IMPLEMENTATION OF A SOFT CORE PROCESSOR ON A FPGA

WOO CHI LIANG

A project report submitted in partial fulfillment of the
requirements for the award of the degree of
Bachelor (Hons.) of Electronic Engineering

Faculty of Engineering and Science

University Tunku Abdul Rahman

June 2011

DECLARATION

| hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. | also declare that it
has not been previously and concurrently submitted for any other degree or award at
UTAR or other institutions.

Signature :
Name . WOO CHI LIANG
IDNo. : 07UEB06313

Date - 13" MAY 2011

APPROVAL FOR SUBMISSION

| certify that this project report entitled “IMPLEMENTATION OF A SOFT
CORE PROCESSOR ON A FPGA” was prepared by WOO CHI LIANG has met
the required standard for submission in partial fulfilment of the requirements for the
award of Bachelor of Engineering (Hons) Electronic Engineering at Universiti Tunku
Abdul Rahman.

Approved by,

Signature :

Supervisor: Dr Lo Fook Loong

Date

The copyright of this report belongs to the author under the terms of the
copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku
Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2011 Year, WOO CHI LIANG. All right reserved.

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of
this project. | would like to express my gratitude to my research supervisor, Dr. Lo
Fook Loong for his invaluable advice, guidance and his enormous patience
throughout the development of the research.

In addition, | would also like to express my gratitude to my previous
supervisor Miss Florence Choong Chiao Mei that provides me guidance and
reference sources throughout my project. Experiences that been shared her innovated

me in designing my project.

I also would like to show my appreciation towards Dr. Goi Bok Min for his
reference sources and guidance towards AES system. His explanation provides me a

better understanding about the system.

Last but not least, | would like to thanks DreamCatcher for providing me
tools and training for my project. With their guideline and training, my project

progress smoothly.

Vi

IMPLEMENTATION OF A SOFT CORE PROCESSOR ON A FPGA

ABSTRACT

In today’s modern, FPGAs has comes with embedded soft-core that can be
customized for given application and synthesized for an FPGA target. In many
applications, soft-core processors provide several advantages over custom designed
processor such as cost, flexibility, platform independence and greater immunity to
obsolescence. On the other hand, with today’s sensitivity of data and privacy,
cryptology had become a demanding application. The latest cryptology that been
proven to be most efficient and effective is AES (Advance Encryption Standard).
AES or Rijandael algorithm is propose by two Belgian cryptographers, Joan Daemen
and Vincent Rijmen to NIST (National Institute of Standards and Technology) when
a new standard of encryption is request. However, due to the growing of the mass of
our data, process for AES encryption and decryption come into the problem. AES
algorithm mostly was performed in software platform which will take long time of
processing. In this paper, the combination of hardware and software implementation
on AES algorithm will be discussed. Several version of hardware and software co-
design have been introduced to the market lately, these implementation will be
review and discuss on their implementation method, theory, and complexity of the
implementation. As the growing of the soft-core of the FPGAs, it is expected that the
usage of it customizable characteristic would make the soft-core processor to be

more widespread and involve in complexity embedded system in the future.

Vil

TABLE OF CONTENTS

DECLARATION I
APPROVAL FOR SUBMISSION i

ACKNOWLEDGEMENTS v

ABSTRACT Vi

TABLE OF CONTENTS vii

LIST OF TABLES X

LIST OF FIGURES Xi

LIST OF APPENDICES Xiv
CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 2

1.3 Thesis Organization 3

2 LITERATURE REVIEW 4
2.1 Introduction 4

2.2 Pure Software Implementation 4

22.1 FPGAs 4

2.2.2 Desktop PC 6

2.2.3 Symbian OS 6

2.3 Pure Hardware Implementation 6

2.4 Software & Hardware Combination Implementation 8

2.4.1 Optimized Design of Rijndael Algorithm Based on
SOPC 8

viii

2.4.2 Exploring HW/SW Codesign of AES Algorithm Using

Customs Instruction 12

2.4.3 An AES Tightly Coupled Hardware Accelerator in an
FPGA-based Embedded Processor Core 14

2.4.4 Implementation of High Throughput Sequential and

Fully Pipelined AES Processor on FPGA 18
METHODOLOGY 23
3.1 AES 23
3.1.1 Introduction of AES 23

3.1.2 Encryption 24

3.1.3 Decryption 24

3.14 Key Expansion 25

3.2 Implementation Process and Flow 25
3.3 Hardware 27
3.3.1 Niosll 27

3.3.2 System Structure 28

3.4 Software 30
3.5 Functional Description 31
3.5.1 Encryption 32

35.1.1 Add Round Key 32

3.5.1.2 Subytes 32

3.5.1.3 ShiftRows 33

35.14 MixColumns 34

3.5.2 Decryption 34

3521 Add Round Key 34

3521 InvShiftRows 35

3521 InvSubytes 35

3521 InvMixColumns 36

3.5.3 Key Expansion 36

3.6 Program Architecture 37
3.6.1 Overall System Architecture 37

3.6.2 Key Expansion 39

3.6.3 Encryption
3.6.3.1 Software
3.6.3.1.1 Add Round Key
3.6.3.1.2 ShiftRows
3.6.3.2 Hardware
3.6.3.2.1 SubBytes
3.6.3.2.2 MixColumns
3.6.4 Decryption
3.64.1 Software
3.64.1.1 Add Round Key
3.6.4.1.2 InvShiftRows
3.6.4.2 Hardware
3.6.4.21 InvSubBytes
3.6.4.2.2 InvMixColumns
4 RESULTS AND DISCUSSIONS
4.1 Result Validation
4.2 Performance Benchmark
4.2.1 Platform Benchmark
4.2.2 Implementation Benchmark
4.3 Overall Discussion
5 CONCLUSION AND RECOMMENDATIONS
51 Conclusion
5.2 Recommendation
REFERENCES

APPENDICES

39
40

40
41
41
42
41
42

42
42
43
43

44
44
46
46
48
49

53
53
54

55

57

TABLE

11

2.1

2.2

2.3

4.1

4.2

4.3

4.4

4.5

LIST OF TABLES

TITLE

Comparison of Soft-Core Processor

The signal interface of multi-cycle
customs instruction

Comparison of area and time among
various HW/SW mixed design

Execution times of Encryption/
Decryption

Key Expansion Comparison
Encryption Comparison
Decryption Comparison
Fully Software Performance

