
0‘ b u_mem_zysAthrumem_sps | mem_we 0
H At u_mem_sysAth_w_w_mem_sys o_loaded data oooaoooo 03000000
l}' At u_mem_syefb w _zdrctnr_data 00000000 rﬁnnnnnn
35EED T0Z345EE4 JOZ345EES 02245E6C
0 At u_memn_spsdtb_w_u_mem_sys_o_sdrctnr_host_ld_maods |0
& Ab_u_mem_spstbow u_mem_sps o sdrotnr_stb 1
0‘ Atbu_mem_zysAthowe uomem sps_ o sdrctni_cyc 1
Q Athu_menn_swsAthow o mem_sys_o_sdrctnr_we ]
B9 Ab u mem_sysfth w u_mem_sps o sdictnr_ssl f f

Figure 8.2.15: Instruction cache misses, transferring block from SDRAM (Part 2). (Take 4 clock cycles for subsequence access)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR Page 104



Main Memory Integration | 2013

‘
*
¢
B¢
‘
¢
*
'
‘
¢
¢
B¢
o¢
*
'
o¢
¢

: POV

Ab_umem_syeAb_r_u_mem_sve i_clk
Athu_mern_aysthr_u_mem_sps i_reset
Ab_u_mem_spzdn_sdr_addr
Ab_u_mem_spziw_op_wb_dat
Ab_u_mem_svs/w_op_wb_ack
Sthu_mem_swsfwsdr_dg
Ab_u_mem_sysAth_w_u_mem_sps_o_mem_is_stall
Ab_u_mem_sysAth_w u_mem_sps o immu_iz_stall
Ab_umem_syeAb_w u_mem_sve o dmmu_is_stall
St u_mem_swsfth 1 u_mern_sys_ i_store_data
Ab_u_mem_spzAh r_u_mem_sys_i_pc
Ab_umem_spzdth w u_mem_syz o instuction
Ab_u_mem_speAth 1 u_mem_sys i_dmem_addr
Ab_u_mem_sysAb_r_u_mem_sus_i_mem_re
Ab_umem_sysAtb_r_u_mem_spe i_mem_we
Ab_umem_speAb w o u_mem_syz o loaded data
Sthu_mem_swsfthow_u_mem_sps o sdicthr_data
Atb_u_men th L
Ab_umem_systh_w u_mem_sps o_sdretnr_host_|d_mode
Ab_umem_sysAtb_w u_mem_sps o sdictnn_stb
Athu_mern_sysAth_w_u_mem_sps o sdrctir_cyo
Ab_u_mem_sysAtb_w_u_mem_sps_o_sdrctnr_we
Ab_umem_spzdh w u_mem_ sz o_sdictnr_sel

