
Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page i

DESIGN AND DEVELOPMENT OF MEMORY SYSTEM FOR 32 BITS 5-STAGE PIPELINED

PROCESSOR: MAIN MEMORY (DRAM) INTEGRATION

By

Kim Yuh Chang (09ACB04385)

A Proposal

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

Department of Information Technology and Engineering

JAN 2013

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “Design and Development of Memory System for 32

bits 5-stage Pipelined Processor: Main Memory (DRAM) Integration” is my own work

except as cited in the references. The report has not been accepted for any degree and

is not being submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : Kim Yuh Chang

Date : 2 April 2013

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page iii

Abstract

This project is to enhance the RISC32 architecture that developed in UniversitiTunku

Abdul Rahman under Faculty of Information and Communication Technology. After

reviewing previous work, the RISC32 processor has a readily available SDRAM

Controller and 128MB SDRAM functional model provided by Micron but it has not been

integrated into the processor yet.

Therefore this project is initiated to integrate the main memory into the processor. The

existing SDRAM Controller is build based on Wishbone Compatible Standard while the

processor side is not. Therefore, a bus interface unit should be design in order to establish

a communication platform for the processor and main memory.Other than that, caches

design should be taken into consideration when we are designing the bus interface unit

due to whenever there is a cache miss, the processor need to get the data or instruction

from SDRAM. This design modeled using Verilog, High Level Description Language

and connects to other component.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page iv

Table of Contents
Chapter 1: Introduction ... 1

1.1: Background ... 1

1.2: Motivation and Problem Statement .. 2

1.3: Project Scope .. 3

1.4: Project Objectives... 4

1.5: Significance and Impact .. 5

Chapter 2: Literature Review .. 6

2.1: MIPS .. 6

2.2: Memory Hierarchy ... 6

2.3: Cache and Main Memory Interfacing ... 7

2.4: DRAM .. 9

2.5: SDRAM .. 10

2.6: SDRAM Controller .. 15

2.7: Problem in Existing Memory System .. 29

2.8: Introduction of Virtual Memory .. 30

2.9: Overview of Virtual Address Space .. 31

2.10: Concept of Address Translation ... 33

2.11: Introduction of Page Table ... 35

2.12: Introduction of Translation Lookaside Buffer .. 38

2.13: Virtually Addressed and Physically Addressed Cache .. 42

Chapter 3 – Methodology& Development tools ... 43

3.1: Methodology .. 43

3.2: Development Tools .. 45

Chapter 4: Handling Virtual Memory .. 46

4.1: Address Translation to Instruction Cache without TLB ... 46

4.2: Address Translation to Data Cache without TLB ... 47

4.3: Address Translation to Instruction Cache with TLB ... 48

4.4: Address Translation to Instruction Cache with TLB ... 49

Chapter 5: Memory System Specification ... 50

5.1: Features of Memory System ... 50

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page v

5.2: Naming Convention ... 51

5.3: Memory Map ... 52

5.4: Memory Unit Interface .. 53

5.5: Memory System Operating Procedure .. 59

Chapter 6: Architecture Specification ... 60

6.1: Unit Partition of Memory System.. 60

6.2 Design hierarchy .. 61

6.3: Memory Unit .. 63

6.4: CP0 unit .. 63

6.5: SDRAM Controller .. 71

6.6: 64 MB SDRAM .. 75

Chapter 7: Micro-Architecture Specification ... 77

7.1 Translation Lookaside Buffer (TLB) .. 78

7.2 Memory Management Unit (MMU) .. 83

Chapter 8: Verification Specification ... 92

8.1: Test Plan of Memory Unit .. 92

8.1.1: Test Procedure .. 93

8.2: Simulation Result for Memory System ... 94

8.2.1: Load Page Table and Page to SDRAM ... 94

8.2.2: ITLB MISS ... 97

8.2.3: DTLB MISS .. 100

8.2.4: Instruction Cache Miss .. 103

8.2.5: Data Cache Miss .. 107

Chapter 9: Discussion and Conclusion ... 112

9.1: Discussion & Conclusion .. 112

9.1: Future Works ... 113

References ... 114

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page vi

LIST OF FIGURES

Figure Number

Title Page

Figure 2.2.1

The Memory Hierarchy 6

Figure 2.3.1 Memory Organization

7

Figure 2.4.1

The Structure of DRAM and SRAM 9

Figure 2.5.1

Block Diagram of 128Mb banks SDRAM 10

Figure 2.5.2

Mode Register Definition Diagram 13

Figure 2.6.1

Block Diagram of SDRAM Controller 15

Figure 2.6.2 The Microarchitecture of the SDRAM Controller

16

Figure 2.6.3

Sub Module of SDRAM Controller – Protocol

Controller Block Finite State Machine

18

Figure 2.6.4 Initialization Protocol 22

Figure 2.6.5

Keep Bank and Row Open Access Protocol 23

Figure 2.6.6

Load Mode Protocol (Initialization Stage) 24

Figure 2.6.7

Load Mode Protocol (Post Initialization Stage) 25

Figure 2.6.8

Auto Refresh Protocol (Post Initialization Stage) 26

Figure 2.6.9

Read Protocol 27

Figure 2.6.10

Write Protocol 28

Figure 2.8.1 Access time and size of memory as going down from

memory hierarchy

30

Figure 2.8.2 The basic concept of virtual memory 30

Figure 2.8.3 The overall picture of how virtual memory works 31

Figure 2.9.1 The virtual address space based on MIPS 32

Figure 2.10.1 Address translation flow between pages in virtual

memory and pages in main memory

33

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page vii

Figure 2.10.2 An example address translation mechanism 34

Figure 2.11.1 The contents of page table entry 35

Figure 2.11.2 The usage of page table in address translation 35

Figure 2.11.3 The contents of first level page table entry 36

Figure 2.11.4 The contents second level page table entry 36

Figure 2.11.5 Segmentation of virtual address 37

Figure 2.11.6 The usage of 2-level page table in address translation 37

Figure 2.12.1 Example of how an eight-block cache configure as

direct mapped, two-way set associative, four-way set

associative and fully associative cache

39

Figure 2.12.2 Example of how a searching works on eight-block

cache based on direct mapped, two-way set

associative and fully associative configuration

40

Figure 2.12.3 The contents TLB entry 40

Figure 2.12.4 Usage of TLB in address translation by using 48

entries and fully associative TLB

41

Figure 2.13.1 The design of physically addressed cache 42

Figure 2.13.2 The design of virtually addressed cache 42

Figure 3.1.1 The top down approach adopted in this project 44

Figure 4.1.1 Address Translation to Instruction Cache without

TLB

46

Figure 4.2.1 Address Translation to Data Cache without TLB 47

Figure 4.3.1 Address Translation to Instruction Cache with TLB 48

Figure 4.4.1 Address Translation to Data Cache with TLB 49

Figure 5.4.1 The block diagram of memory system 53

Figure 6.1.1 Unit partition of memory system 60

Figure 6.2.1 Full RISC32’s Architecture and Micro-Architecture

Partitioning

62

Figure 6.4.1 Block diagram for co-processor 0 which used to

process and store exception/interrupt information

63

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page viii

Figure 6.4.2 Random register structure 64

Figure 6.4.3 Status register structure 64

Figure 6.4.4 EntryLo register structure 65

Figure 6.4.5 EntryHi register structure 65

Figure 6.4.6 Baddr register structure 65

Figure 6.5.1 Block diagram for SDRAM controller 70

Figure 6.6.1 Block diagram for SDRAM 74

Figure 7.1.1 Partition of Memory System 76

Figure 7.1.2 Block diagram for TLB 77

Figure 7.2.1 Block diagram for MMU 82

Figure 7.2.2 MMU protocol 87

Figure 8.2.1 System Reset, follow by loading First Level Page

Table Entry into SDRAM

93

Figure 8.2.2 After 19 clock cycles, First Level Page Table Entry

successfully loaded into SDRAM

93

Figure 8.2.3 Loading Second Level Page Table Entry into

SDRAM

94

Figure 8.2.4 Loading Pages into SDRAM (Part 1) 94

Figure 8.2.5 Loading Pages into SDRAM (Part 2) follow by

System Reset to initiate the system

95

Figure 8.2.6 ITLB miss occurs, IMMU take over to fetch First

Level Page Table Entry from SDRAM. (Take 19

clock cycles)

96

Figure 8.2.7 IMMU take over to fetch Second Level Page Table

Entry from SDRAM. (Take 12 clock cycles)

97

Figure 8.2.8 Updating ITLB Entry 97

Figure 8.2.9 ITLB HIT 98

Figure 8.2.10 DTLB miss occurs, DMMU take over to fetch First

Level Page Table Entry from SDRAM. (Take 9 clock

cycles)

99

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page ix

Figure 8.2.11 DMMU take over to fetch Second Level Page Table

Entry from SDRAM. (Take 9 clock cycles)

100

Figure 8.2.12 Updating DTLB Entry 100

Figure 8.2.13 DTLB HIT 101

Figure 8.2.14 Instruction cache misses, transferring block from

SDRAM (Part 1). (Take 6 clock cycles for first

access)

102

Figure 8.2.15 Instruction cache misses, transferring block from

SDRAM (Part 2). (Take 4 clock cycles for

subsequence access)

103

Figure 8.2.16 Instruction cache misses, transferring block from

SDRAM (Part 3). (Take 4 clock cycles for

subsequence access)

104

Figure 8.2.17 Instruction cache Hit, instruction is successfully read

from cache

105

Figure 8.2.18 Data cache misses, transferring block from SDRAM

(Part 1). (Take 6 clock cycles for first access)

106

Figure 8.2.19 Data cache misses, transferring block from SDRAM

(Part 2). (Take 4 clock cycles for subsequence

access)

107

Figure 8.2.20 Data cache misses, transferring block from SDRAM

(Part 3). (Take 4 clock cycles for subsequence

access)

108

Figure 8.2.21 ITLB, DTLB, ICACHE, DCACHE hit. Data and

instruction successfully loaded

109

Figure 8.2.22 SDRAM read/write transcript 110

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page x

LIST OF TABLES

Table Number

Title Page

Table 2.5.1 I/O Description table of SDRAM

11

Table 2.5.2 Truth Table – Command and DQM Operation

12

Table 2.5.3 Burst Definition Table

14

Table 2.6.1 I/O Description of SDRAM Controller

16

Table 2.6.2

States Definitions of Protocol Controller Block 19

Table 2.6.3

Output or Behaviorsof Protocol Controller Block

Corresponding to the States

19-21

Table 5.1.1

The features of recent RISC32 50

Table 5.2.1

Naming convention 51

Table 5.3.1

The memory map used in this project 52

Table 5.4.1

The block diagram of memory system 53

Table 5.4.2

Memory System’s Input Pin Description 54-56

Table 5.4.3

Memory System’s Output Pin Description 56-59

Table 6.1.1

Formation of a design hierarchy for Full RISC32

microprocessor through top down design

methodology

61

Table 6.4.1

CP0’s Input Pin Description 66-68

Table 6.4.2

CP0’s Output Pin Description 68-69

Table 6.5.1

SDRAM Controller’s Input Pin Description 71-72

Table 6.5.2

SDRAM Controller’s Output Pin Description 72-73

Table 6.6.1

SDRAM’s Input Pin Description 74-75

Table 7.1.1

Possible combinations of events in the TLB, virtual

memory system and cache

78

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page xi

Table 7.1.2

TLB’s Input Pin Description 79-80

Table 7.1.3

TLB’s Output Pin Description 80-81

Table 7.2.1

MMU’s Input Pin Description 83

Table 7.2.2

MMU’s Output Pin Description 84-86

Table 7.2.3

Output for each state in MMU protocol 87-90

Table 8.1.1

Test Plan of Memory Unit 91

Table 9.1.1 Outcome of this project

111

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 1

Chapter 1: Introduction

1.1: Background

 As modern day systems are gradually becoming more and more complex due to

their wide functionalities, memory plays an important role in the performance of the

system. Many computations executed on current machine are often limited by the

response of the memory system rather than the speed of processor [1]. At early in the

1960’s, it was the time cache memories were proposed and being introduced into the

memory hierarchy as high speed memory buffers used to hold the contents of recently

accessed main memory locations. It was already known at that time that recently used

information such as instructions and data is likely to be used again in the near future[1-2].

With this method, although cache memory would only hold a small fraction of the

contents of main memory, a disproportionate fraction of all memory references would be

satisfied by information contained within the cache [5-7]. However, this introduction

could not solve the problem perfectly since the size of the cache is inversely proportional

to the speed of the memory. As the cache size reduced, miss rate which indicates the

chance of data needed was not available inside cache will be increase. When cache miss

happens, instruction or data has to be read from the main memory which indicates that

several processes have to go through in order to handle cache miss[7]. This is

unavoidable as long as we are using cache memory inside our system and this has comes

to our topic, main memory integration which responsible to handle the data or instruction

transfers between SDRAM and cache memory when cache miss happens.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 2

1.2: Motivation and Problem Statement

Recently, a RISC32 project has been developed in the Faculty of Information and

Communication Technology, UniversitiTunku Abdul Rahman. The project is based on

the RISC architecture. The main reasons for initiating this project are:

 Microchip design companies develop microprocessors cores as IP for commercial

purposes. The microprocessor IP includes information on the entire design

process for the front-end (modeling and verification) and back-end (layout and

physical design) IC design. These are trade secrets of a company and certainly not

made available in the market at an affordable price for research purposes.

 Several freely available microprocessor cores can be found in [1]. Unfortunately,

these processors do not implement the entire MIPS Instruction Set Architecture

(ISA) and lack comprehensive documentation. This makes them unsuitable for

reuse and customization.