Overall Comparison Table

PAGE

12

13

18

44

45

45

48

50

FIGURE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

212

2.13

2.14

2.15

2.16

LIST OF FIGURES

TITLE

Software Implementation of AES in
FPGA

AES Encryption Process

The scheme of SOPC system

The design of optimized algorithm

Table B generation Flow

Key Generation VHDL generated module

TC-Hardware and Co-processor in NIOS
I

AES Coprocessor Hardware
TC-Hardware Interface.
AES Tightly Coupled Hardware

Comparison of coding between TC-
hardware and Coprocessor

Proposed new realization for SubBytes
and InvSubBytes Transformation

Realization of CMP Circuit
Decomposition of InvMixColumns
Circuit Architecture of MixColumns and
InvMixColumns(Chih-Peng Fan and Jun-

Kui Hwang,2007)

Circuit architectures of sequential on-the-
fly key

Xi

PAGE

10

11

15

15

16

17

17

19

19

20

20

21

Xii

2.17 Circuit architectures of non-sequential on-

the-fly key 21
2.18 Hardware architecture of the proposed

sequential AES processor 22
2.19 Hardware architecture of the proposed full

pipelined AES processor 22
3.1 Transformed Data Matrix 23
3.2 AES-128 Encryption Flow 24
3.3 Decryption Flow 25
3.4 Altera DE1 Board 26
35 Nios Il Wizard 28
3.6 SOPC Builder ScreenShots 29
3.7 SOPC Example 29
3.8 Schematic Diagram Platform, Quartus Il 30
3.9 Screenshots of Nios Il IDE tools (Hello

world!! Example) 31
3.10 S-Box 33
3.11 ShiftRows Transformation 33
3.12 MixColums Transformation 34
3.13 Add Round Key Transformation 32
3.14 Differences between ShiftRows &

InvShifRows 35
3.15 InvS-Box 35
3.16 InvMixColumns 36
3.17 System Block Diagram 37
3.18 System Flow Chart 38
3.19 Key Expansion Process 39

3.20 InvMixColumn Multiplier 43

4.1

4.2

4.3

4.4

4.5

Encryption

Decryption

Key Expansion

Nios Il Performance Counter Report

Fully Hardware Performance

Xiii

46

46

47

47

49

Xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE
A Verilog File (S-BOX) 57
B Verilog File (Inverse S-Box) 58
C Verilog File (256-byte ROM) 59
D Verilog File (MixColumn) 61
E Verilog File (InvMixColumn Factor) 64

F AES system C Code 68

CHAPTER 1

INTRODUCTION

1.1 Background

In today’s modern, flexibility plays an important role for dynamic and unforeseen
changes in the product. According to Ralf Joost and Ralf Salomon (2005), nowadays
FPGAs (Field Programmable Gate-Arrays) with high performance, reasonable price
and adaptable are demanding the market. As we know, the configuration of FPGAS is
described in abstract hardware description language such as verilog and VHDL; the

system can be easily modified whenever is required.

However, in compete with application-specified microcontroller; FPGAs still
could not reach the propagation. Soft core processor hence introduce to the market. A
soft core processor is a hardware description language (HDL) model of a specific
processor (CPU) that can be customized for a given application and synthesized for
ASIC or FPGA target (Jason, Anderson & Mohammed, 2006). Ralf Joost and Ralf
Salomon (2005) also state that soft-core processors can be considered as equivalents

to a microcontroller or “computer on chip”.

In today’s market, there are several FPGAs vendor that provide soft-core
processor implementation in their FPGAs. Nios and Nios Il soft-core processor is
one of the leading soft-core processor provided by Altera. Nios Il will be use for
implementation throughout this project as Nios has been obsolete. Table 1.1 shows

the comparison of market’s available soft-core processors.

Table 1.1: Comparison of Soft-Core Processor

Category Nios Il (Fast Core) | MicroBlaze Xtensa XL, | OpenRISC 1200 LEON3
Maximum MHz 200 (FPGA) 200 (FPGA) 350 (ASIC) 300 (ASIC) | 4001125 (ASIC/FPGA)
ASIC/FPGA Technology | - /Stratix and Stratix I | — Viriex-4 0,13 pm/ - {.18 pm/ - (.13 pm/Not given
Reported DMIPS 150 DMIPs 166 DMIPs - 250 DMIPS 83 DMIPy
ISA 32-bit RISC 32-Bit RISC 32-Bit RISC 32-bit RISC 32 or 64-bit RISC
Cache Memory (I/)) Up to 64 KB Upto 64 KB | Upto 32KB (1) | Upto 64 KB Up to 256 KB
Floating Point Unit (optional) [EEE-754 IEEE-754 [EEE-T54 As peripheral IEEE-754
Pipeline 6 Stages 3 Stages 3 Stages 3 Stages 7 Stages
Custom Instructions Up to 236 Instructions None Unlimited Unspecified limit None
Register File Size 1 1 ortd 1 lio32
Implementation FPGA FPGA FPGA, ASIC FPGA, ASIC FPGA, ASIC
Area 700- 1800 LEs 1269 LUTs | 0.26 mm? N/A N/A

Nios-11 is a 32-bit embedded-processor architecture designed specifically for

the Altera family of FPGAs. It incorporates many enhancements over the original
Nios architecture, making it more suitable for a wider range of embedded computing

applications, from DSP to system-control.

Cryptography plays an important role in today’s security of data information.
It is widely used in communication information, national security, VPN, and others
sensitive data storage or transmission. In September 1997, the NIST (National
Institute of Standard and Technology) call for proposal of AES (Advance Encryption
Standard) to replace the DES (Data Encryption Standard). In October 2000, Rijandel
Algorithm was selected as the winner of AES development race (Arif Irwansyah &
etc, 2009).

Normally, AES is done through software implementation. However, the
process requires long time and high performance of PC. By using the combination of

hardware and software implementation, acceleration can be achieved.

1.2 Aims and Objectives

The aim of this project is to accelerate the AES encryption and decryption process in
an effective and efficient way. Although the acceleration reaches max when fully
hardware implemented, but the device will be more costly. Hence, the combination

of hardware and software implementation will be more convenient. The final goal for

this project is where hardware and software implementation can be use together in a

system so that efficiency and effectiveness can be achieved.