1
0

003e
zzz27722
]
zzzzzEEe
1
0

]
00000aa0
00402678
00000aa0
00402672
1
0
000ooaoad
00000aa0

=

s -’ rrrr—rr rr rr rr

0036

1009

J003d

1003

fOFDFOFS ¢

1

(PO

(FOFOROFL
1

(FOFOROE
1

[
L

(FOFOROrE

(PO

00402678

00000000

00402678

annooaon

0234566C

JOZ345670

02345671

02345678

Figure 8.2.16: Instruction cache misses, transferring block from SDRAM (Part 3). (Take 4 clock cycles for subsequence access)
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& Abu_mem_spsfth_r_u_mem_sys_ i clk 1 B | ] | ] | | | ] [ | [
& Abou_mem_sps/th_ru_mem_sys_ i reset i
B b u_mem_sysAw_sdi_addr Qo9r 003d 1003 E] onan
B4 /b u_mem_sysAw_op_wb_dat zzzzIIIZ IFOFDMMS ¢ IFOFDAIFE__ 3
& Ab_u_mem_sys/w_op_wh_ack 1] ] 1 |
B4 Atb_u_mem_syshw_sdr_dg zzzzEzEz TORS ) [OFORE__}
Q‘ Stbu_mmern_spedth weumem_sys_ o mem_iz_stall 1
Q‘ Stbu_rnenn_swedth weumem_sys_ o imnu_is_stall I}
f Atbou_mern_swedth owou o mem_sys o dmmu_iz_gtall I}
M Stbu_mem_gpedth 1w mem suz i ostore data Q0000000 0O00aa00
M Abu mem_spedth U mem_ vz i po 00402678 00402678
Atbu_mem J_U_mern_ struction fOFDFOfE |DEIDEIDEIEIEI [OFDFOFE
M A u_mem_gpsftb 1w mem_zez 1 dmem_addr Q0402678 O040ZE7S
' Abou_mern_syedfth 1w mem sz | mem_re 1
' b u_mern_sysdtho 1w mem_sys | mem_we i}
M At u_mem_sysftbow umem_syz_o_loaded_data Qoaooaao 0O00aa00
M At u_mem_sysftbowe umem_sys_o_sdrctrr_data Qoaooaao Qooooooo
M At u_mem_sysAtbowe o mem_sys_o_sdrctrr_addr Qoaooaao 02345674 102345678 10234567 100000000
f Atbu_mern_sysdfthow u mem_sys_o_sdictor_host_Id mode |0
f b u_mern_sysdthow umem_sys_o_sdictnr_sth i}
f Atbu_mern_sysdthow umem_sys_o_sdictnr_ocyc i}
& Abu_mem_spsfth_w_u_mem_sys_o_sdictnr_we 1
B Abou_mem_sysfth v u_mem_sps_o_sdictr_sel f f
Figure 8.2.17: Instruction cache Hit, instruction is successfully read from cache.
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8.2.5: Data Cache Miss

@ b_u_mem_sys/tb__u_mem_sys_i_ck 1 (I e TN e T eI s I e NN e NS s I s I e A eI s I s SO e A
@ Ab_umem_spsftb_r_u_mem_sps_i_reset 1]
B9 /b u_mem_sysAw_sdi_addr 0039 [0k} J0033 0033
o4 /b u_mem_spsAw_op_wh_dat FOFCFOE (07 (OOmm |
& Jtb_u_mem_spsfw_op_wh_ack 1 ] ] [
o Stbu_mem_spsw_sdi_dg FOFDFOR (OFOry (OO (FOFOOA |
@ Ab_u_mem_sps/th_w_u_mem_sys_o_mem_is_stal 1
0 b u_mern_spedth_w u_mem_syz o immo_iz_stall 0
@ Mtb_u_mem_spsfth_w_u_mem_sys_o_dmmu_is_stall a
M Ab_u_mern_spsftb_1r_u_mern_sys i storedata 00000000 0o0acoogd
B b u_memn_sysAtb 1 u_mem_sys i po 00402678 0040428?8
o M i Of O
M Ab_u_mern_sysfth_r_u_mem_sys_idmem_addr 00402675 DD4D;IB?8
0 Atbu_mern_spedth_r_u_mer_sps_i_mem_re 1
f Atbu_mern_spedtb_r u_mem_sps i mern_we 1]
B b u_memn_sps/tb_w_u_mem_sys_o_loaded_data Q0000000 000aCooo
B9 /th u_mem_sys/th_w_u_mem_sys_o_sdrctrr_data 00000000 nnnnr'nnn
B4 /b u_mem_spsAth w_u_mem_sys_o_sdrctrr_addr 02345664 R 7 02345660 J02345E64
f Atbu_mern_spedtb_w_u_mem_sye o sdrctni_host_ld_mode |0
0 b u_mern_spedtb_wou_mem_syz o sdictnr_stb 1
& Ab_umem_spsAth_w_u_mem_sys_o_sdrctnn_cpc 1
0 b u_mern_swedth_wu_mem_sys_a_sdictn_we 0
B Atb_u_mem_spsAth w_u_mem_sys_o_sdrctn_sel f f
Figure 8.2.18: Data cache misses, transferring block from SDRAM (Part 1). (Take 6 clock cycles for first access)
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR Page 107