 Verification is vital for proving the functionality of any digital design. The

microprocessor cores mentioned above are handicapped by incomplete and poorly

developed verification specifications. This hampers the verification process,

slowing down the overall design process.

 The lack of well-developed verification specifications for these microprocessor

cores will inevitably affect the physical design phase. A design needs to be

functionally proven before the physical design phase can proceed smoothly.

Otherwise, if the front-end design has to be changed, the physical design process

has to be redone.

The RISC32 project will aim to provide a solution to the above problems by creating a

32-bit RISC core-based development environment to assist research work in the area of

soft-core and also application specific hardware modeling. Currently, a basic central

processing unit (CPU) and SDRAM Controller and SDRAM providedby MICRON

Technology Inc. has been modeled at the Register Transfer Level (RTL) using Verilog

HDL and both of them have been combined together and had gone through a series of

simulation test. However, several design issues were found in the existing RISC32

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 3

Memory System [9].One of the issues is although the SDRAM Controller and SDRAM

has been modeled, it is not ready to integrate into basic CPU that has been modeled

previously due to the outputs of CPU is not compatible to current SDRAM since the

current RICS32 processor is using a 32 bits address which will cover up to 4GB of

memory space. Hence, an additional circuit has been to add on to the current design

which acts as a platform for current SDRAM, TLB, MMU, CACHE and others basic

CPU to communicate with each others. With all these problems, it is imperative for us to

reanalyze and refurbish the foundation of the Memory System before any memory

integration can be done.

1.3: Project Scope

This project aims to integrate existing SDRAM Controller and conventional SDRAM

into the 32 bits 5-stage pipelined RISC processor.

The scope of this project involves:

1) Designing a bus interface unit which compatible to SDRAM controller, 64MB

SDRAM behavioral model provided by MICRON Technology Inc and CPU.

2) The implementation of an industry standard WISHBONE SoC interface in the bus

interface unit design to ensure portability.

3) Verify its behavior and functionality at chip level together withTLB, MMU,

CACHE, SDRAM controller, 64MB SDRAM behavioral model provided by

MICRON Technology Inc and CPU. Timing analysis and synthesis is outside the

scope of this project.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 4

1.4: Project Objectives

The project’s objectives include:

 Analyze the existing Memory System organization, interfacing and the

functionality of a SDRAM and SDRAM Controller. Analysis on the existing

MIPS Memory System will be done.

 SDRAM Bus Interface Unit Design – This part includes the development of chip

specification and the microarchitecture specification of the SDRAM Bus Interface

Unit based on WISHBONE Soc Interface.

 TLB Design – This part include the development of microarchitecture

specification of the TLB which used to act as a cache for keeping page table

entries.

 MMU Design – This part include the development of microarchitecture

specification of MMU (Memor y Management Unit) which responsible to conduct

a page table walk through.

 Integration with Cache – This part will include the integration of cache together

with existing 64MB of SDRAM, SDRAM Controller, TLB and MMU.

 Verification – Test case will be developed to test the SDRAM and SDRAM

controller as a whole by simulating Wishbone master interface signal based on

Bus Functional Model and to test whether the design is workable, lw and sw

instructions should be used inside the test case..

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 5

1.5: Significance and Impact

As a synopsis to the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The

development environment refers to the availability of the following:

 A well-developed design document, which includes the chip specification,

architecture specification and micro-architecture specification.

 A fully functional well-developed 32-bit RISC architecture core in the form of

synthesis-ready RTL written in Verilog.

 A well-developed verification environment for the 32-bit RISC core. The

verification specification should contain suitable verification methodology,

verification techniques, test plans, testbench architectures etc.

 A complete physical design in FPGA with documented timing and resource usage

information.

The RISC32 project is an effort to develop the environment mentioned above: to be used

as a multi-cycle pipelined RISC microprocessor core-based platform to support hardware

modeling research work.

With the existing well-developed basic RISC32 RTL model (which has been fully

functionally verified), the verification environment and the design documents, a

researcher can develop his research specific RTL model as part of the RISC32

environment (whether directly modifying the internals of the processor or interface to the

processor) and can quickly verify his model to obtain results, without having to worry

about the development of the verification environment and the modeling environment.

This can hasten the research work significantly. Relating exclusively to this project, the

establishment of a strong foundation of the Memory System is important. By building the

SDRAM Bus Interface Unit which act as a communicator between SDRAM and CPU, a

solid ground will be formed whereby the next designer can focus on fixing other parts of

the Memory System.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 6

Chapter 2: Literature Review

2.1: MIPS

MIPS (Microprocessor without Interlocked Pipelined Stage) is a RISC (Reduced

Instruction Set Computers) processor which use hardware implementation to

directlyexecute instructions, without microprogrammed control. MIPS is widely used in

digitalconsumer, networking, personal entertainment, communications and business

applications [2], such as Sony Playstation 2, Sony Playstation Portable (PSP) and Linksys

wireless router which primarily used in MIPS implementations. MIPS can be develop

using Verilog – a hardware description language (HDL).

2.2: Memory Hierarchy

When we are discussing about the performance issues in computer architectural

design, algorithm predictions, and the low level programming constructs which involve

locality of reference, the term, memory hierarchy will always been used in the computer

architecture.

Figure 2.2.1: The Memory Hierarchy(Adapted from [6])

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 7

As shown in the diagram above, the memory hierarchy in computer storage is actually

distinguishes each level by access time, cost per unit and capacity. Besides, in order to

produce a faster access time memory, controlling technology plays an important role in it

and therefore, each level of memory hierarchy also can be used to distinguish controlling

technology [2,3,6,8].

2.3: Cache and Main Memory Interfacing

 From [7], we know that processor is connected to the main memory by a bus

system and the bandwidth of the bus system has a significant impact on miss penalty.

This is because the clock rate for bus is usually much slower than the processor as much

as a factor of 10. Therefore, selection of memory organization to be use in processor

plays an important role in deciding the performance of the processor.

Figure 2.3.1: Memory Organization (Adapted from [7])

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 8

Miss Penalty =

Send address (1 bus cycle) + Access 1 word in DRAM (15 bus cycles)

+ Send a word from DRAM to Cache (1 bus cycle)

 Figure on previous page shows three types of available memory organizations

which are one-word-wide memory, wide memory and interleaved memory organization.

To have a deeper understanding towards the memory organization, let us go through a

simple example [7]. Assume that a processor need

 1 memory bus clock cycle to send the address to main memory.

 15 memory bus clock cycles for each DRAM access initiated.

 1 memory bus clock cycle to send a word of data.

Assume that we are going to send 4 words from main memory to cache.

The miss penalty can be calculated by using the equation below:

With all the information given above, we can evaluate the performance of the memory

organization shows in Figure 2.3.1.

 For a one-word-wide memory organization, since it can only fetch one word per

time, in another word, it means that the main memory needs to be access 4 times in order

to fetch all the data require to the cache. Therefore,

Miss Penalty = 1 + (4 * 15) + (4 * 1) = 65 bus cycles.

 For a wide memory organization, it is capable to fetch all the require data in one

shot since it has a very high bandwidth of bus system. Therefore,

Miss Penalty = 1 + (1 * 15) + (1 * 1) = 17 bus cycles.

 Lastly, a interleaved memory organization, which capable to read multiple words

in main memory in a single bus cycle and transfer the data back word by word. Therefore,

Miss Penalty = 1 + (1 * 15) + (4 * 1) = 21 bus cycles.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 9

 The calculations above shows that a wide memory organization has the least miss

penalty but keep in mind that a huge bus system is not easy to manage and it require a

high cost to implement. For the interleaved memory organization, although it is slower

than wide memory organization, it is using a shared bus system among the memory banks.

This reduces the cost to implement but this will results in a similar performance with

wide memory organization.

2.4: DRAM

Dynamic Random-Access Memory (DRAM) is a type of random access memory

that will stores each bit of data in a separate of capacitor within an integrated circuit. It is

a non-volatile memory that the data stored inside will be lost once the power supply been

turned off. Due to the characteristic of capacitor which is charging and discharging, these

states are taken to represent two values of bit which are 0 and 1. DRAM is always cost

lesser than Static Random Access Memory (SRAM) due to its simple structural which

only consists of one transistor and one capacitor per bit comparing to SRAM which is

using 4 or 6 transistors depends on the design [6-8]. With this structure, DRAM can be

designed to reach a very high density but as a tradeoff, the accessing time of DRAM is

slower than SRAM. Other than that, since capacitors leak charge, the information stored

inside will eventually fades unless the capacitor is being refreshed periodically.

 DRAM SRAM

Figure 2.4.1:The structure of DRAM and SRAM. (Adapted from [7])

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 10

2.5: SDRAM

Synchronous Dynamic Random Access Memory (SDRAM) is a DRAM that is

synchronized with the system bus. The previous DRAM we had discussed has an

asynchronous interface in which it responds as quickly as possible to changes in control

input while SDRAM has a synchronous interface, meaning it will wait for a rising edge

of clock signal before responding to control input[5].

Figure 2.5.1: Block diagram of 128Mb banks SDRAM(Adapted from [9])

Pin Name Size Description

ba [1:0] 2 bits Bank Address: Define to which device bank the ACTIVE,

READ, WRITE or PRECHARGED is being applied.

adr [31:0] 12 bits Address Bus: Used as an input to send column address, row

address and configuration setting to the SDRAM.

dq [31:0] 32 bits Data Line: 32 bits bidirectional data line to/from SDRAM.

dqm [4:0] 4 bits Data Mask: Used to select which byte of the 32 bits bidirectional

data line, dq, is valid.

cs_n 1 bits Chip Select: When this signal is high, the chip ignores all other

inputs except clock signal, and acts as if a NOP command is

received.

cs_n

we_n

cas_n

ras_n

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 11

we_n 1 bits Write Enable: Along with /RAS and /CAS, this selects one of 8

commands. This generally distinguishes read-like commands

from write-like commands.

cas_n 1 bits Column Address Strobe: Along with /RAS and /WE, this selects

one of 8 commands.

ras_n 1 bits Row Address Strobe: Along with /CAS and /WE, this selects

one of 8 commands.

clk 1 bits Clock Signal: Used to synchronize with the CPU bus system.

Table2.5.1: I/O description table of SDRAM.

The SDRAM has adopted bidirectional data line, dq, for write transfer and read

transfer. This is because the SDRAM can only do one of the operations at a time. The

granularity of a bus is defined as the smallest transfer can be done by that bus. This is

accomplished using the data masking pin, dqm(3:0). The data masking pin is used to

select which byte of the 32-bit bidirectional data line, dq, is valid.

For example, if dqm = 0001 (binary), the valid 8-bit data is located at dq(7:0).

Here is another example, if dqm = 1100 (binary), the valid 16-bit data is located at

dq(31:16). As mentioned, since the smallest transfer is 8-bit, the granularity of this

SDRAM is 8-bit. As a comparison, the customized SDRAM has a granularity of 32-bit

for its 32-bit write data line and 256-bit granularity for its 256-bit read data line. This also

means that the customized SDRAM cannot support byte addressing.

There are several functions available to control the activity of SDRAM by varying

the control signals such as cs_n, ras_n, cas_n, we_n. These control signals are normally

issued by a SDRAM Controller.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 12

The table below provided a quick reference of available command for SDRAM:

Table2.5.2: Truth Table – Command and DQM operation. (Adapted from [4])

 Other than that, by using adr[11:0] pin of the SDRAM, we can configure the

mode register which used to define the specific mode of operation for SDRAM via the

LOAD MODE REGISTER command and the information stored will be retain until it

has been reprogrammed or the device has been powered off. The definition includes the

selection of burst length, burst type, CAS latency, operating mode and write burst mode.

 Burst is a technique used to continuous read or write data from the memory

depends on the burst length. For example, if we set the burst length to be 4 and it is a

READ operation, the data inside SDRAM will be read 4 times continuously. The

sequences of the data read or write will be either in sequential or interleaved order which

shows in Table 2.4.3.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 13

Figure 2.5.2: Mode Register Definition Diagram. (Adapted from [4])

The description of each definition shown above will be discussed as below:

 Burst Length

Used to determine maximum number of column locations that can be accessed for

a given READ or Write command.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 14

 Burst Type

Used to select either sequential or interleaved burst to be adopted by SDRAM.

The ordering of accesses within a burst is determined by burst length, burst type,

starting column address.

 CAS Latency

Delay in clock cycles between registration of a READ command and the

availability of the first piece of output data. It can only be set to 2 or 3 clock

cycles.

 Operating Mode

Used to select which operating mode should the SDRAM be. Currently there is

only normal operating mode is available for use.

 Writing Burst Mode

When it is ‘0’, the burst length is programmed via M0-M2 applies to both READ

and WRITE burst.

When it is ‘1’, the programmed burst length applies to READ bursts, but write

accesses are single-location (non-burst) accesses.

Table2.5.3: Burst Definition Table.(Adapted from [4])

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 15

2.6: SDRAM Controller

The SDRAM Controller is used to acts as a communicator between the host and

SDRAM. As the SDRAM Controller receive the operation command from the host, it

will interpret it and translate into a control signal which acts as an input to the SDRAM.

The SDRAM Controller has been previously modeled based on industry standard

WISHBONE SoC interface [9].

Figure 2.6.1: Block diagram of SDRAM Controller.

(Modified from [9])

Pin Name Size (bits) Description

ip_wb_clk 1 Clock signal to synchronize to the system.

ip_wb_rst 1 Synchronous reset to reinitialize the system.

ip_wb_cyc 1 Asserted to indicate valid bus cycle is in progress.

ip_wb_stb 1 Asserted to indicate the SDRAM controller is

selected.

ip_wb_we 1 Asserted to indicate that the current cycle is READ.