1.3 Thesis Organization

In this paper, there are 5 sections available, Introduction, Literature Review,
Methodology, Result and Discussion, Conclusion and Recommendation.
Introduction basically explained the brief ideas of FPGA and AES. Literature
Review are majorly discussing the journal or research that been done by other people,
the method of their implementation, the algorithm, platform, theory that they applied.
Understanding people works can provide innovation to the projects ideas.
Methodology illustrates the implementation method that I’'m going to use and the
theory about my implementation.It contain In short, methodology explains what |
going to do to design this project the way of achieving it. Validation, Comparison
and Discussion of my project will be done in Result and Discussion part. Last but not
least, whole project conclusion and the recommendation of future improvement will

be discussion on Conclusion and Recommendation section.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

There are several journals that been review regarding AES implementation on
various platform. The most common method is fully software implementation;
however the process seems to be too slow for today’s mass data. Another method
that been introduced lately is fully hardware implementation, although it reach high
speed of encryption and decryption but due to the cost effective problem, it is still
not the best solution ever. The latest technology is that AES been implement on the
combination of hardware and software. This method is widely use nowadays because

by the balance of hardware and software, cost effective and efficiency can be

achieved.
2.2 Pure Software Implementation
22.1 FPGAs

The algorithm was developed using Xilinx Platform Studio 8.1i and uses C
programming language. The reason why the evaluation was done by using C
language was because the compiled high-level language like C is better adapted to
optimizing performance compare to interpreted language like Java, besides C and
C++ languages are supported by the development tools. There are 2 functions the
design, the sub-key generation and the encryption/decryption process shown in
Figure 2.1 (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007)

Figure 2.1: Software Implementation of AES in FPGA (Chirag Parikh, M.S. &
Parimal Patel, Ph.D, 2007)

MNe Memory Blocks

[-

To A pplication
Enbosmd Dt [——————fii=- Irecrsprion —

Oatgoing packet

Lratn -ﬂ—l_ From Applicatisn
Emcrypiion ————

The sub-key operation include bit-wise additions modulo 2 of 32-bit values
obtained from user key combined with byte substitution, byte rotation and round
constant (RCons) addition. After obtaining the key from the user, the sub-key
functions start to generate 44 32-bit sub-keys and stored in memory. By storing the
decryption keys just below the encryption key, we can assure that the decryption key
can be use in the same order as encryption key which is different with the traditional
method where encryption & decryption uses same sub-keys but is reverse order. The
decryption key is generated by keeping the first and the last 128-bit sub-keys as it is
and InvMixColumn operation on remaining intermediate 128-bit sub-keys. While
having all the keys ready and stored in the memory for a given connection between
source IP and destination IP. (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007)

Considered 128-bit data coming from memory into the encryption/decryption
function that’s operated in serial fashion, it takes 32-bits of data a time. The sub-
function like SubBytes and RowsShift are performed on 128-bit data while
AddRoundKey and MixColumn are performed on 32-bits at a time. The final
encrypted or decrypted data was stored in memory in a serial fashion, 32-bits at a
time. This design that Chirag Parikh, M.S. & Parimal Patel, Ph.D (2007) develop was
using 2 approaches: one without enabling any form of cache and one with instruction
and data cache enabled. The reason of enabling the cache was to enable fast access to
frequently used program instruction and data. (Chirag Parikh, M.S. & Parimal Patel,
Ph.D, 2007)

2.2.2 Desktop PC

The same developed C Code on the FPGAs was ported to the Visual C++ 6.0
complier and targeted it to Desktop PC. The code and design was similar with the
FPGAs software implementation except that the platform and the environment had
change (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007).

2.2.3 Symbian OS

The developed C Code as now targeted to Mobile platform with Symbian as
operating system. The reason that Symbian was targeted as the choice of the
application development environment is because the popularity of the Symbian
operating system is coupled with excellent developer support. UIQ and Series 60 are
the user interfaces that available for Symbian OS in which third-party developers can
write C/C++ application. Simulation is done under Metrowerks CodeWarrior IDE
(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007).

2.3 Pure Hardware Implementation

At first, the algorithm was developed in pure hardware using Xilinx ISE 8.1i tools
and implemented in Xilinx’s Virtex-11Pro (XC2VP30ff896-6) FPGA. The design
was modeled in Verilog HDL, synthesized using Xilinx’x XST synthesis tools,
simulated using Modeltech’s Modelsim 6.0d simulator and implemented using
Xilinx’s Place and Route tools integrated in ISE 8.1i tools. (Chirag Parikh, M.S. &
Parimal Patel, Ph.D, 2007).

The algorithm for the hardware implementation is as below. As the data
packet was received either from outside (inbound) or application (outbound), its then
stored in the BRAM by the receiver engine and a start signal is generated. Upon the
receiving of the start signal, the AES cores will decides the operation
(encryption/decryption) based on the data transfer direction and sends back an
appropriate acknowledge signal. The first 128-bits data is then taken from the BRAM

(32-bits per time) and pass the data on the Initial round. Due to the State bytes (Data)
are operated individually, each AES round require 8-bit by 8-bit LUTs (Look Up
Table) which will cause additional slice resources to be used up. BRAMS will be
comes useful as the same purpose as they are provided by the family and will be
wasted if unused. This technique can save some slice for other logic operation. By
using implementing the S-BOX as LUT or ROM for SubBytes function, the
operation is proven to be faster and more cost-effective than implementing the
multiplicative inverse operation and affine transformation. There are no problems
with ShiftRows and MixColumn operations as only AND and XOR logic included.
The overall flow for AES Encryption Process is as Figure 2.2. (Chirag Parikh, M.S.
& Parimal Patel, Ph.D, 2007).

Figure 2.2: AES Encryption Process (Chirag Parikh, M.S. & Parimal Patel,

Ph.D, 2007)
Datain ; Kay_i_n
32 32
P
EncryptDecrypt Y
— \ Initial
Acknowledge | State machine —i Raund
| /
‘—'"\ S
Key I\\ P
Address Read | Start
8
Data - Add] o] |
Address; ™ +_Round - '_) E}“te fr— Shift _[J_ Ml m—
"—_[.' oL T35 | Key 32| Sub 128 | Row k Column
~ SRL - _
) 16)
Writg —
AT 32
o ™
A 32
Dane / \ Last Round
4—————| State machine]
1 J'
I Dataout Add | g

Round | 32

32 Key)
44] Final
Subkey

2.4 Software & Hardware Combination Implementation

As above mention, the software implementation of AES is having slow processes and
it’s having the tendency to expose the plaintext (origin data), while hardware
implementation of AES require larger space of hardware which cause the increase of
the cost. Lately, studies of software and hardware combination implementation have
been done and it was found to be more efficient than software implementation and
more cost effective compare to hardware implementation. There are various method

that been use to balance the hardware and software implementation.

2.4.1 Optimized Design of Rijndael Algorithm Based on SOPC

From the analyzing the round transformation and key expansion of AES, it was clear
that the algorithm can be optimized through the Look-Up Table. The design of
optimized Rijandael algorithm can be done through SOPC (System on

Programmable Chip) and implemented through software and hardware.