Main Memory Integration | 2013

@ Ab_u_mem_sysAb_i_u_mem_sys_i_chk 1 41—I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I__I_I—
' At u_mem_sysAb r_u_mem_sys_| reset 0
o9 b u_mem_sysdw_sdi_addr 009k WSS 10092 I J005c
" Atbu_mem_sysdw_op_whb_dat ZzzzEzzz ;Wf (FOffrZ__ (FOMORES
@ Ab_u_mem_spsfw_op_wh_ack 0 L 1 ] 1
o Athou_mem_sysdw_sdi_dg zzzzzEze [ | (OfmE__} (OfmF )
Q‘ Ab_u_mem_zysAh_w_u_mem_sys_o_mem_is_stall 1
“ Ab_u_mem_zysAth w u mem_zys_o_immu_is_stall 0
“ Ab_u_mem_szysAh wu mem_sys_o_dmmu_is_stall 0
M Atbumem_spsdth rou_mer_syz_i store_data 00000000 Qioaaoa0
M Atbumem_spsdth_r u_mem_syz_i po U¢4D2E?8

Ath_u_mem_spsdth_w 1| 4 b fO¥OFOME

Atbo o mem_swsdtb_r u_mem_sys_idmemn_addr 00402678 @4025?8

Ab_u_mem_sysAth L u_men_sys imem_re 1

Ab_u_mem_sysAb _u_mem_syz_|_mem_we 0

At u_mem_syedb w_u mem_sys o loaded_data 00000000 % 100000

AtbCu_mem_spsAtb_w w_mem_svs_ o sdrctni_data 000ooaag oiooaoo0

Sth_u_mem_sys/th_w_u_mem_sys_o_sdrctnr_addr 02345670 OP345EE4  (02345EER I02345EEC 2345670

Ab_u_mem_zsysAb_w_u_mem_zys_o_sdretni_host_ld_mode |0
Ab_u_mem_zysAh_w_u_mem_sys_o_sdrctni_sth 1
Ab_u_mem_zysAthw_u_mem_zys_o_sdrctn_cyc 1
1]
f

Ab_u_mem_zysAh w u_mem_sys_o_sdrctni_we
Atbu_mem_spsdth_wou_mem_sps_ o sdrctni_sel

$4949338443

Figure 8.2.19: Data cache misses, transferring block from SDRAM (Part 2). (Take 4 clock cycles for subsequence access)
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4 Ab_umem_sys/th_r_u_mem_sys_i_chk 0 —r - 7 7 7 I I §°>’ °’ ’°_TI 11T
“ At mem_syefth 1w mem_sys | reset 0
B4 Ab_umer_spsAw_sdr_addr 009k 0030 003 jo03d )
B4 Ab_u mem_sysAw_op_wh_dat Frrrrrres [Ofmes__} (OffOr__; (ORI __¢
& Ab_u_mem_spsAw_op_wh_ack ] | ] ] I
B4 Ah_u_mem_sysiw_sdr_dq FOFOFRDER FOFOE.I} [FOFOFOFS [FOFDFOFS 3
' Atb_umem_sypeth_w_w_menn_sys o_mem_is_ztall 1
f b umemn_spadth woumen_syes o immu_is_stall 0
' At mem_syefth wow o menn_sys o_dmmu_is stall 0
B Ab_u_mem_spsAb_r_u_mem_sps_i_store_data Q0aaa0ca Q00omaa0
M At umenn_sysdth 1w mem_spe i po 00402678 0040672
B4 Ab_u_memn_sysAth_w U mem_sys_o_instruction fORORDEG fOFDFOE
” Atburmen_systh rouomem spa | dmemn_addr 00402678 0040672
' Atb_u_mem_syeth r_w_mem_sys_|_mem_re 1
f b umern_spedth 1w mem_sys i men_we 0
B9 Ab_u_mem_sysAtb_w u_mem_sys o loaded_data 00000000 [ ]
B Ab_umem_spsAb_w U mem_sys_o_sdretnr_data Q0aaa0ca DDDD[I.DDD
M Atbumenn_sysdth we umem_sys o_sdrctnr_addr 023456Ec msc 102345670 102345674 (T234E
& Ab_u_mem_sps/th_w_u_mem_sps_o_sdrctni_host_ld_mode |0
0 Atbu e spedth woumen_sys o_sdrctnn_stb 1
' Atb_umem_syeAth wwmenn_sys_o_sdictni_cyc 1
f b umern_spadth woumen_sys o_sdroth_we 0
M At wmemn_sysAth w u mem_sys o_sdrctnr_sel f F