Deasserted to indicate current cycle is WRITE.

op_wb_ack 1 Asserted to indicate that the current READ or

WRITE operation is successful.

[3:0]

[31:0]
[31:0]

[31:0]

[3:0]

[31:0]

[1:0]
[11:0]

4

2

12

32

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 16

Table2.6.1: I/O pin description of SDRAM Controller.

*Note that ip represents input, op represents output, wb represents WISHBONE, sdr

represents SDRAM.

By using this SDRAM Controller, we can make a direct LOAD MODE

REGISTER command straight from the host. To load the configuration to the SDRAM,

the host nee to asserted for the pin ip_host_ld_mode. This can help in speeding upwhen

configuring SDRAM since in the reality not only one SDRAM will be connected to this

SDRAMController

ip_wb_sel [3:0] 4 Used to indicate where valid data is placed on the

input data line (ip_wb_dat) during WRITE cycle and

where it should present on the output data line

(op_wb_dat) during READ cycle.

ip_wb_addr [31:0] 32 Used to pass the memory address from the host.

ip_wb_dat [31:0] 32 Used to pass WRITE data from the host.

op_wb_dat [31:0] 32 Used to output READ data from the SDRAM.

ip_host_ld_mode 1 Asserted to load a new mode into the SDRAM.

op_sdr_cs_n

1 SDRAM chip select.

op_sdr_ras_n

1 SDRAM row address select.

op_sdr_cas_n 1 SDRAM column address select.

op_sdr_we_n

1 SDRAM write enable.

op_sdr_addr [11:0] 12 Address output to the SDRAM.

op_sdr_ba [1:0] 2 Bank Address output to SDRAM.

op_sdr_dqm [3:0] 4 Used to select which bits of the data line (io_sdr_dq)

to be masked.

io_sdr_dq [31:0] 32 Bidirectional data line to receive READ data or send

WRITE data.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 16

Figures 2.6.2: The Microarchitecture of SDRAM Controller.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 17

The figure on the previous page shows the microarhitecture of the SDRAM Controller.

Inside the figure, the block sdc_obrt_top_obrt_unit is used to track the row status of all of

the banks. Block sdc_mc is responsible to store the status of the SDRAM configuration

and also the power up status to indicate if the SDRAM controller is executing the

initialization protocol or not.The address multiplexer, sdc_addr_mux partitions the

WISHBONE address input line into row address, bank address and column address. Then,

it multiplexes the configuration mode, row address and column address. It also decodes

the WISHBONE Select input pin and converts it to equivalent masking output.

 Besides, block sdc_dp_buf is used to controls the flow of the data between

SDRAM and Host while block sdc_sdram_ifis the SDRAM Interface Block that

synchronizes all the signals to the negative edge before sending them out the SDRAM.

 Other than that, SDRAM Controller also responsible to instruct the SDRAM to

initiate a precharge in order to maintain the information stored inside each cell. Otherwise,

the information stored inside each cell will be lost due to the characteristic of capacitor

which is the voltage will slowly leak off.The finite state machine below shows how the

SDRAM Controllerhandles the timing and the state changes that forms the protocols of

the SDRAM. It helps in decide which protocol to be executed and what commands to be

sent to the SDRAM by using the sdc_fsm block.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 18

Figure 2.6.3: Sub Module of SDRAM Controller –

Protocol Controller Block Finite State Machine (Adapted from [9])

!w_tmr_done

!w_tmr_done

!w_tmr_done

!w_tmr_done

!w_tmr_done

w_ref_req |

ip_pu_stat

ip_host_ld_mode

ip_fsm_pu_stat

&!w_pu_ref

ip_wb_rst

!w_wr_req&w_

brst_active

!w_rd_req

w_rd_req&

ip_ fsm_row_same

&ip_ fsm_bank_open

(w_rd_req | w_wr_req)

& !ip_ fsm_bank_open

(ip_host_ld_mode&ip_ fsm_any_bank_open) |

(w_ref_req&ip_ fsm_any_bank_open) |

((w_rd_req | w_wr_req) & !ip_ fsm_row_same)

!w_rd_req&w_b

rst_active

!w_brst_active

w_wr_req&

ip_ fsm_row_same

&ip_ fsm_bank_open

!w_brst_active

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 19

State Definitions of Protocol Controller Block

State Name Definition

INIT Initialization

INIT_W Wait for power up delay. The delay needed is dependence on the

SDRAM manufacturer

PRECH Send Precharge command

PRECH_W Wait row precharge delay time

AREF Send Auto-Refresh command

AREF_W Wait refresh delay time

LMR Send Load Mode command

IDLE_0 Wait operation to complete

IDLE Wait for new operation

ACT Send Active command

WRITE Send Write command

WRITE_LOOP Write data

READ Send Read Command

READ_W Wait CAS Latency

READ_LOOP Read data

BT Send Burst Terminate command

Table 2.6.2: State Definitionsof Protocol Controller Block(Adapted from [9])

Output or Behaviors of Protocol Controller Block Corresponding to the States

State Name Correspondence Output Behaviors

INIT op_fsm_cmd<= `CMD_NOP;

r_brst_cnt<= 0;

r_pu_cnt<= 2;

r_ri_cnt<= `REF_INTERVAL;

r_tmr_val<= `WAIT_150us;

op_wb_ack<= 0;

INIT_W op_fsm_cmd<= `CMD_NOP;

PRECH op_fsm_cmd<= `CMD_PRECH;

op_fsm_bank_clr<= !(w_ref_req | ip_fsm_pu_stat);

op_fsm_bank_clr_all<= (w_ref_req | ip_fsm_pu_stat |

ip_host_ld_mode);

op_fsm_a10_cmd <= (w_ref_req | ip_fsm_pu_stat |

ip_host_ld_mode);

r_tmr_val<= `TRP_DEF – 13’d1;

PRECH_W op_fsm_ld_mode_req<= ip_host_ld_mode;

op_fsm_cmd<= `CMD_NOP;

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 20

AREF op_fsm_cmd<= `CMD_AREF;

r_pu_cnt<= ip_fsm_pu_stat? r_pu_cnt – 1: r_pu_cnt;

r_ri_cnt<= `REF_INTERVAL;

r_tmr_val<= tRFC constant – 1;

AREF_W op_fsm_cmd<= `CMD_NOP;

r_ri_cnt<= `REF_INTERVAL;

LMR op_fsm_cmd<= `CMD_LMR;

op_fsm_lmr_sel<= 1;

op_fsm_pu_done<= ip_fsm_pu_stat? 1: 0;

r_tmr_val<= {2’b00, `TMR_DEF} – 13’d1;

op_wb_ack<= ip_wb_cyc&ip_wb_stb&ip_host_ld_mode;

IDLE_0 op_fsm_cmd<= `CMD_NOP;

IDLE op_fsm_cmd<= `CMD_NOP;

ACT op_fsm_cmd<= `CMD_ACT;

op_fsm_bank_act<= 1

op_fsm_row_sel<= 1;

r_tmr_val<= {1’b0,`TRCD_DEF} – 13’d1;

WRITE op_fsm_cmd<= `CMD_WR;

r_brst_cnt<= r_brst_val – 1;

r_tmr_val<= {2’b00,`TWR_DEF} – 13’d1;

op_fsm_woe<= 1;

op_wb_ack<= ip_wb_cyc&ip_wb_stb;

WRITE_LOOP op_fsm_cmd<= `CMD_NOP;

r_brst_cnt<= r_brst_cnt – 1;

r_tmr_val<= {2’b00,`TWR_DEF} – 13’d1;

op_fsm_woe<= 1;

op_wb_ack<= ip_wb_cyc&ip_wb_stb;

READ op_fsm_cmd<= `CMD_RD;

r_brst_cnt<= r_brst_val;

r_tmr_val<= {1’b0,ip_fsm_cfg_mode[6:4]} – 13’d1;

READ_W op_fsm_cmd<= `CMD_NOP;

READ_LOOP op_wb_ack<= ip_wb_cyc&ip_wb_stb&r_roe;

op_fsm_cmd<= `CMD_NOP;

r_brst_cnt<= r_brst_cnt – 1;

r_roe<= 1;

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 21

BT op_fsm_cmd<= `CMD_BT;

r_brst_cnt<= 0;

Table 2.6.3: Output or Behaviors of Protocol Controller BlockCorresponding

to the States (Adapted from [9])

 With the help of the protocol controller block, all the states and operations need to

be done by SDRAM have been fully specify and been show clearly. With the aid of this

sub module, the SDRAM Controller can initiate a refreshing circuit whenever it is

necessary without receiving any command from the CPU. Due to the complexity of finite

state machine, in order to have a ease way to understand what Protocol Controller do,

process of understanding how the protocol controller had been conducted and as a result,

individual process has been successfully been figured out.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 22

Initialization Protocol

Figures 2.6.4: This protocol follows the recommended SDRAM initialization requirement

given by MICRON.

IDLE

INIT_W

PRECH

AREF

AREF_W INT

PRECH_W

w_ref_req |

ip_pu_stat

!w_tmr_done

!w_tmr_done

Ip_wb_rst

!w_tmr_done

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 23

Keep Bank and Row Open Access Protocol

Figure 2.6.5: Keep Bank and Row Open Access Protocol to to achieve fast access cycle

for same row accesses.

PRECH

PRECH_W

IDLE

!w_tmr_done

(ip_host_ld_mode&ip_ fsm_any_bank_open) |

(w_ref_req&ip_ fsm_any_bank_open) |

((w_rd_req | w_wr_req) & !ip_ fsm_row_same)

ACT

(w_rd_req | w_wr_req)

& !ip_ fsm_bank_open

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 24

Load Mode Protocol (Initialization Stage)

Figure 2.6.6: Load Mode Protocol when in the initialization stage.

INIT_W

PRECH

AREF

LMR

AREF_W INT

PRECH_W
IDLE

ip_fsm_pu_stat

&!w_pu_ref
w_ref_req |

ip_pu_stat

!w_tmr_done

!w_tmr_done

Ip_wb_rst

IDLE_0

!w_tmr_done

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 25

Load Mode Protocol (Post Initialization Stage)

Figure 2.6.7: Load Mode Protocol when in the post initialization stage.

PRECH

LMR

PRECH_W

IDLE

!w_tmr_done
ip_host_ld_mode

(ip_host_ld_mode&ip_ fsm_any_bank_open) |

(w_ref_req&ip_ fsm_any_bank_open) |

((w_rd_req | w_wr_req) & !ip_ fsm_row_same)

IDLE_0

ip_host_ld_mode& !ip_fsm_any_bank_ope

n

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 26

Auto Refresh Protocol (Post Initialization Stage)

Figure 2.6.8: Auto Refresh Protocol when in the post initialization stage.

PRECH

AREF

AREF_W

PRECH_W

IDLE

!w_tmr_done

w_ref_req |

ip_pu_stat

!w_tmr_done

(ip_host_ld_mode&ip_ fsm_any_bank_open) |

(w_ref_req&ip_ fsm_any_bank_open) |

((w_rd_req | w_wr_req) & !ip_ fsm_row_same) w_ref_req&!ip_fsm_

anybank_open

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 27

Read Protocol

Figure 2.6.9: Read Protocol.

!w_brst_active

IDLE
READ

READ_W

BT

IDLE_0 READ_LOOP

!w_tmr_done

!w_rd_req

!w_rd_req&

w_brst_active

w_rd_req&

ip_ fsm_row_same

&ip_ fsm_bank_open

PRECH

PRECH_W

ACT

!w_tmr_done

(ip_host_ld_mode&ip_ fsm_any_bank_open) |

(w_ref_req&ip_ fsm_any_bank_open) |

((w_rd_req | w_wr_req) & !ip_ fsm_row_same)

!w_tmr_done

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 28

Write Protocol

Figure 2.6.10: Write Protocol.

IDLE

BT

WRITE

WRITE_LOOP

IDLE_0

!w_rd_req&w_b

rst_active

!w_brst_active

w_wr_req&

ip_ fsm_row_same

&ip_ fsm_bank_open

PRECH

PRECH_W

ACT

(w_rd_req | w_wr_req)

& !ip_ fsm_bank_open

!w_tmr_done

(ip_host_ld_mode&ip_ fsm_any_bank_open) |

(w_ref_req&ip_ fsm_any_bank_open) |

((w_rd_req | w_wr_req) & !ip_ fsm_row_same)

!w_tmr_done

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 29

2.7: Problem in Existing Memory System

 For the existing memory system, they are actually using physical address to access

the information resides in either SDRAM or caches. For this design, it is only capable to

work with a single user program. The problem arises when,

 Run multiple programs simultaneously.

o For example, when UserA start up a process and UserB also start a process,

how are we going to manage both of the memory spaces required by both

of the process to ensure they are not overlaying each others?

 Run a program in which its size is larger than SDRAM.

o For example, the size of main memory used in the memory system is

64MB, so how are going to start a process when the process required more

than 64MB of memory?

*Noted that all the process that is currently running need to be in main

memory.

 To solve the problems, we can enlarge our main memory or the programmer needs

to bear the responsibility to divide the program that they had written into few sections and

transfer them into main memory. As the program proceeds, new sections will be added

into main memory by replacing those sections that are currently unused. There is some

disadvantage for both of solution which is

 Cost of enlarging main memory.