The AES algorithm based on SOPC system is shown in Figure 2.3. By using
the standard version of Altera NIOS Il embedded CPU, it guarantee for the large and
systematic data processing. The system is composed of FPGA, memory and external
interface. On the system, the peripheral circuit and the NIOS Il are integrated to
realize the control functions. As the function of the control core, NIOS Il require a
balance between its resource occupation and function when is generated. As the
NIOS Il was generated by SOPC Builder customization, the demand of the system
resources is greatly reduced. Due to mass data need to be execute in algorithm, the
algorithm round transformation is completed by using NIOS Il and the key
generation is executed by the key generator in FPGA. The external interface if FPGA
is a part including some interface devices and circuit modules, which use for
interfacing the data input/output and etc. The process flow for the optimized
algorithm is shown as Figure 2.4. (Shunwen Xiao, Yajun Chen & Peng Luo, 2009).

Figure 2.3: The scheme of SOPC system (Shunwen Xiao, Yajun Chen & Peng

Luo, 2009).
PR
BOO T ROOM f———
HEs232 ety UART e
—n KLY GUENERATOR ———i
KEY BOARD [+ Z
o T
73] -
== B
DATA CHIT PIO = = g E
BT TOMN 3"1
LED
FLASH 3 FLASH CONTROLLER =4
SEAM SEANM CONTREOLLER ="

Figure 2.4: The design of optimized algorithm (Shunwen Xiao, Yajun
Chen & Peng Luo, 2009).

— Il L —

Initialization

4x4 bytes matrix XOR with the initial key and shift

k.

—+ Look up By, By, Bs, B; and shaft

XOR with round key and shaft

Look up Bg, By, B:, B; and XOR

¥

XOR with the final round key

}

The ciphertext

10

The key of optimized Rijindael algorithm is the Table B. Table B is a Look-
Up table that is mixture of S-BOX with RowsShift Operation and MixColumn
Operation. The derivation of the table is shown below:

Figure 2.5: Table B generation Flow

(bo, | [S00,,1] Do | [Shyi0)]]
bll::' _ S [bl.r] Rowshift bln_,- S[‘bl.i{lj]
' — I) - .
b:.i S [bl:j] blni S[J}EI{E}]
(s | [STs4]] _b;_r. | S[bs 5]

r—-———=—~

Initial S-Box Transformation ‘

o

1~ . - .
1| 2o | To2 03 01 017 SThoio]
I "
| STh,
IbLE :: 01 02 03 0l [1'”:”] MixColumn Operation
g | [o1 o1 02 03| sp,.,]
U o o1 o1 02l e
| by, || L0 1| 510,51

|
- ' Bld=| | Bl=[gat)
ol ! 035[] S[] :
ot s S
e
b;_‘_: :_ S[x] 02.5[x] :

TABLE B

11

From the table, we can see that only Table By required to be created as the other
three Look-Up Tables B;, B2 & B3 can be obtained by cyclical shift of the bytes.
Due to there is no mix-column for the final round in the round operation, the Table
By is then change back to traditional S-BOX (Shunwen Xiao, Yajun Chen & Peng
Luo, 2009).

As for the key generation operation, by using the initial key (w(0), w(1), w(2)
and w(3)) the key generator generates w (4) ~ w (43) and stores them in the memory
(complete memory initialization). During the period of round transformation, the
quadruple frequency of the round clock is conducted by frequency multiplier and
counting value is taken as the Look-up Table circuit address. There are 4 Look-up
tables are implemented in a round clock period and w4i+0 ~ w4i+3 are sent out.
During the same time, the 128-bits round key is exported through the serial-in
parallel-out shift register. The function of description for the key generation module

is as below(Shunwen Xiao, Yajun Chen & Peng Luo, 2009):

Figure 2.6: Key Generation VHDL generated module (Shunwen Xiao, Yajun
Chen & Peng Luo, 2009).

kevexpansion
=1k
— | =
— wBL321..017

—wi1i[=21 ..81] key _ower]

—wZCL3E1 -.-.81] ey _data_ovutl[127..81]
— wEL3E1 - -8 1]

key_1oad

=tart

12

2.4.2 Exploring HW/SW Codesign of AES Algorithm Using Customs

Instruction

Altera Nios Il (Cyclone Version) have been use to implement the AES algorithm
using custom hardware instructions. By using the custom instruction, the sequence of
instruction can be reduced and the speed of processing can be accelerated by

hardware (Kuan Jen Lin, Chin-Mu Hsiao and Ching Hung Jhan, 2009).

With the Nios Il development kits, we can convert a hardware circuit into a
custom instruction and treat it as the instruction set of the CPU. Depending on the
data amount and execution cycle, NIOS 1l supports 4 types of custom instruction:
combinatorial, multi-cycle, extended and register file. The design had selected multi-

cycle custom instruction and the signal interface is given as Table 2.1

Table 2.1: The signal interface of multi-cycle customs instruction (Kuan Jen Lin,
Chin-Mu Hsiao and Ching Hung Jhan, 2009).

Sigmal . ,
Hame Cirecrion| Applicaton

Clk [nput System clock

Clk_en Input Clock enabls

Ie=at Ioput (Fesst
tart Tonut sigmals cusfom instmaction legkc fo sfam
i ExeCuton

Custom mstraction logic siznals the CPL that

fons Chatput EneCunon is complete

dataa[31:0] |Input ioput eperand 10 costom nstnucikon

dafab[310] [lmput |ioput operand to costom instucton

resuif31:0] |Cratput |output operand to custom msroction

By designing the circuit in accordance with the signal interface, the circuit is
now ready for customs instruction conversion where is done through Quartus I1. Now,
the circuit can be called as a function in C programming. There are few design spec
with parameterized synthesizable design have been explored. Relevant

programmable parameters include:

13

i. SW, TSBOX or GSBOX: A user can choose software table (SW), pre-store
hardware table (TSBOX), generating transformation by combinational logic
to implement SBOX (GSBOX), which is realized by composite field
arithmetic as stated in the third section.

ii. Number of SBOX: If using TSBOX or GSBOX, a user can choose how many
SBOX to implement: 1, 4, 8 or 16.

iii. MixColumn: A user can choose whether to implement it using hardware.

iv. ShiftRow+AddRoundkey: A user can choose whether to implement it using

hardware.

By using the combination of the relevant programmable parameter, 36 combinations
can be made and Table 2.2 showing the performance of each parameter used. In table
2.2, T# indicates the number of SBOX(s) to implement the customs instruction, and
G# indicates the number of SBOX(S) made using combinatorial logic. As for the
Sh_addk(shiftrow-addkey), V indicates that it was implemented by hardware custom
instruction and O indicates it was adopted by software implementation. (Kuan Jen Lin,
Chin-Mu Hsiao and Ching Hung Jhan, 2009).