Figure 8.2.20: Data cache misses, transferring block from SDRAM (Part 3). (Take 4 clock cycles for subsequence access)
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" Atbu mem_svedth 1w mem_svs | clk 1 [ | | | | | | [ | [ | | | | | [ L
" Atbumem_sveth rou_mem_sys | reset 0
B9 Abou_mem spsfw_sdr_addr noao 003d 1009e JINER ) (NTNIHTH]
B Abou_mem_sysfw_op_wh_dat zezzzEee IOFOMRE__ (FORDOME__}
& b u_mem_sysw_op_wb_ack I E:'\ [ ]
M Ahou mem_susdw_sdi_dg ZEZETEZE FOFOFOFS e (fOFDFOE )
Athu me L_me nem_| |
Athumem_
AthC e mem_
M AtbCu_mem_swedth roumem_sws | store_data anooaaoo Q0000000
M Abu_mem_sysfth rou_mem_sys i pc 00402673 Q0402672
Atbumed b ot fOFOFORG FORDFOIG
” Abu_mem_svedth o mem_svs i dmem_addr 00402678 00402672
' Atbu_mem_sveth_r_u_mem_sys_imem_re 1
" Athou mem_svedth 1w mem_svs | mem_we 0
Stbu_mem b w u_mem_ 0_loaded data [OFOFOFE Q0000000 TFOFOFOE
M Abu_mem_zpsdth weu_mem_syz_o_sdrcthr_data R 00000000
” Abu_mem_zpsdth wu_mem_sys o_sdrcthr_addr NN 02345674 102345672 (0234567 J00000000
' AthCumem_sveth_w_u_mem_syvs_o_sdrctnr_host_ld_mode 0
" Athu mem_svedth w u_mem_sys o sdictir_sth W
' Atbumem_sweth we u_mem_syz_o sdrctor_coc "
& Athoumem_sysfth_wu_mem_sps o_sdichir_we % [
” Atbu_mem_spedth w o mem_sys o_sdrctir_sel f f

Figure 8.2.21: ITLB, DTLB, ICACHE, DCACHE hit. Data and instruction successfully loaded.
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#tb_u_mem_syz.zdram
B tb_u_mem_sys. sdram
#tb_u_mem_syszedram
B tb_u_mem_sys. sdram
#tb_u_mem_syszzdram
B tb_u_mem_sye. sdram
#tb u_mem_ sy sdram
B tb_u_miemn_sys sdran
B tb_u_mem_sys. sdram
B tb_u_mem_sys sdram
B tb_u_mem_sys. sdram
#tb_u_mem_syz.zdram
B tb_u_mem_sys. sdram
#tb_u_mem_sys.edram
B tb_u_miemn_sys sdran
B tb_u_mem_sys. sdram
#tb_u_mem_sys.edram
#tb_u_mem_syz.zdram
B tb_u_mem_sys. sdram
B tb_u_mem_sys. sdram
#tb_u_mem_sysz.edram
B tb_u_mem_sye. sdram
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# tb_u_mem_zses. sdranm
#tb_u_mem_syz.zdram:
B tb_u_mem_zsvs zdranm
#tb_u_mem_syz zdram:
B tb_u_mem_swe zdranm
# Break in Module th_u_

at time
at time
at time
at time

at time
at time
at time
at time
at time
at time
at tirme
at time
at time
at time
at time
at time
at time
at time
at time
at timne
at time:
at tirne

at tirne
at time:
at time
at timne
at time:
at tirne
at time:
at time
at timne
at time:
at timne
at time:
at time
at timne
at time:
at timne
at time:
at time
at timne
at time:
at timne
at time:
at time
at timne
at time:
at timne
at time:
at time
at timne
at time:
at timne
at time:

160.0 nz PRECH

. Precharge all

280.0 nz AREF : Auto Refresh
440.0 nz AREF : Auta Refresh
GO0.0 nz LME : Load bMode Reagister

Cas Latency =2
Burst Length =1
Burst Type = Seqguential

Wirite Burst Maode = Single Location Access
F200nz ACT :Bank =0FRow= 0

240.0 nz "WRITE:
360.0 n: PRECH

Bark =0 Raw =
cBank =0Row= 2

1080.0 ne ACT : Bank =0 FRow = 16383
1200.0 nz WHRITE: Bank = 0 Fow = 16383, Col = 2, Datalhes] = 80f02345, Datajdec] = 2163221317
14400 nz ACT : Bank =1 Row = 9029

1860.0 ne WRITE:
1680.0 n: WRITE:
18000 ns WRITE:
1920.0 ne WRITE:
2040.0 nz WRITE:
2160.0 ns WRITE:
2280.0 nz WRITE:
2400.0 ne WRITE:
2640.0 nz PRECH

Bark =1 Raow =
Bark =1 Row =
Bank =1 Fow =
Bark =1 Raow =
Bark =1 Row =
Bark =1 Row =
Bark =1 Raow =
Bark =1 Row =
. Precharge All

3023
3023
3023
3023
3023
3023
3023
3023

2760.0 nz AREF : Auto Refresh
2920.0 nz AREF : Auto Refrezh
3080.0 nz LMA : Load Mode Fegister

CAs Latency =2
Burst Length - =1
Burgt Type = Sequential

. Col =152, Data(hex) = FOFFOEO,
. Col =153, Data(hesx) = (OO,

. Col =154, Datalhesx)
. Col =155, Datalhex)

FOFCIFOIRS,
FOFCIFCIES,

. Caol = 156, Data(hesx] = fOMOFOF,
. Col =157, Data(hesx) = fOMFOE,

. Col =158, Data[hex)
. Col =153, Datalhex)

Wirite Burst Mode = Single Location Access
32000 ne ACT : Bank =0Row= 0

336E.0nz READ :
3560.0 n: PRECH

Bark =0 Row =
cBank =0 Row= 2

JE80.0 ne ACT : Bank = 0 Row = 16333
3846.0 ns READ : Bank = 0 Row =16383, Col = 2, Data = 2163221317

4040.0 nz PRECH

cBank =0 Row= 1

AE60.0ne ACT : Bank =0Row= 0

4326.0 nz READ :
4520.0 nz PRECH

Bark =0 Fow =
cBank =0 Raow= 2

4640.0 nz ACT : Bank = 0 Row = 16333
4806.0 ns READ : Bank = 0 Raw = 16383, Cal = 2, Data = 2163221317
RO00.0 ne ACT : Bank =1 Row = 3023

5166.0 nz READ :
536E.0 n: READ
5566.0 nz READ :
57660 n: READ
B9EE.0 n: READ :
B166.0 nz READ :
E3EE.0 n: READ
B566.0 nz READ :

Bark =1 Fow = 3023,
Bark =1 Row = 9029,
Bark =1 Fow = 39023,
Bark =1 Row = 9029,
Bark =1 Row = 9029,
Bark =1 Fow = 3023,
Bark =1 Row = 9029,
Bark =1 Fow = 39023,

E7E0.0nz BST : Burst Terminate
Bark =0 Row =16383, Cal= 0, Data = M

EYEE.0 n: READ :
B326.0 nz READ :
1260 n: READ
7326.0nz READ :
7526.0n: READ
77260 nz READ
7926.0 nz READ :
M 26.0n: READ
8326.0nz READ :