 As program become more and more complex, it is impossible for programmers to

handle the division of the program.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 30

2.8: Introduction of Virtual Memory

 To solve the problems discussed in the previous session, the best solution is using

a virtual memory which is a technique that used main memory, also called as physical

memory to act as a “cache” for disk. As what we had been discussed earlier, the access

time is increasing as going down from the memory hierarchy like what is illustrated by

the figure below,

Figure 2.8.1:Access time and size of memory as going down from memory hierarchy.

Figure 2.8.2: The basic concept of virtual memory.

 Previously, as the size of physical memory grows, the access time is becoming

slower and slower. Therefore, cache has been introduced to solve this problem which a

portion of the data in main memory will be stored inside cache. Same theory we apply on

the disk, we use the main memory to act as a cache for disk in order to speed up the

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 31

processing speed. In this design, the address used will be virtual address and it need to go

through address translation before it can be to access memory.

Figure 2.8.3: The overall picture of how virtual memory works.

2.9: Overview of Virtual Address Space

 For main memory and caches access, both of them must receive a physical address

in order to proceed. When we adopt the virtual memory, all of the address generated by

the program counter will become a virtual address and translation of address need to be

made in order to access physical memory and cache.

Virtual Address Address Translation Physical Address

Address generated by

PC or ALB.

Address used to access

caches and physical

memory.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 32

For virtual memory, the memory space is divided into a few segments as shown in figure

below,

Figure 2.9.1: The virtual address space based on MIPS.

*Note that,

 kseg2 is mapped and cacheable. It is used for kernel data structures such as page

table.

 kseg1 is unmapped and uncacheable. Access to this space doesn’t go through

Translation Lookaside Buffer, TLB. It is used for disk buffer, I/O register and

ROM code.

 kseg0 is unmapped and cacheable. It is used for kernel instruction and data.

 kuseg is mapped and cacheable. It is used for current user process.

Kernel Space

User Space

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 33

2.10: Concept of Address Translation

 Address Translation is a process which converts virtual address generated by CPU

to physical address. Although the concept at work in virtual memory and in caches are the

same, their different historical roots have led to different terminology in which the virtual

memory block is called as a page while virtual memory miss is called as page fault.

Figure 2.10.1: Address translation flow between pages in virtual memory and pages in

main memory.

 Based on the figure shown, we can actually notice that both virtual memory and

physical memory are broken into pages so that the virtual page can exactly mapped to the

physical page. As we all known, the size of virtual memory is actually larger than size of

main memory. Therefore, it is possible for a page to be absent which means the virtual

page is not mapping to a page inside physical memory, mapped instead on disk. It is

possible for two virtual pages points to the same physical page and with this capability, it

allows two different programs to share data or codes.

Pages in Virtual Memory

Pages in

Main

Memory

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 34

Figure 2.10.2: An example address translation mechanism.

*Note that,

 Virtual Page Number (VPN) is used to index a page table to find out appropriate

Physical Page Number (PPN) for that particular virtual address.

 Page offset is representing the Page Size.

o For example in this case,

 Number of bits used as page offset = 12 bits

 Page Size = 2 ^ 12

 = 4KB

 By observing the length of Physical Page Number, we can actually compute the

size of main memory they are using which is

o Number of page in main memory = 2^18 = 256K physical page

Page Size = 4KB

Size of main memory = 256K x 4KB

 = 512MB

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 35

2.11: Introduction of Page Table

 For the previous session, we keep on discuss about address translation, a process

to convert virtual address to physical address but what is the procedure for the translation?

In order to map VPN to PPN, page table, which is a table of entries contain the

information required for the translation is used.

Valid Physical Page Number

Figure 2.11.1: The contents of page table entry.

*Note that,

 Valid, is used to show the location of the page reside.

o ‘1’ indicate the page reside in physical memory.

o ‘0’ indicate the page reside in disk.

 Physical Page Number is a part of physical address to be output to concatenate

with the page offset.

 By using page table, we can compute the physical address based on a given virtual

address from kuseg. Below shows the example of how to do address translation using

page table.

Figure 2.11.2: The usage of page table in address translation.

Virtual Address

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 36

Inside the figure, since we are using just only one page table which all called as 1-level

page table, therefore, the size of the page table will be

Number of entries in page table = 2 ^20

 = 1M

Size of each entry in page table = 4B

Max. Size of page table = 4B x 1M

 = 4MB

That is waste of memory in which too much of spaces are wasted to build up a page table.

Therefore, another technique is used to reduce the wastage of memory which called as 2-

level page table. The concept of using 2-level page table is the first level of page table is

will contain the page table entries as below

Valid Page Table Base Register

Figure 2.11.3: The contents of first level page table entry.

*Note that,

 Valid, is used to show the location of the page reside.

o ‘1’ indicate the second level page table reside in physical memory.

o ‘0’ indicate the second level page table reside in disk.

 Page Table Base Register is a pointer to the second level page table.

Valid Physical Page Number

Figure 2.11.4: The contents second level page table entry.

*Note that,

 Valid, is used to show the location of the page reside.

o ‘1’ indicate the page reside in physical memory.

o ‘0’ indicate the page reside in disk.

 Physical Page Number is a part of physical address to be output to concatenate

with the page offset.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 37

By using the 2-level page table technique, we need to segment out the virtual address into,

Virtual Page Number

1
st
 Level Page Table

Index

(10 bits)

2
nd

 Level Page Table

Index

(10 bits)

Page Offset

(12 bits)

Figure 2.11.5: Segmentation of virtual address.

*Note that,

 1
st
 Level Page Table Index is used to locate the address of 2

nd
 level Page Table.

 2
nd

 Level Page Table Index is used to select the appropriate page table entries.

 By segmenting the virtual page number into 1
st
 level page table index and 2

nd
 level

page table index, we will be able to locate desired page table entries as below,

Figure 2.11.6: The usage of 2-level page table in address translation.

Virtual Address

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 38

As shown in figure, the size of page table has been increase significantly compare with

the 1-level page table. A more detail calculation shown as below

Number of entries in 1
st
 level page table = 2 ^10

 = 1K

Number of entries in 2
nd

 level page table = 2 ^10

 = 1K

Size of each entry in page table = 4B

Size of each level page table = 4B x 1K

 = 4KB

Total size of page table = 4KB + 4KB

 = 8KB

 Previously if we are using the 1-level page table, we need to allocate 4MB space

for the page table for each of the process. On the other hand, when we are using 2-level

page table, we just need to allocate 8KB space for page table and the page table can be

created based on demand. Besides, by using this mechanism, the size of page table will be

uniform with the page size whether in virtual memory or physical memory.

2.12: Introduction of Translation Lookaside Buffer

 For previous sessions, we had discussed how to use a page table to allocate pages

that reside in the physical memory. By using the 2-level page table, although we can save

the memory spaces that required to store the page table, the access time in order to get the

physical pages is becoming longer compare with 1-level page table.

1-level Page Table

i. Given a virtual address.

ii. Use VPN to find out the PPN which used to concatenate with the page offset to

form physical address.

iii. Use physical address get data for physical memory.

2-level Page Table

i. Given a virtual address.

ii. Use 1
st
 level page table index to allocate the address of 2

nd
 level page table.

iii. Use 2
nd

 level page table index to find out the PPN which is used to concatenate

with the page offset to form physical address.

iv. Use physical address to get data from physical memory.

Based on both of the scenario discussed above, we can notice that 2-level page table need

one more access to the physical memory compare with the 1-level page level. As we are

increasing the level of page table, although the size of page table required for each

process will decrease, the number of access to physical memory will increase. This is very

inefficient and therefore, Translation Lookaside Buffer (TLB) is used to solve this

problem.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 39

 The key to improving the performance is to rely the locality of reference to the

page table. When a translation for a virtual page number is used, it will probably be

needed again in the near future. With this concept, TLB has been introduced which is a

special cache for translation that whole part of the page table entries in order to speed up

the address translation. In order to enable a faster access table, TLB usually only contain

very less entries which is around 48-128 entries and due to this, TLB usually be

implemented as a fully associative cache which all of the entries inside TLB will be

compare in one shot. This will result in a faster searching speed but it may require a lot of

hardware support in order to build it.

Figure 2.12.1:Example of how an eight-block cache configure as direct mapped, two-way

set associative, four-way set associative and fully associative cache.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 40

Figure 2.12.2: Example of how a searching works on eight-block cache based on direct

mapped, two-way set associative and fully associative configuration.

 Now, for us to start implementing TLB, the first thing we need to do is identify the

contents of each entry in TLB. For a basic TLB, we must have VPN, PPN and also some

control bits used to indicate the status of each entry such as, valid bit, dirty bit and so on

based on the design needs.

Virtual Page Number

(20 bits)

Control Bits Physical Page Number

(20 bits)

Figure 2.12.3: The contents TLB entry.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 41

Figure 2.12.4: Usage of TLB in address translation by using 48 entries and fully

associative TLB.

*Note that,

 VPN is included inside as part of the TLB entry contents which is different from

the page table entry.

 VPN doesn’t segment into 1
st
 page table index and 2

nd
 page table index. This is

because when we are using TLB, it is containing the information in 2
nd

 level page

table only.

 Control bits can be any bits which used to represent the status of each entry based

on the design needs.

o Example of control bits will be

 Valid Bit, which used to represent the location of the page whether

in physical memory or disk.

 Dirty bit, which used to represent whether the entry has been

modified or not. Usually used for write back policy in cache.

 Ref bit, which is a LRU status where the entry with the smallest ref

will be replace when the CPU going to bring in a new page from

disk or physical memory.

Virtual Address

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 42

2.13: Virtually Addressed and Physically Addressed Cache

 The placement of TLB can be either in series with caches or parallel with caches.

Both of the design have their pros and con. When we set the TLB in front of the cache,

this will mean that all of the address need to be translates into physical address before

access into cache. By using this design, the processing speed will be reduced because we

need to access to TLB first then only can access cache which means we need to times two

the access time to a cache. Although the processing speed will be reduce, this method will

be much simpler compare with a virtually addressed cache which will be discussed later.

Figure 2.13.1: The design of physically addressed cache.

*Note that all of the virtual addresses have to be translated by TLB before accessing

cache or main memory.

 There is another design of the placement of TLB which is the TLB works parallel

with the caches. This will reduce the processing time because the address translation and

the data searching can be done in parallel. Although this method can enhance the

efficiency of the processor, the design is more complex compare with physically address

cache because the lower 12 bits, page offset is used to search the data in cache and the tag

inside cache entries is output from the cache to compare with the PFN output from TLB

to determine whether it is a cache hit or miss. Problem arises when we have two cache

entries with the same page offset, which will cause an aliasing effect. Therefore,

additional logic needs to be added to eliminate this problem.

Figure 2.13.2:The design of virtually addressed cache.

*Note that the virtual address output from CPU is directly input to cache and TLB.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 43

Chapter 3 – Methodology& Development tools

3.1: Methodology

A top down design approach was adopted as the main design methodology in this project.

In this project, more focuses were put onto the functionality of the design. In the earlier

phase of the project, a study was done on the performance analysis and the behavioral

correctness of the previous memory system. However, from the analysis, we have found

out the need to build a new Memory System Bus Interface Unitin order to integrate the

current memory system to the basic CPU.This requires us to implement the system by

using top down methodology.

In the top down methodology, the first step involves the gathering of the requirements of

the SDRAM and SDRAM Controller. The requirements gathered will be analyzed and

studied so that a specification can be created. This specification describes the

input/outputs, registers, functions, and the constraints of the design. The requirements can

be obtained from users, market demands and datasheets. In this project, the requirements

are mainly defined from the SDRAM datasheets [12].

The reason for this is to ensure that the integration of memory system to32 bits RISC

pipelined processor can be successfully done. Besides, studies were done on the ways to

maximize the utilization of the 4 banks in the SDRAM. These studies were elaborated

Chapter 2 literature review.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 44

Figure 3.1.1: The top down approach adopted in this project

After capturing the requirements of the design, a specification is build. This specification

specifies the functions of all the modules, data flows between input pins, output pins,

registers and such. Basically, it is a detailed description of the design in Register Transfer

Level (RTL). Logic is described in terms of data flow and algorithms.

From the requirements, RTL codes are written. These codes are then simulated to verify

their functionality up to clock cycle accuracy. Sub-blocks that don’t perform as specified

are to be debugged and have their RTL codes fixed the requirements are met.

After the main task of defining the functionality is completed, the design will synthesize

into gate-level representation. Design synthesis is outside the scope of this project thus

will not be pursued.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 45

3.2: Development Tools

ModelSim XE 3 – Starter 6.4b will be used to code the RTL model of the design. Besides,

it will also be used to carry out the functional and timing simulation. ModelSim provides

an user friendly debug environments. Graphical waveform to display the simulation

results is integrated into ModelSim.

The starter edition placed a 10000 lines limit to the code. Based on the scope of this

project, it is expected that this limit will not be reached. Besides, it is free thus being

chosen as the main tool for this project.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 46

Chapter 4: Handling Virtual Memory

4.1: Address Translation to Instruction Cache without TLB

Virtual Page Number

1
st
 Level Page Table Index

(10 bits)

2
nd

 Level Page Table Index

(10 bits)

Page Offset

(12 bits)

Figure 4.1.1:Address Translation to Instruction Cache without TLB.

Get Page Table Base

Register from 1
st
 level

Page Table.

Get Physical Page

Number from 2
nd

 level

Page Table.

Valid

Page Fault Exception

Try Read Data from

Instruction Cache.

Stall CPU while

Reading Block.
Cache Hit

Deliver Data to CPU.

 +

Physical

Address

Virtual Address

Yes No

No

Yes

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 47

4.2: Address Translation to Data Cache without TLB

Virtual Page Number

1
st
 Level Page Table Index

(10 bits)

2
nd

 Level Page Table Index

(10 bits)

Page Offset

(12 bits)

Figure 4.2.1:Address Translation to Data Cache without TLB.