Table 2.2: Comparison of area and time among various HW/SW mixed design

SBON | Sh addk MinCol | Time Ares

(ms) (el | AT
T1 v W §Ims | 1850 4
D v W 1.6ms 1800 1|
[T v 5] T7.6ms | 1426 384 |
| @l W 5] T84ms | 1417 3346 |
T1 [5) " 63.1ms | 339 74
Gl [5) " 502ms | 280 58
T1 0 5] 97 6ms | 278 ki
| &1 [o 95.6ms | 169 53|
| 14 v W Ims 1857 13 |
[o4 v W 144ms | 2287 1.2]
T4 v o TT6ms | 1426 | 384
=) v [784ms | 1388 | 381
T4 [5) " 63.1ms | 339 74
=) [5) v 502ms | 346 7.1
T4 0 5] 044ms | 235 ki
G4 [[036ms | 334 109
T3 v W L44ms | 2207 1.2
GB v " T4Hms | 2610 13
T3 v [784ms | 1426 | 388
GB v [TiAms | 1413 S
T8 [5) v 624ms | 732 159
IS 5] % 6loms | 1149 EX
T8 [[97 2ms | 621 21
G8 [[O68ms | 1038 | 340
T16 v " 152ms | 2383 13
G148 v " T4Hms | 3094 16
T16 v [T84ms | 1411 592
G148 v [T8Ams | 1386 683
[T8 5] v 624ms | 830 324 |
| c1s [s] W 2ms 1728 372 |
T16 [[97 ms | 719 243
G148 [3) [06 8ms | 1617 | 3544
0 v v S04ms | 1048 183
0 v [888ms | 937 289
0 3 v 68Ims | 111 26
[+ [o 712ms [

14

Throughout the design, the NIOS 11 is set to be run on 50MHz and the time is
measured on running 32 packets of data with each having 128-bits. The key
generation is done using same implementation method (LUT/combinational logic) as
used in the data path. After the cipher keys are generated, data are encrypted
sequentially (Kuan Jen Lin, Chin-Mu Hsiao and Ching Hung Jhan, 2009).

From table 2.2, we can see that the design with 4 S-Boxes of combinational
logic require the least hardware area among those having the best performance
(1.44ms), hence it is the best choice for high performance needs. If using less than 4
S-Boxes, the design using GSBOX has better performance compare to TSBOX. In
other hand, when more than 4 S-Boxes required. GSBOX have similar performance
but TSBOX implementation require less area. Hardware implementation for SBOX
and MixColumn operation improve the performance, however the hardware
implementation for AddRoundKey and ShiftRow may take the performance even
worse than pure software implementation. Due to the limitation for the bus width, by
increasing the S-Boxes that been used, the performance is not further improved
(Kuan Jen Lin, Chin-Mu Hsiao and Ching Hung Jhan, 2009).

2.4.3 An AES Tightly Coupled Hardware Accelerator in an FPGA-based

Embedded Processor Core

The common method to enhance the performance of the AES algorithm is to
incorporate a crypto co-processor dedicated to execute certain parts of the algorithm,
offloading the main embedded processor of specific compute-intensive routines, thus
accelerating the execution the overall algorithm. The disadvantages on this
implementation method are that the co-processor are loosely-coupled to the main
processor and the interface between the main processor and the co-processor also
incur severe performance bottleneck due to system bus communication and
synchronization overhead. The new and recent trend of enhancing the AES algorithm
is to extend the instruction set architecture (ISA) of the processor with custom
instruction for performance critical operation. In this approach, some hardware
implementation in custom logic is tightly-coupled to the embedded processor (Arif
Irwansyah, Vishnu P. Nambiar & Mohamed Khalil-Hani, 2009)

15

Figure 2.7: TC-Hardware and Co-processor in NIOS Il (Arif Irwansyah,
Vishnu P. Nambiar & Mohamed Khalil-Hani, 2009)

A
Nios Il Processor . AES
=1
CE (1,::) coprocessor
128/192/256
AES TC- B
Hardware — %)
128/192/256 ALU |y e Nios Il
E \/‘::) Standard
\1—[/ < Peripheral
S
2
)]
Firmware: <_c3‘
2
I

S~
As for co-processor design, an Avalon Switch Fabric System Bus is designed

to interface the whole AES core with the Nios II. The AES hardware can be access
through memory mapping. From figure 2.7, we can see that the co-processor is
loosely coupled to the Nios Il processor. The system structure of AES co-processor
was illustrated as figure 2.8. From the figure, it can be seen that the AES co-
processor have only 1 port (32-bits) input for data and cipher key to AES core where
the port is named as WriteData port and 1 output port to have data transfer from AES
core. (Arif Irwansyah, Vishnu P. Nambiar & Mohamed Khalil-Hani, 2009)

Figure 2.8: AES Coprocessor Hardware

AES Coprocessor Hardware

WriteData

32-bit Data IN
- 128-hit
——clk—p
—read-h— Data IN
AES 256-bit AES Core
—writed= Avalon Bus 128/192/256
—lchipselectys il ——encDEch-
—resetis- —keyTypew
l-ready——|

mmaddresse
DataQut

ReadData .
e \ r—az'b't

16

Unlike coprocessor, TC-Hardware custom instruction is attach directly to the
ALU in the main processor’s data path. Custom instructions give the designer ability
to accelerate time critical software algorithms by converting to custom hardware
logic blocks. TC-hardware custom instructions also reduce the communication
overhead between the AES core and the processor. In addition, it also allows us to
fetch the data input or key input using two ports at the same time. This option
reduces the time for supplying inputs to the AES core dramatically. The TC-
hardware interface can be seen as figure 2.9. (Arif Irwansyah, Vishnu P. Nambiar &
Mohamed Khalil-Hani, 2009)

Figure 2.9: TC-Hardware Interface. (Arif Irwansyah, Vishnu P.
Nambiar & Mohamed Khalil-Hani, 2009)

data 8 e——
Combinational result
data b c— |
Clk ﬁ
clk_en >
Multi-cycle
resel |
start > o
N — extended

Figure 2.10 shows that the organization how AES works. Data_A and Data_B
ports are 32-bit input port that transfer 128-bit of data input and 128 until 256 bits of
keys for AES core. Both input transfer can occur at the same time, hence fetching
128-bit of data input just require 2 cycle as compare to coprocessor approach that
require 4 cycles. As for the key input for 128,192 & 256 bits, the AES TC-hardware
require 2,3 & 4 cycles which is contrary with the co-processor that require 4,6 & 8
cycles. The N-port is a 2-bit port that selects the operation in AES TC-interface and
the result port is 32-bit output port that read data from AES core.