Bark =1 Fow = 3023,
Bark =1 Row = 9029,
Bark =1 Fow = 39023,
Bark =1 Row = 9029,
Bark =1 Row = 9029,
Bark =1 Fow = 3023,
Bark =1 Row = 9029,
Bark =1 Fow = 39023,

85200 nz BST : Burst Terminate
8526.0 ne READ : Bank =0 Row =16383, Col= 0, Data = M
mem_sys at C/Modeltech_sedesamples/TLEtb_u_mem_sws.v ling 186

Col =158,
Col =152,
Col =153,
Col = 154,
Col = 155,
Cal =156,
Col =157,
Col =158,

Col =158,
Col =152,
Col =153,
Col = 154,
Col = 155,
Cal =156,
Col =157,
Col =158,

 HOFOFORG,
— 00T

0.Col= 1, Data= 2147500031

0.Col= 1, Data= 2147500031

Data = 4042322167
Data = 4042322160
Data = 4042321161
Data = 4042322162
Data = 4042322163
Data = 4042322164
Data = 4042322165
Data = 4042322166

Data = 4042322167
Data = 4042322160
Data = 4042321161
Data = 4042322162
Data = 4042322163
Data = 4042322164
Data = 4042322165
Data = 4042322166

Figure 8.2.22: SDRAM read/write transcript.

0.Col = 1, Datalhex) = 20003fF, D ata(dec] = 2147500031

D atadec) = 4042322160
D atajdec) = 4042322161
Data(dec) = 4042322162
D atadec) = 4042322163
D atajdec] = 4042322164
Datadec) = 4042322165
D atajdec) = 4042322166
D atajdec) = 4042322167
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Chapter 9: Discussion and Conclusion

9.1: Discussion & Conclusion

Virtual Memory system is the memory management technique which unavoidable,
every processor has to use it due to limitation of the size for physical memory. When we
adopt virtual memory, Translation Lookaside Buffer plays an important role to determine
the speed of the processor. Although without the existence of Translation Lookaside
Buffer, processor still can run as usual. Just that for each time of address translation, the
processor has to access SDRAM twice if we are using two level hierarchy page tables.
Imagine that for each instruction, we have to spend around 40-50 clock cycles to process
it, how slow will the processor be. Therefore, Translation Lookaside Buffer is
implemented to solve this problem.

Translation Lookaside Buffer is mainly used to store some of the page table
entries reside in physical memory. Whenever there is a TLB miss, page table walkthrough
need to be conducted to fetch the page table entry out from physical memory and update
TLB. To handle this situation, either software, TLB miss is handling by a series of kernel
process or hardware, page table walk through is conducted by using hardware. In this
project, we are using hardware method in which Memory Management Unit has been
implemented in this project to take care about page table walk through.

In this project, 64 entries TLB, MMU, 2MB Cache, 64MB SDRAM has been
successfully connected and its behavior has been test during the verification stage.
However, there is some error occurs at cache in which it will sending one time more
address to SDRAM which causes an invalid READ operation at SDRAM. Although all
the data had been successfully read into cache, one of the entry does not write into cache
memory which might causes data loss.

The following list is the outcome of this project:-

Status
TLB Enhanced & Verified
MMU Enhanced & Verified
SDRAM Enhanced & Verified
Memory Unit Enhanced & Verified

Table 9.1.1: outcome of this project
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9.1: Future Works

Memory Unit has been completed and verified. It seems like the cache is not
operating as expected. This might cause data loss or stalling effect when integrate into
RISC32 processor and therefore, Memory Unit is not yet integrates into RISC32
processor. Improvement and fix needed to overcome this problem by conducting a deep
study on current memory system to figure out the root cause of the problem to ensure a
workable memory system to be successfully integrated into RISC32 processor.

Other than that, during the verification stage, we need to manually load the page
table information by our own due to absent of operating system. To overcome this
problem, an operating system should be implemented which will responsible for creation
of page table and address mapping process. Therefore, it is necessary for future designer
to understand how the memory system works before starting the design of operating
system.
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