Get Page Table Base

Register from 1
st
 level

Page Table.

Get Physical Page

Number from 2
nd

 level

Page Table.

Valid

Page Fault Exception

Try Read Data from

Instruction Cache.

Stall CPU while

Reading Block.
Cache Hit

Deliver Data to CPU.

 +

Physical

Address

Virtual Address

Write

Try Write Data to Data

Cache.

Stall CPU while

Reading Block.

Cache Hit

Write Data in Cache and

Update Dirty Bits.

Writeable

Write

Protection

Exception

Yes No

Yes

Yes

No

No

No

No

Yes

Yes

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 48

4.3: Address Translation to Instruction Cache with TLB

Virtual Page Number

1
st
 Level Page Table Index

(10 bits)

2
nd

 Level Page Table Index

(10 bits)

Page Offset

(12 bits)

Figure 4.3.1: Address Translation to Instruction Cache with TLB.

Virtual Address

TLB Access

TLB Hit
No

TLB Miss Exception
Try Read Data from

Instruction Cache.

Stall CPU while

Reading Block.
Cache Hit

Deliver Data to CPU.

Physical

Address

No

Yes

Yes

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 49

4.4: Address Translation to Instruction Cache with TLB

Virtual Page Number

1
st
 Level Page Table Index

(10 bits)

2
nd

 Level Page Table Index

(10 bits)

Page Offset

(12 bits)

Figure 4.4.1: Address Translation to Data Cache with TLB.

Virtual Address

TLB Access

TLB Hit
No

TLB Miss Exception

Physical

Address
Yes

Try Read Data from

Instruction Cache.

Stall CPU while

Reading Block.
Cache Hit

Deliver Data to CPU.

Write

Try Write Data to Data

Cache.

Stall CPU while

Reading Block.

Cache Hit

Write Data in Cache and

Update Dirty Bits.

Writeable

Write

Protection

Exception

Yes

Yes

No

No

No

No

Yes

Yes

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 50

Chapter 5: Memory System Specification

5.1: Features of Memory System

 RISC32 with Integrated Main Memory

SDRAM Yes, 64MB

Instruction TLB Yes, 64 entries

Data TLB Yes, 64 entries

Instruction Cache 2MB

Data Cache 2MB

Data Bus Width 32bits

Instruction Width 32bits

Table 5.1.1: The features of recent RISC32.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 51

5.2: Naming Convention

Module – [lvl]_[mod. name]

Instantiation – [lvl]_[abbr. mod. name]

Pin – [lvl]_[abbr. mod. name]_[Type]_[pin name]

 – [lvl]_[abbr. mod. name]_[Type]_[stage]_[pin name]

Abbreviation:

 Description Case Available Remark

lvl level lower c : Chip

u : Unit

b : Block

mod. name Module

Name

lower all any

abbr. mod.

name

Abbreviated

module

name

lower all any maximum 3 characters

Type Pin type lower o : output

i : input

r : register

w : wire

f- :function

stage Stage name lower all if, id, ex,

mem, wb

pin name Pin name lower all any Several word separate by

“_”

Table 5.2.1: Naming convention.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 52

5.3: Memory Map

Segment Address Purpose

kseg2 – 1GB 0xFFFF FFFF

0xC000 0000

Kernel module,

Page Table allocated here

kseg1 – 512MB 0xBFFF FFFF

0xA000 0000

Boot Rom

I/O Register (if below 512MB)

kseg0 – 512MB 0x9FFF FFFF

0x8000 0000

Direct view of memory to 512MB

kernel code and data.

Exception and Page Table Base

Register allocated here.

kuseg – 2GB 0x7FFF FFFF

0x1000 8000

Stack Segment starts from the ending

address and expand down.

Heap Segment starts from the starting

address and expand top.

0x1000 7FFF

0x1000 0000

Data segmentand Dynamic library

code.

0x09FFF FFFF

0x0040 0000

Code Segment, where the main

program stored.

0x003F FFFF

0x0000 0000

Reserved

Table 5.3.1:The memory map used in this project.

*Note that,

 Stack Segment
o Use for storing automatic variables, which are variables that allocated

and de-allocated automatically when program flow.

 Heap Segment
o Use for dynamic memory allocation such as malloc(), realloc() and free().

 Data Segment

o Use for storing global or static variables that initialize by programmer.

 Code Segment

o Use for storing codes of main program or main program instructions.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 53

5.4: Memory Unit Interface

Figure 5.4.1:The block diagram of memory system.

u_mem_sys

u_mem_sys_i_sdrcntr_ack

u_mem_sys_i_sdrcntr_data[31:0]

u_mem_sys_i_pc[31:0]

u_mem_sys_i_dmem_addr[31:0]

u_mem_sys_i_store_data[31:0]

u_mem_sys_i_mem_re

u_mem_sys_i_mem_we

u_mem_sys_i_test_insert_data_en

u_mem_sys_i_test_data[31:0]

u_mem_sys_i_test_addr[31:0]

u_mem_sys _i_cp0_entryLo [31:0]

u_mem_sys _i_cp0_entryHi[31:0]

u_mem_sys _i_cp0_random [31:0]

u_mem_sys _i_cp0_status [31:0]

u_mem_sys _i_cp0_bAddr [31:0]

u_mem_sys_i_clk

u_mem_sys_i_reset

u_mem_sys_o_instruction [31:0]

u_mem_sys_o_loaded_data [31:0]

u_mem_sys_o_immu_is_stall

u_mem_sys_o_dmmu_is_stall

u_mem_sys_o_mem_is_stall

u_mem_sys_o_sdrctnr_host_ld_mode

u_mem_sys_o_sdrctnr_stb

u_mem_sys_o_sdrctnr_cyc

u_mem_sys_o_sdrctnr_we

u_mem_sys_o_sdrctnr_sel [3:0]

u_mem_sys_o_sdrctnr_addr [31:0]

u_mem_sys_o_sdrctnr_data [31:0]

u_mem_sys_o_cp0_is_mtc0

u_mem_sys_o_cp0_is_eret

u_mem_sys_o_cp0_reg_data [31:0]

u_mem_sys_o_cp0_reg_address [4:0]

u_mem_sys_o_cp0_tlb_page_fault

u_mem_sys_o_cp0_tlb_miss

u_mem_sys_o_cp0_tlb_addr_excep

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 54

I/O Description

Memory System’s Input Pin Description

Pin Name:

u_mem_sys_i_sdrcntr_ack

Source  Destination:

SDRAM CNTR Memory

System

Registered:

No

Pin Function:

Acknowledge signal to indicate read or write to SDRAM is done.

Pin Name:

u_mem_sys_i_sdrcntr_data [31:0]

Source  Destination:

SDRAM CNTR Memory

System

Registered:

No

Pin Function:

32 bit data read from SDRAM.

Pin Name:

u_mem_sys_i_pc [31:0]

Source  Destination:

Data Path UnitMemory

System

Registered:

No

Pin Function:

32 bits virtual address from program counter.

Pin Name:

u_mem_sys_i_dmem_addr [31:0]

Source  Destination:

Data Path UnitMemory

System

Registered:

No

Pin Function:

32 bits virtual address from ALB.

Pin Name:

u_mem_sys_i_store_data [31:0]

Source  Destination:

Data Path UnitMemory

System

Registered:

No

Pin Function:

32 bits data to be store in data cache or SDRAM.

Pin Name:

mem_sys_i_mem_re

Source  Destination:

Data Path Unit Memory

System

Registered:

No

Pin Function:

Data cache read control signal.

0: Read Disable

1: Read Enable

Pin Name:

u_mem_sys_i_mem_we

Source  Destination:

Data Path Unit Memory

System

Registered:

No

Pin Function:

Data cache write control signal.

0: Write Disable

1: Write Enable

Pin Name:

u_mem_sys_i_test_insert_data_en

Source  Destination:

External Memory System

Registered:

No

Pin Function:

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 55

Control signal to allow data input into SDRAM manually.

0: Data input Disable.

1: Data input Enable.

Pin Name:

u_mem_sys_i_test_data [31:0]

Source  Destination:

External Memory System

Registered:

No

Pin Function:

32 bits TEST data to be write into SDRAM.

Pin Name:

u_mem_sys_i_test_addr [31:0]

Source  Destination:

SDRAM CNTR Memory

System

Registered:

No

Pin Function:

32 bits TEST address to indicate location to store TEST data.

Pin Name:

u_mem_sys _i_cp0_entryLo [31:0]

Source  Destination:

CP0 Memory System

Registered:

No

Pin Function:

32 bits EntryLo register from CP0.

Pin Name:

u_mem_sys _i_cp0_entryHi[31:0]

Source  Destination:

CP0 Memory System

Registered:

No

Pin Function:

32 bits EntryHi register from CP0.

Pin Name:

u_mem_sys _i_cp0_random [31:0]

Source  Destination:

CP0  Memory System

Registered:

No

Pin Function:

32 bits Random register from CP0.

Pin Name:

u_mem_sys _i_cp0_status [31:0]

Source  Destination:

CP0  Memory System

Registered:

No

Pin Function:

32 bits Status register from CP0.

Pin Name:

u_mem_sys _i_cp0_bAddr [31:0]

Source  Destination:

CP0  Memory System

Registered:

No

Pin Function:

32 bits bAddr register from CP0.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 56

Pin Name:

u_mem_sys_i_clk

Source  Destination:

System ClockMemory

System

Registered:

No

Pin Function:

System clock signal.

Pin Name:

u_mem_sys_i_reset

Source  Destination:

System ResetMemory

System

Registered:

No

Pin Function:

System reset signal.

Table 5.4.2: Memory System’s Input Pin Description

Memory System’s Output Pin Description

Pin Name:

u_mem_sys_o_instruction [31:0]

Source  Destination:

Memory System Data

Path Unit

Registered:

No

Pin Function:

32 bits instruction read from instruction cache.

Pin

Name:u_mem_sys_o_loaded_data

[31:0]

Source  Destination:

Memory System Data

Path Unit

Registered:

No

Pin Function:

32 bit data read from data cache.

Pin Name:

u_mem_sys_o_immu_is_stall

Source  Destination:

Memory System Control

Unit

Registered:

No

Pin Function:

Stall signal for CPU when ITLB miss.

0: Stall Disable

1: Stall Enable

Pin Name:

u_mem_sys_o_dmmu_is_stall

Source  Destination:

Memory System Control

Unit

Registered:

No

Pin Function:

Stall signal for CPU when DTLB miss.

0: Stall Disable

1: Stall Enable

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 57

Pin Name:

u_mem_sys_o_mem_is_stall

Source  Destination:

Memory System Control

Unit

Registered:

No

Pin Function:

Stall signal for CPU when icache and dcache miss.

0: Stall Disable

1: Stall Enable

Pin Name:

u_mem_sys_o_sdrctnr_host_ld_mode

Source  Destination:

Memory System 

SDRAM CNTR

Registered:

No

Pin Function:

Asserted to load a new mode into the SDRAM.

Pin Name:

u_mem_sys_o_sdrctnr_stb

Source  Destination:

Memory System 

SDRAM CNTR

Registered:

No

Pin Function:

Asserted to indicate the SDRAM controller is selected.

Pin Name:

u_mem_sys_o_sdrctnr_cyc

Source  Destination:

Memory System 

SDRAM CNTR

Registered:

No

Pin Function:

Asserted to indicate valid bus cycle is in progress.

Pin Name:

u_mem_sys_o_sdrctnr_we

Source  Destination:

Memory System 

SDRAM CNTR

Registered:

Yes

Pin Function:

Asserted to indicate write cycle, deasserted to indicate read cycle.

Pin Name:

u_mem_sys_o_sdrctnr_sel [3:0]

Source  Destination:

Memory System 

SDRAM CNTR

Registered:

No

Pin Function:

Used to indicate where valid data is placed on the input data line during WRITE

cycle and where it should present on the output data line during READ cycle.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 58

Pin Name:

u_mem_sys_o_sdrctnr_addr [31:0]

Source  Destination:

Memory System 

SDRAM CNTR

Registered:

No

Pin Function:

32-bit addresses to SDRAM Controller for read or write.

Pin Name:

u_mem_sys_o_sdrctnr_data [31:0]

Source  Destination:

Memory System 

SDRAM CNTR

Registered:

No

Pin Function:

32-bit data to be written into SDRAM.

Pin Name:

u_mem_sys_o_cp0_is_mtc0

Source  Destination:

Memory System CP0

Registered:

No

Pin Function:

Write enable signal to CP0.

0: Write Disable.

1: Write Enable.

Pin Name:

u_mem_sys_o_cp0_is_eret

Source  Destination:

Memory System CP0

Registered:

Yes

Pin Function:

Restart instruction signal for CP0.

0: Normal operation.

1: Restart exception instruction.

Pin Name:

u_mem_sys_o_cp0_reg_data [31:0]

Source  Destination:

Memory System CP0

Registered:

No

Pin Function:

32 bits data to be written into CP0 register.

Pin Name:

u_mem_sys_o_cp0_reg_address [4:0]

Source  Destination:

Memory System CP0

Registered:

No

Pin Function:

5 bits address to indicate which register of CP0 should be update.

Pin Name:

u_mem_sys_o_cp0_tlb_page_fault

Source  Destination:

Memory System CP0

Registered:

No

Pin Function:

Page fault signal for CP0 to update CAUSE register.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 59

Pin Name:

u_mem_sys_o_cp0_tlb_miss

Source  Destination:

Memory System CP0

Registered:

No

Pin Function:

Status signal to indicate tlb miss.