17

Figure 2.10: AES Tightly Coupled Hardware (Arif Irwansyah, Vishnu P.
Nambiar & Mohamed Khalil-Hani, 2009)

AES Tightly Coupled Hardware

AES

=
—clk_enp=

——resete-

e N

esult
32-bit

TC-Interface

Data IN
128-bit

Data IN
256-bit AES Core
128/192/256

o

——ancDEches-
==key Typep-

-
[41]
o
=9
T

ataOut
32-bit

;

In terms of coding design, the C program for Nios Il using TC-hardware is

simpler and effective compare to coprocessor version. Comparison can be seen as

below figure 2.11. The execution times of Encryption/Decryption for Co-processor

and TC-hardware is illustrated on table 2.3.

Figure 2.11: Comparison of coding between TC-hardware and

Coprocessor(Arif Irwansyah, Vishnu P. Nambiar & Mohamed Khalil-Hani,

//Put in the data
AES(1.datain[0],datain[1]);
AES(2.datain|2],datain[3]):
/{Put in the keys
AES(3.keyin|0].keyin[1]);
AES(4.keyin|2].keyin[3]);
/fEnable for 128-bit encription
AES(0,0x00001010,0);

/{Poll --> check until data encrypted ready
do

{ ready = AES(7.0.0); }

while (ready != 0x01):

/{Read Output
out[0]=AES(8.0,0);
out[1]=AES(9.0.0):
out[2]=AES(10,0,0);
out|3]=AES(11.,0.0);

TC-Hardware version

2009)

//Put in the Data
IOWR(AES_AVALON_0_BASE,1,datain[0]);
IOWR(AES_AVALON_0_BASE.2,datain[1]);
IOWR(AES_AVALON_0_BASE,3,datain[2]);
IOWR(AES_AVALON_0_BASE 4.datain[3]);
//Put in the keys
IOWR(AES_AVALON_0_BASE,5,keyin[0]);
IOWR(AES_AVALON_0_BASE,6,keyin[1]);
IOWR(AES_AVALON_0_BASE,7 keyin[2]);
IOWR(AES_AVALON_0_BASE.8 keyin[3]);
//Enable for 128-bit encription
IOWR(AES_AVALON_0_BASE,0,0x0001010);
/Poll --> check until data encrypted ready
do
{ ready = IORD(AES_AVALON_0_BASE,0); }
while (ready = 0x01);

//Read Output
out[0] = IORD(AES_AVALON_0_BASE.13);
out[1] = IORD(AES_AVALON_0_BASE.14);
out[2] = IORD(AES_AVALON_0_BASE.15);
out[3] = IORD(AES_AVALON_0_BASE,16);

Co-Processor Version

18

Table 2.3: Execution times of Encryption/Decryption (Arif Irwansyah, Vishnu P.
Nambiar & Mohamed Khalil-Hani, 2009)

Co-processor | TC hardware Speed
AES
(clock cycles) | (clock cycles) Up
128-bit 195 161 17%
192-bit 218 166 24%
256-bit 275 178 35%

2.4.4 Implementation of High Throughput Sequential and Fully Pipelined

AES Processor on FPGA

In this implementation, FPGA chips is used to realize the high throughput 128-bits
AES cipher processor by new high-speed and hardware sharing functional blocks. As
we know, AES functional calculation includes SubBytes, ShiftRows, MixColumns
and AddRoundKey. By replacing the old fashion ways of ROM mapping for
SubBytes with CAM (content-addressable memory) to achieve new proposed high-
speed SubBytes block. The new hardware sharing architecture is applied to
implement the proposed high-speed MixColumns block. Efficient low-cost
AddRoundKey architecture is used for real-time key generations.(Chih-Peng Fan

and Jun-Kui Hwang,2007)

For the high speed realization of the SubBytes and InvSubBytes hardware the
traditional ROM-based concept could not reach very high speed operation. By
applying the content-addressable memory (CAM) based architecture as Figure 2.12
to realize SubBytes and InvSubBytes circuit, high speed operation can be achieve.
From the figure, we can see that as we enable the SubBytes operation, the registers a;,
for i= 1,2,3,4,....,256, will output the 8 most significant bits to the inputs of CMP
circuit(Figure 2.13). pipelined AES
implementation, the SubBytes and InvSubBytes can be divided into 3 pipelining

In order for further high-speed full

stage by adding 2 pipelined register arrays. The 3 phase pipelined

19

SubBytes/InvSubBytes module can achieve higher operational frequency than the

traditional ROM-based scheme. (Chih-Peng Fan and Jun-Kui Hwang,2007)

Figure 2.12: Proposed new realization for SubBytes and InvSubBytes
Transformation (Chih-Peng Fan and Jun-Kui Hwang,2007)

311,6/ . CMP1 ‘I BD

S iiig=s N
CMP2 —

2 | - J_Djﬁl

Input Output
—® a

.-
=1 ‘;’;‘5 =D '—D_r—

D_J_
CMP 4|7L

Figure 2.13: Realization of CMP Circuit (Chih-Peng Fan and Jun-Kui
Hwang,2007)

a[l 5:8] ALT0] |'.c)—f'~':D_ Cl N

— 8
0 -2
|I'I['!Lll # B[7-0] \

ek MUX |32 sc[T0)

A0 EQp> _C}_ﬂ'—) -

a[7:0]—

s
/

B[7:0] % g
Sel={C1.C2}

20

As the AES theory states that the operation of MixColums and Inverse
Mixcolumns transformation is having different corresponding matrix polynomial.
Instead of creating two separate hardware architecture, hardware sharing architecture
are design for both operation. Firstly, the operation of InvMix was decomposed so
that it will have common factor with MixColumns operation. The decomposition can
be illustrated as figure 2.14. By using these common factors, high-speed hardware

sharing circuits can the design to implement these transformations.

Figure 2.14: Decomposition of InvMixColumns(Chih-Peng Fan and Jun-Kui

Hwang,2007)
Sq . 0e 0 04 09 5o,
s\, | |09 De 0& 0d 5.
sy. | |od 09 De 05 5, .,
s, 0b 04 09 0e 5y,
[5, . o2 03 01 017 [s,
siL. o1 02 03 01 5.,
| s - 01 01 02 03 5.
| s, | |03 01 01 02 || s,
To0s 08 08 087 s,
|08 08 0% 08 5,
T los 08 08 08 5,
L 08 08 08 08 | | 5;,
[04 0o 04 00] L
L |00 0 4 00 0 4 5,
04 00 0 4 00 5,
| 00 04 00 04 | 5

T
w

Figure 2.15: Circuit Architecture of MixColumns and InvMixColumns(Chih-
Peng Fan and Jun-Kui Hwang,2007)

In puBt'I Inpuat2

|x'|'|me | |x‘|’|me |

G

w

SINES
e

Rl T eT Y
4

A

W
}[%I—’p’.'