Pin Name:

u_mem_sys_o_cp0_tlb_addr_excep

Source  Destination:

Memory System CP0

Registered:

No

Pin Function:

Status signal to indicate address exception occur in TLB.

Ttable 5.4.3: Memory System’s Output Pin Description

5.5: Memory System Operating Procedure

1. Start the system

2. Porting appropriate instruction, data, first level page table, second level page table

into SDRAM.

3. Reset the system for at least 2 clocks

4. While release the reset, the system will automatically run the program inside

instruction cache

5. Observe the waveform from the development tools.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 60

Chapter 6: Architecture Specification

6.1: Unit Partition of Memory System

Figure 6.1.1: Unit partition of memory system.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 61

6.2 Design hierarchy
Chip Partitioning at System

Level

Unit Partitioning at

Architecture Level

Block and Functional Block

Partitioning at RTL Level

(Micro-Architecture Level)

c_risc32_full u_data_path_full b_reg_file

b_alb_32

b_mult_32

b_branch_pred

u_ctrl_path_full b_alb_ctrl

b_iag_ctrl

b_main_ctrl

b_fwrd

b_itl_ctrl

u_mem_sys b_cache (for instruction)

b_cache (for data)

b_tlb (for instruction)

b_tlb (for data)

b_mmu (for instruction)

b_mmu (for data)

u_cp0 b_cp0_dc

b_cp0_regfile

Structural description Structural

description/Behavioral

description

Behavioral description

Table 6.1.1: Formation of a design hierarchy for Full RISC32 microprocessor through

top down design methodology

*Note that this design is provided as a mindset for future improvement.

*Since the memory system is not ready yet to connect with current RISC32, the following

will be discussing what had been done in this project.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 62

Figure 6.2.1: Full RISC32’s Architecture and Micro-Architecture Partitioning

c_risc32_full

u_cp(u_ctrl_path_full)

b_fwr(b_fwrd)

b_mc(b_main_ctrl)

b_icb(b_itl_ctrl)

b_alc(b_alb_ctrl)

b_iac(b_iag_ctrl)

b_rf(b_reg_file)

u_dp(u_data_path_full)

b_bpb(b_bran_pred) b_alb(b_alu_32) b_mul(b_mult_32)

b_dc(b_cache) b_ic(b_cache)

u_mem(u_memory)

b_dtlb(b_tlb) b_itlb(b_tlb) b_dmmu(b_mmu)

b_immu(b_mmu)

b_cp0_regfile (b_cp0_regfile) b_cp0_dc (b_cp0_dc)

u_cp0(u_cp0)

b_sdc_mc b_sdc_fsm

u_sdram_controller

b_sdc_dp_buf b_sdc_sdram_if b_sdc_addr_mux

b_obrt_top_obrt_unit

u_sdram

Physical Memory

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 63

6.3: Memory Unit

*Refer to chapter 4, Memory System Specification.

6.4: CP0 unit

Figure 6.4.1: Block diagram for co-processor 0 which used to process and store

exception/interrupt information.

u_cp0

u_cp0_i_mtc0

u_cp0_i_is_eret

u_cp0_i_current_pc_2_EPC[31:0]

u_cp0_i_intr_vector[5:0]

u_cp0_i_overflow_signal

u_cp0_i_reg_data[31:0]

u_cp0_i_reg_address[4:0]

u_cp0_i_tlb_miss

u_cp0_i_tlb_addr_excep

u_cp0_i_page_fault

u_cp0_i_sys_clock

u_cp0_reg_i_sys_reset

u_cp0_o_cp0_reg_data[31:0]

u_cp0_o_excep_handler_address[31:0]

u_cp0_o_entryLo_reg_data[31:0]

u_cp0_o_entryHi_reg_data[31:0]

u_cp0_o_random_reg_data[31:0]

u_cp0_o_baddr_reg_data[31:0]

u_cp0_o_status_reg_data[31:0]

u_cp0_o_is_intr

u_cp0_o_is_overflow

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 64

Overview of CP0’s register used in Memory System

1. Random Register

Figure 6.4.2: Random register structure.

*Note that,

 SLOT – 6 bits value used to choose which TLB entries to be overwrite when TLB

miss occurs. This value is increment every clock cycle.

2. Status Register

Figure 6.4.3: Statusregister structure.

*Note that,

 abcdTEMZSI–Not related in this project. Set to 0.

 B - Boot flag.

 H - Hardware interrupt enable bit, lines 0-5.

 F - Software interrupt enable bit, lines 0-1.

 KU - 1 if user mode, 0 if kernel mode.

 IE - 1 if interrupts enabled, 0 if disabled. See below regarding o/p/c.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 65

3. EntryLo Register

Figure 6.4.4: EntryLo register structure.

*Note that,

 PPAGE - Physical page number for TLB entry.

 N - Noncached; if set, accesses via TLB entry will be uncached.

 D - Dirty; if set, write accesses via TLB entry will be permitted; otherwise

exception occurs.

 V - Valid; if set, accesses via TLB entry will be permitted; otherwise exception

occurs.

 G - Global; if set, the ASID field will be ignored when matching TLB entry.

4. EntryHi Register

Figure 6.4.5: EntryHi register structure.

*Note that,

 VPAGE - virtual page number for TLB entry.

 ASID - address space ID for TLB entry.

5. Baddr Register

Figure 6.4.6: Baddrregister structure.

*Note that Baddr register is used to store PC value where exception occurs.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 66

I/O Description

CP0’s Input Pin Description

Pin Name:

u_cp0_i_mtc0

Source 

Destination:ControlPath

Unit  Co-Processor 0

Unit

Registered:

No

Pin Function:

1 bit flag indicate instruction mtc0.

0: Not mtc0 instruction

1: mtc0 instruction

Pin Name:

u_cp0_i_is_eret

Source 

Destination:Control

PathUnit Co-Processor 0

Unit

Registered:

No

Pin Function:

1 bit flag indicate instruction eret.

0: not eret instruction

1: eret instruction

Pin Name:

u_cp0_i_current_pc_2_EPC [31:0]

Source 

Destination:Datapath

Unit Co-Processor 0 Unit

Registered:

No

Pin Function:

32 bit of current Program Counter (PC) value.

Pin Name:

u_cp0_i_intr_vector [5:0]

Source 

Destination:Externaldevice

 Co-Processor 0 Unit

Registered:

No

Pin Function:

Each bit of this input is indicating interrupt signal from external device.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 67

Pin Name:

u_cp0_i_overflow_signal

Source 

Destination:Datapath

Unit Co-Processor 0 Unit

Registered:

No

Pin Function:

1 bit flag indicate overflow happen.

0: no overflow happen

1: overflow happened

Pin Name:

u_cp0_i_reg_data [31:0]

Source 

Destination:Datapath

Unit Co-Processor 0 Unit

Registered:

No

Pin Function:

32 bit data to be store in CP0 register file.

Pin Name:

u_cp0_i_reg_address [4:0]

Source 

Destination:Datapath

Unit Co-Processor 0 Unit

Registered:

No

Pin Function:

Address indicates CP0 register file location.

Pin Name:

u_cp0_i_tlb_miss

Source  Destination:

Memory Unit  Co-

Processor 0 Unit

Registered:

No

Pin Function:

1 bit flag to indicate TLB miss.

0: No TLB miss occurs.

1: TLB miss occurs.

Pin Name:

u_cp0_i_tlb_addr_excep

Source  Destination:

Memory Unit  Co-

Processor 0 Unit

Registered:

No

Pin Function:

1 bit flag to indicate TLB address exception.

0: No TLB address exception occurs.

1: TLB address exception occurs.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 68

Pin Name:

u_cp0_i_page_fault

Source  Destination:

Memory Unit  Co-

Processor 0 Unit

Registered:

No

Pin Function:

1 bit flag to indicate page fault.

0: No page fault occurs.

1: Page fault occurs.

Pin Name:

u_cp0_i_sys_clock

Source  Destination:

Micro-processor  Co-

Processor 0 Unit

Registered:

No

Pin Function:

Synchronous System clock.

Pin Name:

u_cp0_reg_i_sys_reset

Source  Destination:

Micro-processor  Co-

Processor 0 Unit

Registered:

No

Pin Function:

Global reset signal.

Table 6.4.1: CP0’s Input Pin Description

CP0’s Output Pin Description

Pin Name:

u_cp0_o_cp0_reg_data [31:0]

Source  Destination:

Co-processor 0

UnitDatapath Unit

Registered:

No

Pin Function:

32 bit Co-processor 0 registers value to be store in main Register File.

Pin Name:

u_cp0_o_excep_handler_address

[31:0]

Source  Destination:

Co-processor 0

UnitDatapath Unit

Registered:

No

Pin Function:

32 bit Program Counter (PC) address.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 69

Pin Name:

u_cp0_o_entryLo_reg_data [31:0]

Source  Destination:

Co-processor 0 Unit

Memory Unit

Registered:

No

Pin Function:

32 bits EntryLo register data.

Pin Name:

u_cp0_o_entryHi_reg_data

[31:0]

Source  Destination:

Co-processor 0 Unit

Memory Unit

Registered:

No

Pin Function:

32 bits EntryHi register data.

Pin Name:

u_cp0_o_random_reg_data

[31:0]

Source  Destination:

Co-processor 0 Unit

Memory Unit

Registered:

No

Pin Function:

32 bits Random Register Data.

Pin Name:

u_cp0_o_baddr_reg_data[31:0]

Source  Destination:

Co-processor 0 Unit

Memory Unit

Registered:

No

Pin Function:

32 bits Baddr register data.

Pin Name:

u_cp0_o_status_reg_data

[31:0]

Source  Destination:

Co-processor 0 Unit

Memory Unit

Registered:

No

Pin Function:

32 bits Status register data.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 70

Pin Name:

u_cp0_o_is_intr

Source  Destination:

Co-processor 0

UnitControlPath Unit

Registered:

No

Pin Function:

1 bit signal to Control Unit to indicate interrupt happen.

0: No interrupt

1: Interrupt happened

Pin Name:

u_cp0_o_is_overflow

Source  Destination:

Co-processor 0

UnitControlPath Unit

Registered:

No

Pin Function:

1 bit signal to Control Unit to indicate overflow happen.

0: No Overflow

1: Overflow happened

Table 6.4.2: CP0’s Output Pin Description

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 71

6.5: SDRAM Controller

Figure 6.5.1: Block diagram for SDRAM controller.[Modified from [9]]

*Note that for the previous design of SDRAM Controller is based on 16MB of SDRAM

provided by Micron. In order to communicate with a 64MB SDRAM, some modification

had been made.

u_sdram_controller

ip_host_ld_mode

ip_wb_stb

ip_wb_cyc

ip_wb_we

ip_wb_sel[3:0]

ip_wb_addr[31:0]

ip_wb_data[31:0]

op_wb_ack

op_wb_data[31:0]

ip_wb_clk

ip_wb_rst

op_sdr_cs_n

op_sdr_ras_n

op_sdr_cas_n

op_sdr_we_n

op_sdr_dqm[3:0]

op_sdr_ba[1:0]

op_sdr_addr[13:0]

io_sdr_dq[31:0]

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 72

I/O Description

SDRAM Controller’s Input Pin Description

Pin Name:

ip_host_ld_mode

Source  Destination:

Memory Unit  SDRAM

Controller

Registered:

No

Pin Function:

Asserted to load a new mode into the SDRAM.

Pin Name:

ip_wb_stb

Source  Destination:

Memory Unit  SDRAM

Controller

Registered:

No

Pin Function:

Asserted to indicate the SDRAM controller is selected.

Pin Name:

ip_wb_cyc

Source  Destination:

Memory Unit  SDRAM

Controller

Registered:

No

Pin Function:

Asserted to indicate valid bus cycle is in progress.

Pin Name:

ip_wb_we

Source  Destination:

Memory Unit  SDRAM

Controller

Registered:

No

Pin Function:

Asserted to indicate that the current cycle is READ. Deasserted to indicate current

cycle is WRITE.

Pin Name:

ip_wb_sel[3:0]

Source  Destination:

Memory Unit  SDRAM

Controller

Registered:

No

Pin Function:

Used to indicate where valid data is placed on the input data line (ip_wb_dat) during

WRITE cycle and where it should present on the output data line (op_wb_dat) during

READ cycle.

Pin Name:

ip_wb_addr[31:0]

Source  Destination: Memory

Unit  SDRAM Controller

Registered:

No

Pin Function:

Used to pass the memory address from the host.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 73

Pin Name:

ip_wb_data[31:0]

Source  Destination:

Memory Unit  SDRAM

Controller

Registered:

No

Pin Function:

Used to pass WRITE data from the host.

Pin Name:

ip_wb_clk

Source  Destination: Memory

Unit  SDRAM Controller

Registered:

No

Pin Function:

Clock signal to synchronize to the system.

Pin Name:

ip_wb_rst

Source  Destination: System

Clock SDRAM Controller

Registered:

No

Pin Function:

Synchronous reset to reinitialize the system.

Table 6.5.1: SDRAM Controller’s Input Pin Description

SDRAM Controller’s Output Pin Description

Pin Name:

op_wb_ack

Source  Destination:

SDRAM Controller 

Memory Unit

Registered:

No

Pin Function:

Asserted to indicate that the current READ or WRITE operation is successful.

Pin Name:

op_wb_data[31:0]

Source  Destination:

SDRAM Controller 

Memory Unit

Registered:

No

Pin Function:

Used to output READ data from the SDRAM.

Pin Name:

op_sdr_cs_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM chip select.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 74

Pin Name:

op_sdr_ras_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM row address select.