. T i
[«Time | ‘i"* [4mime | #5< [xTime |
1a)fa /8 a
Qutput1 Qutput2 Outputd| Outputd

21

A real time high speed Key expansion for generation of 128-bit was designed.
The realized Key expansion circuits can generates keys for AES encryption and
decryption. Due to the asymmetric of the decryption process, the key expansion
circuit for decryption needs to collocate the InvMixColumns circuits. In the
operation of Key expansion, the 128-bits keys is segmented into 4 32-bits data and
stored in 4 corresponding a, b, c, d registers. The output of register d must be pass
through the operation of ROT, S-Box and RCON. Figure 2.16 showing the circuit
architectures of sequential on-the-fly key expansions and figure 2.17 shows the
circuit architecture for non-sequential on-the-fly key expansion. (Chih-Peng Fan and
Jun-Kui Hwang,2007)

Figure 2.16: Circuit architectures of sequential on-the-fly key
expansions(Chih-Peng Fan and Jun-Kui Hwang,2007)

Key in0 Key in1 Key_in2 Key in3
128

...... Encryption
? 32 f T2 f 32 > i
Dmh'dw control s control . control g 7 s Decrymon
' kY
| Regal | Reg b | | Rege | | Regd |
Key_ . Key_ . Key_ . Key_ .
out0 out 1 out 2 out 3
. ' R S R S T

N . r s I’_ r -
e 3 > f 5-box

En/Dn En/Dn En/Dn | \13
v
24 HIB?

5
‘]
5
0

125

Figure 2.17: Circuit architectures of non-sequential on-the-fly key
expansions(Chih-Peng Fan and Jun-Kui Hwang,2007)

Key_inD Key_in1 Key_in2 Key_in3 Encryption
N 32 32 32 33 Decryption
| Register a | | Register b | | Register ¢ | | Register d |

[T r-»
R N
e
>.’_'P = }'/—-P'
-
En/DCe En/De

En/De
v ’ ' 54 (TN
Key_Outd Key_Outi Key_Out? Key_Out3 C\‘ B RCON

32

22

From what have discuss, there are two architectures that provide high-speed
processing, which are sequential and full pipelined schemes. Figure 2.18 shows the
Hardware architecture of the proposed sequential AES processor and figure 2.19
shows the Hardware architecture of the proposed full pipelined AES processor.
(Chih-Peng Fan and Jun-Kui Hwang,2007)

Figure 2.18: Hardware architecture of the proposed sequential AES
processor(Chih-Peng Fan and Jun-Kui Hwang,2007)

Key 3| Key (Round 1~10)

Reg D Reg

AEZ internal blocks for each round

Input_text »| Add ‘ AES
o . > Output_text

128 ' ,
SubBytes & MixColumns & -
InvSubBytesx 16 i InvMixColumns x4 RoundKey

: g
SubBytes : i
& | coumn] 2L | ||,
7l invsubBy | 128 EEEY 5 e -
ShlfLRow » tes i Inv i Output
Input : >

i |

MixColumn || %75
128

mixRoundiey

Figure 2.19: Hardware architecture of the proposed full pipelined AES
processor(Chih-Peng Fan and Jun-Kui Hwang,2007)

Re Re Re Ry

Input_text—» Add AES1 . AES10 Output_text
> E "o w8 | 3 F -
Key > (Round 1) (Round 10)
© SubBytesx 16 MixColumns x 4
Reo R A =
: undkey
n ol
= b N | |l =
P > | DID]‘E 122 o | i é 128
@] * ShifiRow 13 MixColumns t E >
Input D- %DI 7“| I/ i | | Output
=1 ' |

CHAPTER 3

METHODOLOGY

3.1 AES

3.1.1 Introduction of AES

AES (Advance Encryption Standard) is a symmetric-key encryption standard
adopted by the U.S. government. It comprises three block ciphers, AES-128, AES-
192 and AES-256. Encryption is the process of transforming information (normally
referring as plaintext) using a string of bits (called key) to make it unreadable to
anyone except those possessing the key. Inversely, decryption is to transform the
cipher text to readable information by using the key and the proper algorithm. In our

case, AES is the algorithm that going to be use in encryption.

Basically AES can be divided into 3 processes: Encryption, Decryption, and
Key Expansion. According to the theory of AES, the data in groups of 128-bits will
be initially transformed into a 4 x 4 matrix with each slot containing 1 byte of data

and called a State.

Figure 3.1: Transformed Data Matrix

This is a block from
the plaintext message
to be encrypted.

24

3.1.2 Encryption

There are 4 functions inside the encryption process (SubBytes, ShiftRows,
MixColumns & AddRoundKey). Based on the selected block ciphers, the number of
rounds the functions will be applied is determined: 10 rounds for 128-bit keys, 12
rounds for 192-bit keys, and 14 rounds for 256-bit keys.

Figure 3.2: AES-128 Encryption Flow

Cipher key

HH

State

AddRoundkKey

1-SubBytes

Round key 0

Round key 10

-

AddRoundkKey

3.1.3 Decryption

The process of decryption is similar to that of encryption. The differences are: each
of the SubBytes, ShiftRows, MixColumns function is replaced with InvSubBytes,
InvShiftRows & InvMixColumns, while Add Round Key remains unchanged. The

sequence of the functions is also is rearranged in a reversed way.

25

Figure 3.3: Decryption Flow

& PLAINTEXT 1]

AddRoundKey I
+

InvSubBytes I
T

InvShiftRows I

{ LasTROUND

=
o
E o | AddRoundKey I
& i3
IS} m I InvMixColumns I —
L] 3 ¥ o
() = =
3 | InvSubBytes I <
@
o T
)
= | InvShiftRows I

CIPHERTEXT

3.14 Key Expansion

Throughout each round, the Add Round Key function uses a different key that has
been expanded from a short key (cipher key). This expansion is called Rijndael key
schedule. The total number of round keys required is equal to Nr + 1 (where Nr =
Number of rounds = 10). Although there are 10 rounds, eleven keys are needed
because one extra key is needed in the Initial round. The key expansion algorithm
uses bit-wise additions modulo 2 of 32-bit values obtained from user key combined
with byte substitution, byte rotation to right and round constants (RCons) addition
(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007).