Pin Name:

op_sdr_cas_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM column address select.

Pin Name:

op_sdr_we_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM write enable.

Pin Name:

op_sdr_dqm[3:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

Used to select which bits of the data line (io_sdr_dq) to be masked.

Pin Name:

op_sdr_ba[1:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

Bank Address output to SDRAM.

Pin Name:

op_sdr_addr[13:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

14 bits address output to the SDRAM.

Pin Name:

io_sdr_dq[31:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

Bidirectional data line to receive READ data or send WRITE data.

Table 6.5.2: SDRAM Controller’s Output Pin Description

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 75

6.6: 64 MB SDRAM

Figure 6.6.1: Block diagram for SDRAM. .[Modified from [9]]

I/O Description

SDRAM’s Input Pin Description

Pin Name:

op_sdr_cs_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM chip select.

Pin Name:

op_sdr_ras_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM row address select.

Pin Name:

op_sdr_cas_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM column address select.

u_sdram

ba[1:0]

adr[13:0]

dq[31:0]

dqm[3:0]

cs_n

we_n

cas_n

ras_n

clk

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 76

Pin Name:

op_sdr_we_n

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

SDRAM write enable.

Pin Name:

op_sdr_dqm[3:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

Used to select which bits of the data line (io_sdr_dq) to be masked.

Pin Name:

op_sdr_ba[1:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

Bank Address output to SDRAM.

Pin Name:

op_sdr_addr[13:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

14 bits address output to the SDRAM.

Pin Name:

io_sdr_dq[31:0]

Source  Destination:

SDRAM Controller 

SDRAM

Registered:

No

Pin Function:

Bidirectional data line to receive READ data or send WRITE data.

Table 6.6.1: SDRAM’s Input Pin Description

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 77

Chapter 7: Micro-Architecture Specification

Figure 7.1.1: Partition of Memory System

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 78

7.1 Translation Lookaside Buffer (TLB)

Figure 7.1.2:Block diagram for TLB.

 Translation Lookaside Buffer is just like a cache which holds some of the page

table entries which can be reside either in physical memory or disk. Its responsibility

including translate virtual address given by CPU into a physical address and ensure each

user process does not able to access to kernel segment. In this project, assume that

instruction TLB and data TLB is the same.

Feature:

1. Consist of 64 entries.

2. Fully associative.

3. Capable to handle TLB Miss together with MMU (Memory Management Unit).

b_tlb

b_tlb_i_cp0_entryLo [31:0]

b_tlb_i_cp0_random[31:0]

b_tlb_i_cp0_entryHi[31:0]

b_tlb_i_cp0_status[31:0]

b_tlb_i_cp0_bAddr[31:0]

b_tlb_i_cpu_vaddr[31:0]

b_tlb_i_mmu_tlbwr

b_tlb_i_sys_clock

b_tlb_i_sys_reset

b_tlb_o_c_paddr[31:0]

b_tlb_o_tlb_miss

b_tlb_o_addr_excep

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 79

Address Translation Scenario

 Based on what we had discussed in previous chapter, we know that the address

translation is important for us to get the physical address which used to either write or

read data. Figure 5.3.1 and 5.4.1 give a clearer picture which told us that the cache miss

and TLB miss are the independent event that a cache miss only can occur when there is a

TLB hit. On the other way is means that the data must be present inside the main memory

only we can access to cache. To further discuss about this, the table below provide us a

simplest way to examine the relationship between cache and TLB.

TLB Page Table Cache Events Possible? If so, under what circumstance?

hit hit miss Possible, although the page table is never really check

after TLB hits.

miss hit hit Possible, although TLB misses, entry found in page

table; after retry, data found in cache.

miss hit miss Possible, although TLB misses, entry found in page

table; after retry, data misses in cache.

miss miss miss Possible, TLB misses follow by page fault, data must

misses in cache.

hit hit hit Possible, although the page table is never really check

after TLB hits.

hit miss miss Impossible, TLB must misses if page is not present in

main memory.

hit miss hit Impossible, TLB must misses if page is not present in

main memory.

miss miss hit Impossible, data must misses in cache if page is not

present in main memory.

Table 7.1.1: Possible combinations of events in the TLB, virtual memory system and

cache.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 80

I/O Description

TLB’s Input Pin Description

Pin Name:

b_tlb_i_cp0_entryLo [31:0]

Source  Destination:

CP0  TLB

Registered:

No

Pin Function:

32 bits EntryLo register from CP0.

Pin Name:

b_tlb_i_cp0_random [31:0]

Source  Destination:

CP0  TLB

Registered:

No

Pin Function:

32 bits Random register from CP0.

Pin Name:

b_tlb_i_cp0_entryHi [31:0]

Source  Destination:

CP0  TLB

Registered:

No

Pin Function:

32 bits EntryHi register from CP0.

Pin Name:

b_tlb_i_cp0_status [31:0]

Source  Destination:

CP0  TLB

Registered:

No

Pin Function:

32 bits Status register from CP0.

Pin Name:

b_tlb_i_cp0_bAddr [31:0]

Source  Destination:

CP0  TLB

Registered:

No

Pin Function:

32 bits Baddr register from CP0.

Pin Name:

b_tlb_i_cpu_vaddr [31:0]

Source  Destination:

CPU  TLB

Registered:

No

Pin Function:

32 bits address virtual address from CPU.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 81

Pin Name:

b_tlb_i_mmu_tlbwr

Source  Destination:

MMU  TLB

Registered:

No

Pin Function:

1 bit flag to enable write to TLB entry.

0: Write Disable.

1: Write Enable.

Pin Name:

b_tlb_i_sys_clock

Source  Destination:

System Clock  TLB

Registered:

No

Pin Function:

System clock signal

Pin Name:

b_tlb_i_sys_reset

Source  Destination:

System Reset  TLB

Registered:

No

Pin Function:

System reset signal

Table 7.1.2: TLB’s Input Pin Description

TLB’s Output Pin Description

Pin Name:

b_tlb_o_c_paddr [31:0]

Source  Destination:

TLB  Cache

Registered:

No

Pin Function:

32 bits physical address output to cache.

Pin Name: b_tlb_o_tlb_miss Source  Destination:

TLBCP0 & MMU

Registered:

No

Pin Function:

1 bit flag to indicate TLB miss.

0: No TLB miss.

1: TLB miss.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 82

Pin Name:

b_tlb_o_addr_excep

Source  Destination:

TLBCP0

Registered:

No

Pin Function:

1 bit flag to indicate TLB address exception.

0: No TLB address exception.

1: TLB address exception.

Table 7.1.3: TLB’s Output Pin Description

Functionality

1. Compare with Status register to determine TLB address exception.

2. Able to translation virtual address to physical address based on the TLB entries.

3. Send out miss signal when there are no entries matched.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 83

7.2 Memory Management Unit (MMU)

Figure 7.2.1: Block diagram for MMU.

 Memory Management Unit is responsible to handle the page table walk through

when TLB Miss occurs. In this project, two-level page table is used. Therefore, for each

time TLB miss and invoke MMU to handle Page Table Entries (PTE) transfer, physical

memory has to be access twice to get the appropriate PTE.

u_mmu

u_mmu_i_sdrcntr_ack

u_mmu_i_sdrcntr_data[31:0]

u_mmu_i_vaddr[31:0]

u_mmu_i_tlb_miss

u_mmu_i_sys_clock

u_mmu_i_sys_reset

u_mmu_o_tlb_page_fault

u_mmu_o_tlb_write_enable

u_mmu_o_cp0_rwen

u_mmu_o_cp0_is_mtc0

u_mmu_o_cp0_is_eret

u_mmu_o_cp0_reg_address[4:0]

u_mmu_o_cp0_reg_data[31:0]

u_mmu_o_cpu_stall

u_mmu_o_sdrctnr_host_ld_mode

u_mmu_o_sdrctnr_stb

u_mmu_o_sdrctnr_cyc

u_mmu_o_sdrctnr_we

u_mmu_o_sdrctnr_sel[3:0]

u_mmu_o_sdrctnr_addr[31:0]

u_mmu_o_sdrctnr_data[31:0]

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 84

I/O Description

MMU’s Input Pin Description

Pin Name:

u_mmu_i_sdrcntr_ack

Source  Destination:

SDRAM

ControllerMMU

Registered:

No

Pin Function:

Acknowledge signal from SDRAM Controller asserted to indicate whether completion

of read or write operation.

Pin Name:

u_mmu_i_sdrcntr_data[31:0]

Source  Destination:

SDRAM

ControllerMMU

Registered:

No

Pin Function:

32 bits read data from SDRAM Controller.

Pin Name:

u_mmu_i_vaddr[31:0]

Source  Destination:

Data Path UnitMMU

Registered:

No

Pin Function:

32 bits virtual address from data path unit.

Pin Name:

u_mmu_i_tlb_miss

Source  Destination:

TLBMMU

Registered:

No

Pin Function:

TLB miss signal from TLB.

Pin Name:

u_mmu_i_sys_clock

Source  Destination:

System ClockMMU

Registered:

No

Pin Function:

System Clock Signal.

Pin Name:

u_mmu_i_sys_reset

Source  Destination:

System ResetMMU

Registered:

No

Pin Function:

System Reset Signal.

Table 7.2.1: MMU’s Input Pin Description

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 85

MMU’s Output Pin Description

Pin Name:

u_mmu_o_tlb_page_fault

Source  Destination:

MMU CP0

Registered:

No

Pin Function:

1 bit signal asserted to indicate page fault happen.

Pin Name:

u_mmu_o_tlb_write_enable

Source  Destination:

MMU TLB

Registered:

No

Pin Function:

1 bit signal asserted toenable write in TLB.

Pin Name:

u_mmu_o_cp0_rwen

Source  Destination:

MMU Multiplexer

Registered:

No

Pin Function:

1 bit signal to select which data should go to CP0 between IMMU and DMMU.

Pin Name:

u_mmu_o_cp0_is_mtc0

Source  Destination:

MMU CP0

Registered:

No

Pin Function:

Instruction signal to insert data into CP0 register file.

Pin Name:

u_mmu_o_cp0_is_eret

Source  Destination:

MMU CP0

Registered:

No

Pin Function:

1 bit signal to indicate end of TLB miss by sending the signal to CP0 and CP0 will

restart the instruction by loading address store in EPC register.

Pin Name:

u_mmu_o_cp0_reg_address[4:

0]

Source  Destination:

MMU CP0

Registered:

No

Pin Function:

5 bits register address to be update.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 86

Pin Name:

u_mmu_o_cp0_reg_data[31:

0]

Source  Destination:

MMU CP0

Registered:

No

Pin Function:

32 bits register data to be update in CP0 register file.

Pin Name:

u_mmu_o_cpu_stall

Source  Destination:

MMU Control Unit

Registered:

No

Pin Function:

Stall signal to control unit when TLB miss.

Pin Name:

u_mmu_o_sdrctnr_host_ld_

mode

Source  Destination:

MMU SDRAM

Controller

Registered:

No

Pin Function:

Asserted to load a new mode into the SDRAM.

Pin Name:

u_mmu_o_sdrctnr_stb

Source  Destination:

MMU SDRAM

Controller

Registered:

No

Pin Function:

Asserted to indicate the SDRAM controller is selected.

Pin Name:

u_mmu_o_sdrctnr_cyc

Source  Destination:

MMU SDRAM

Controller

Registered:

No

Pin Function:

Asserted to indicate valid bus cycle is in progress.

Pin Name:

u_mmu_o_sdrctnr_we

Source  Destination:

MMU SDRAM

Controller

Registered:

No

Pin Function:

Asserted to indicate that the current cycle is READ. Deasserted to indicate current

cycle is WRITE.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 87

Pin Name:

u_mmu_o_sdrctnr_sel[3:0

]

Source  Destination:

MMU SDRAM

Controller

Registered:

No

Pin Function:

Used to indicate where valid data is placed on the input data line (ip_wb_dat) during

WRITE cycle and where it should present on the output data line (op_wb_dat) during

READ cycle.

Pin Name:

u_mmu_o_sdrctnr_add

r[31:0]

Source  Destination:

MMU SDRAM

Controller

Registered:

No

Pin Function:

32 bits address to read or write from SDRAM.

Pin Name:

u_mmu_o_sdrctnr_dat

a[31:0]

Source  Destination:

MMU SDRAM

Controller

Registered:

No

Pin Function:

32 bits data to be write into SDRAM.

Table 7.2.2: MMU’s Output Pin Description

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 88

Memory Management Unit (MMU) Protocol

Figure 7.2.2: MMU protocol.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 89

Output for each state in MMU protocol

State Output
INIT u_mmu_o_tlb_page_fault <= 1'b0;

u_mmu_o_tlb_write_enable <= 1'b0;

u_mmu_o_cp0_rwen <= 1'b0;

u_mmu_o_cp0_is_eret <= 1'b0;

u_mmu_o_cp0_is_mtc0 <= 1'b0;

u_mmu_o_cp0_reg_address <= 5'bz;

u_mmu_o_cp0_reg_data <= 32'bz;

u_mmu_o_cpu_stall <= 1'b0;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b0;

u_mmu_o_sdrctnr_cyc <= 1'b0;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b0;

u_mmu_o_sdrctnr_addr <= 32'bz;

u_mmu_o_sdrctnr_data <= 32'bz;

READ_PTBR u_mmu_o_tlb_page_fault <= 1'b0;

u_mmu_o_tlb_write_enable <= 1'b0;

u_mmu_o_cp0_rwen <= 1'b0;

u_mmu_o_cp0_is_eret <= 1'b0;

u_mmu_o_cp0_is_mtc0 <= 1'b0;

u_mmu_o_cp0_reg_address <= 5'bz;

u_mmu_o_cp0_reg_data <= 32'bz;

u_mmu_o_cpu_stall <= 1'b1;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b1;

u_mmu_o_sdrctnr_cyc <= 1'b1;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b1111;

u_mmu_o_sdrctnr_addr <=

{6'b0,14'b00_0000_0000_0000,u_mmu_i_vaddr[31:22],2'

b0};

u_mmu_o_sdrctnr_data <= 32'bz;

CHECK_VALID u_mmu_o_tlb_page_fault <= 1'b0;

u_mmu_o_tlb_write_enable <= 1'b0;

u_mmu_o_cp0_rwen <= 1'b0;

u_mmu_o_cp0_is_eret <= 1'b0;

u_mmu_o_cp0_is_mtc0 <= 1'b0;

u_mmu_o_cp0_reg_address <= 5'bz;

u_mmu_o_cp0_reg_data <= 32'bz;

u_mmu_o_cpu_stall <= 1'b1;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b0;

u_mmu_o_sdrctnr_cyc <= 1'b0;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b0;

u_mmu_o_sdrctnr_addr <= 32'bz;

u_mmu_o_sdrctnr_data <= 32'bz;

PAGE_FAULT u_mmu_o_tlb_page_fault <= 1'b1;

u_mmu_o_tlb_write_enable <= 1'b0;

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 90

u_mmu_o_cp0_rwen <= 1'b0;

u_mmu_o_cp0_is_eret <= 1'b0;

u_mmu_o_cp0_is_mtc0 <= 1'b0;

u_mmu_o_cp0_reg_address <= 5'bz;

u_mmu_o_cp0_reg_data <= 32'bz;

u_mmu_o_cpu_stall <= 1'b1;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b0;

u_mmu_o_sdrctnr_cyc <= 1'b0;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b0;

u_mmu_o_sdrctnr_addr <= 32'bz;

u_mmu_o_sdrctnr_data <= 32'bz;

READ_PTE u_mmu_o_tlb_page_fault <= 1'b0;

u_mmu_o_tlb_write_enable <= 1'b0;

u_mmu_o_cp0_rwen <= 1'b0;

u_mmu_o_cp0_is_eret <= 1'b0;

u_mmu_o_cp0_is_mtc0 <= 1'b0;

u_mmu_o_cp0_reg_address <= 5'bz;

u_mmu_o_cp0_reg_data <= 32'bz;

u_mmu_o_cpu_stall <= 1'b1;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b1;

u_mmu_o_sdrctnr_cyc <= 1'b1;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b1111;

u_mmu_o_sdrctnr_addr <=

{6'b0,u_mmu_r_buffer[13:0],u_mmu_i_vaddr[21:12],2'b

0};

u_mmu_o_sdrctnr_data <= 32'bz;
UPDATE_ENTRYL

O
u_mmu_o_tlb_page_fault <= 1'b0;

u_mmu_o_tlb_write_enable <= 1'b0;

u_mmu_o_cp0_rwen <= 1'b1;

u_mmu_o_cp0_is_eret <= 1'b0;

u_mmu_o_cp0_is_mtc0 <= 1'b1;

u_mmu_o_cp0_reg_address <= 5'b00010;

u_mmu_o_cp0_reg_data <=

{u_mmu_r_buffer[19:0],u_mmu_r_buffer[23:20],8'b0};

u_mmu_o_cpu_stall <= 1'b1;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b0;

u_mmu_o_sdrctnr_cyc <= 1'b0;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b0;

u_mmu_o_sdrctnr_addr <= 32'bz;

u_mmu_o_sdrctnr_data <= 32'bz;

UPDATE_TLB u_mmu_o_tlb_page_fault <= 1'b0;

u_mmu_o_tlb_write_enable <= 1'b1;

u_mmu_o_cp0_rwen <= 1'b0;

u_mmu_o_cp0_is_eret <= 1'b0;

u_mmu_o_cp0_is_mtc0 <= 1'b0;

u_mmu_o_cp0_reg_address <= 5'b0;

u_mmu_o_cp0_reg_data <= 32'bz;

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 91

u_mmu_o_cpu_stall <= 1'b1;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b0;

u_mmu_o_sdrctnr_cyc <= 1'b0;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b0;

u_mmu_o_sdrctnr_addr <= 32'bz;

u_mmu_o_sdrctnr_data <= 32'bz;

RESTART_INS u_mmu_o_tlb_page_fault <= 1'b0;

u_mmu_o_tlb_write_enable <= 1'b0;

u_mmu_o_cp0_rwen <= 1'b1;

u_mmu_o_cp0_is_eret <= 1'b1;

u_mmu_o_cp0_is_mtc0 <= 1'b0;

u_mmu_o_cp0_reg_address <= 5'b0;

u_mmu_o_cp0_reg_data <= 32'bz;

u_mmu_o_cpu_stall <= 1'b1;

u_mmu_o_sdrctnr_host_ld_mode <= 1'b0;

u_mmu_o_sdrctnr_stb <= 1'b0;

u_mmu_o_sdrctnr_cyc <= 1'b0;

u_mmu_o_sdrctnr_we <= 1'b0;

u_mmu_o_sdrctnr_sel <= 4'b0;

u_mmu_o_sdrctnr_addr <= 32'bz;

u_mmu_o_sdrctnr_data <= 32'bz;

Table 7.2.3: Output for each state in MMU protocol

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 92

Chapter 8: Verification Specification

8.1: Test Plan of Memory Unit

Test Case Expected Result

Load Page Table and Page

to SDRAM.

 Observe from SDRAM read/write transcript to

ensure the data had been successfully written into

SDRAM.

Instruction TLB Miss  Instruction MMU read First Level Page Table Entry.

 Instruction MMU read Second Level Page Table

Enrty.

 IMMU stall signal deasserted.

Data TLB Miss  Data MMU read First Level Page Table Entry.

 Data MMU read Second Level Page Table Enrty.

 DMMU stall signal deasserted.

Instruction Cache Miss  Instruction Cache sends address to read from

SDRAM.

 SDRAM response by sending back data and

acknowledge signal.

 Repeat Step 1 and 2 for 8 times.

 Instruction output from instruction cache.

Data Cache Miss  Data Cache sends address to read from SDRAM.

 SDRAM response by sending back data and

acknowledge signal.

 Repeat Step 1 and 2 for 8 times.

 Data output from data cache.

Table 8.1.1: Test Plan of Memory Unit

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 93

8.1.1: Test Procedure

1. System reset.

2. Porting appropriate data to CP0 registers.

3. Insert data into SDRAM by using the test signal, u_mem_sys_test_insert_data_en,

u_mem_sys_i_test_data and u_mem_sys_i_test_addr.

 Atleast 3 data needed to get the memory system run.

i. First level Page Table.

ii. Second level Page Table.

iii. 8 sequential data to be read by cache when cache misses.

4. System reset and let the memory system run itself.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 94

8.2: Simulation Result for Memory System

8.2.1: Load Page Table and Page to SDRAM

Figure 8.2.1: System Reset, follow by loading First Level Page Table Entry into SDRAM.

Figure 8.2.2: After 19 clock cycles, First Level Page Table Entry successfully loaded into SDRAM.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 95

Figure 8.2.3: Loading Second Level Page Table Entry into SDRAM.

Figure 8.2.4: Loading Pages into SDRAM (Part 1).

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 96

Figure 8.2.5: Loading Pages into SDRAM (Part 2) follow by System Reset to initiate the system.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 97

8.2.2: ITLB MISS

Figure 8.2.6: ITLB miss occurs, IMMU take over to fetch First Level Page Table Entry from SDRAM. (Take 19 clock cycles)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 98

Figure 8.2.7: IMMU take over to fetch Second Level Page Table Entry from SDRAM. (Take 12 clock cycles)

Figure 8.2.8: Updating ITLB Entry.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 99

Figure 8.2.9: ITLB HIT.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 100

8.2.3: DTLB MISS

Figure 8.2.10: DTLB miss occurs, DMMU take over to fetch First Level Page Table Entry from SDRAM. (Take 9 clock cycles)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 101

Figure 8.2.11: DMMU take over to fetch Second Level Page Table Entry from SDRAM. (Take 9 clock cycles)

Figure8.2.12: Updating DTLB Entry.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 102

Figure 8.2.13: DTLB HIT.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 103

8.2.4: Instruction Cache Miss

Figure 8.2.14: Instruction cache misses, transferring block from SDRAM (Part 1). (Take 6 clock cycles for first access)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 104

Figure 8.2.15: Instruction cache misses, transferring block from SDRAM (Part 2). (Take 4 clock cycles for subsequence access)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 105

Figure 8.2.16: Instruction cache misses, transferring block from SDRAM (Part 3). (Take 4 clock cycles for subsequence access)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 106

Figure 8.2.17: Instruction cache Hit, instruction is successfully read from cache.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 107

8.2.5: Data Cache Miss

Figure 8.2.18: Data cache misses, transferring block from SDRAM (Part 1). (Take 6 clock cycles for first access)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 108

Figure 8.2.19: Data cache misses, transferring block from SDRAM (Part 2). (Take 4 clock cycles for subsequence access)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 109

Figure 8.2.20: Data cache misses, transferring block from SDRAM (Part 3). (Take 4 clock cycles for subsequence access)

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 110

Figure 8.2.21: ITLB, DTLB, ICACHE, DCACHE hit. Data and instruction successfully loaded.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 111

Figure 8.2.22: SDRAM read/write transcript.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 112

Chapter 9: Discussion and Conclusion

9.1: Discussion & Conclusion

 Virtual Memory system is the memory management technique which unavoidable,

every processor has to use it due to limitation of the size for physical memory. When we

adopt virtual memory, Translation Lookaside Buffer plays an important role to determine

the speed of the processor. Although without the existence of Translation Lookaside

Buffer, processor still can run as usual. Just that for each time of address translation, the

processor has to access SDRAM twice if we are using two level hierarchy page tables.

Imagine that for each instruction, we have to spend around 40-50 clock cycles to process

it, how slow will the processor be. Therefore, Translation Lookaside Buffer is

implemented to solve this problem.

 Translation Lookaside Buffer is mainly used to store some of the page table

entries reside in physical memory. Whenever there is a TLB miss, page table walkthrough

need to be conducted to fetch the page table entry out from physical memory and update

TLB. To handle this situation, either software, TLB miss is handling by a series of kernel

process or hardware, page table walk through is conducted by using hardware. In this

project, we are using hardware method in which Memory Management Unit has been

implemented in this project to take care about page table walk through.

 In this project, 64 entries TLB, MMU, 2MB Cache, 64MB SDRAM has been

successfully connected and its behavior has been test during the verification stage.

However, there is some error occurs at cache in which it will sending one time more

address to SDRAM which causes an invalid READ operation at SDRAM. Although all

the data had been successfully read into cache, one of the entry does not write into cache

memory which might causes data loss.

The following list is the outcome of this project:-

 Status

TLB Enhanced & Verified

MMU Enhanced & Verified

SDRAM Enhanced & Verified

Memory Unit Enhanced & Verified

Table 9.1.1: outcome of this project

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 113

9.1: Future Works

 Memory Unit has been completed and verified. It seems like the cache is not

operating as expected. This might cause data loss or stalling effect when integrate into

RISC32 processor and therefore, Memory Unit is not yet integrates into RISC32

processor. Improvement and fix needed to overcome this problem by conducting a deep

study on current memory system to figure out the root cause of the problem to ensure a

workable memory system to be successfully integrated into RISC32 processor.

 Other than that, during the verification stage, we need to manually load the page

table information by our own due to absent of operating system. To overcome this

problem, an operating system should be implemented which will responsible for creation

of page table and address mapping process. Therefore, it is necessary for future designer

to understand how the memory system works before starting the design of operating

system.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 114

References

[1] Mittra, S. (1995) IEEE Xplore/IEL. A Virtual Memory Management Scheme For

Simulation Enviroment, 1 (2012), p.114,115,116.

[2] JAY SMITH, A. (2010) IEEE Xplore/IEL. A Comparative Study of Set

Associative Memory Mapping Algorithms and Their Use for Cache and Main

Memory, p.121-128.

[3] Akesson, B. et al. (2007) IEEE Xplore/IEL. Predator: A Predictable SDRAM

Memory Controller, p.251-256.

[4] Design Gateway Corporation (2002) SDRAM CONTROLLER DESIGN MANUAL.

[online] Available at: http://www.dgway.com/products/IP/IP-SDRAMCTL.pdf

[Accessed: 20 July 2012].

[5] G. Cragon, H. (1996) Memory Systems and Pipelined Processors Jones and

Bartlett Books in Computer Science. Jones & Bartlett Publishers, Inc..

[6] H.Roth, C. (2012) Digital System Design Using VHDL. Boston: PWS Publishing

Company.

[7] L. Hennessy, J. and A. Patterson , D. (2004) Computer Organization and Design

the hardware/software interface. 3rd ed. India: Morgan Kaufman Publishers.

[8] Sweetman, D. (2012) See MIPS Run . 2nd ed. Boston: Denise E. M. Penrose.

[9] Zhi Kang Oon, “SDRAM Enhancement: Design of a SDRAM Controller

WISHBONE Industrial Standard” University of Tunku Abdul Rahman, Faculty of

Information and Communication Technology, 2008.

Main Memory Integration 2013

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 115

[10] Chun Jin Teoh, “RISC32 Interrupt Handling or Enhanced RISC32 Architecture”

University of Tunku Abdul Rahman, Faculty of Information and Communication

Technology, 2012.