3.2 Implementation Process and Flow

The above explained AES algorithm is based on 8-bits processing scheme. As for the
Nios II where it’s having 32-bits of processing power, modification on the traditional
algorithm would make the system to be more efficient. Based on the AES theory, we
have encryption, decryption and key expansion process. Firstly, modification and
implementation method of encryption will be explained as decryption is just an

inverse of encryption.

26

Encryption process include of SubBytes, RowShift, MixColumns and
AddRoundKey. Traditionally, S-Box for SubBytes is meant for 8-bit substitution.
However, now the designs are made in 32-bits architecture, modification of S-Box

can be made to come across 32-bits substitution.

Basically the design | implemented can be categorised into 3 stages where at
first SOPC builder will be used to generate blocks for the customized module with
Nios Il embedded with custom instructions. This custom instruction will be first
written in a Verilog file. After completing the system for the Nios Il, Quartus Il
schematic diagram will be used to draw the connection between the built Nios Il
system with peripherals and other modules of the overall system such as S-Box
substitution ROM. As the last stage, Nios Il IDE software development kit will be
used to write a C code programs; which will be loaded to the Nios Il module. The
program includes some simple logic operation such as XOR for the AddRoundKey

function.

Evaluation will be done on DE1 board manufactured by Altera. The figure
3.4 below shows the diagram of the DE1 development board.

Figure 3.4: Altera DE1 Board

UsSB VGA
Blaster Mic Line Line Video 25‘232
Port jn In Out Port ort

7.5V DC Power Supply
Connector I t 1 1 1 1 t
AR | i
. I

N
24-bit Audio CODEC
4= PS/2Port

Power ON/OFF —
Switch J
"_:

27Mhz Oscillator
50Mhz Oscillator
24Mhz Oscillator

Altera USB Blaster
Controller chipset

Expansion Header 2 (JP2)
(with Resister Protection)

Expansion Header 1 (JP1)
(with Resister Protection)

Altera EPCS4
Configuration Device

RUN/PROG Switch ___
for JTAG/AS Modes

Altera90nm Cyclone Il
FPGA with 20K LEs

——w— «)*—SMA External Clock
M, | B il » 4 Push-button Switches

8Mbyte SDRAM 512Kbyte SRAM 4Mbyte Flash Memory

27

3.3 Hardware

3.3.1 Niosll

Nios Il is designed by one of the leading vendors of Programmable Logic Devices,
Altera Corporation. Nios Il can be implemented in Stratix, Stratix Il ,and Cyclone

Families of FPGA that are also manufactured by Altera.

Nios Il soft-core processor is a general purpose Reduced Intruction Set
Computer (RISC) processor core and features Harvard memory architecture (Jason,
Anderson & Mohammed, 2006). According to the specifications provided by Altera
Corporation, Nios Il is featured with full 32-bit Instruction Set Architecture (ISA),
32 general purpose registers, single-instruction 32x32 multiply and divide operation,

and dedicated instructions for 64-bit and 128-bit products of multiplication.

Based on Altera, Nios Il processor comes in three version of design: economy,
standard and fast core. Each core version is different in terms on number of
pipelining stages, instruction & data cache memories and hardware components for
multiply and divide operations. Based on the requirements of the system, one of

cores can be selected.

Peripherals can be added to Nios Il through the Avalon Interface Bus which
contains the necessary logic to interface the processor with the off-the-shelf IP cores

or custom-made peripherals (Jason, Anderson & Mohammed, 2006).

28

Figure 3.5: Nios Il Wizard

“ Nios II Processor

Parameter

Core Mios II Caches and Memory Interfaces Advanced Features MMU and MPU Settings JTAG Debug Module Custom Instructions
Core Mios I
Select a Nios Il core:
ONios Il/e |®Nios Ilfs ONios IIff
N RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone I Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiphy
fsyshem: 0.0 MHz Hardware Divide Hardware Divide
. Barrel Shifter
ll| i o Data Cache
1 Dynamic Branch Prediction
1 Performance at 0.0 MHz Up to 0 DMIPS Up to 0 DMIPS Up to 0 DMIPS
Logic Usage §00-700 LEs 1200-1400 LEs 1400-1800 LEs
: Memory Usage Two M4Ks (or equiv.) Two M4Ks + cache Three M4Ks + cache
I Hardweare Muliply: | Embedded Multipliers + | [Hardware Divide
Reset Vector: Memory: | - | Dffset: gy
Exception Wector: Memory: | - | Offset: [gyon |
Include MKU
Only include the MMU when using an operating system that explicitty supports an MMU
I Fast TLB Miss Exception Vector: Memory: Offset: |q.n
Include MPU I

., Warning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

' hl."._';‘-l

3.3.2 System Structure

In order to produce a workable embedded system, the structure for the system must
be known. There are various software and systems that have been provided by the
vendor to help the users in their system design. As for Altera Corporation, SOPC
builder, Ouartus 1l, Eclipse IDE, etc., are systems and software that can be

downloaded from their website.

According to Wikipedia, FPGA-based SOPC (system on Programmable Chip)
is a platform made by Altera that automates connecting soft-hardware components to
create a complete system that runs on any of its various FPGA chips. SOPC Builder
incorporates a library of pre-made components (including the flagship Nios Il soft

processor, memory controllers, interfaces, and peripherals) and an interface for

29

incorporating custom ones. Interconnections are made though the Avalon bus. Bus
arbitration, bus width matching, and even clock domain crossing are all handled
automatically when SOPC Builder generates the system (SOPC Builder, Wikipedia).
By using SOPC builder, we can describe the relationship between modules and link

the whole system up. Below is shown a screen capture of SOPC Builder software

Figure 3.6: SOPC Builder ScreenShots

46 jstem - Atera SOPC B~ il u.'ﬂ
SOPC Builder e
From Concept to System in Minutes | D e ————
= App/rcqn’on i] o
= 5 Logic [it
: DA UART | b e
USB » iy _ o __em.;w.w._

-SDRAM Controller ‘_ (== | = ’

Altera SOPC Builder 9.1sp2
Copyright ©1298-2010 Altera Corporation. All Rights Reserved.
Loading component/sis_avalon_usb20hr_hw tc fen) (e | i) (o)
[My Doct tiAltera
Fie Edt Modue System Vew Toss lesl e Fic 251 Modue Sysiem Mew Tools Nosl Heb
System Corients | Systen Generaton [systemCassents, System Generaton
Component Lbvary Taget SR E st
mode logic il be cresed
 Ssmn | | DOl x| | Kane Suree etz 9'?"“ = DL g
@] Smuiation_Cr fles Fun Smuistor
o Prfocss
was Hos ITocks
: q
G Hgh Speet =
;:m = ' To De:cpu_: No reset vecior has been speciied for tis CPU. Plesse parsmererze the C9U o resalve s ssoe:
"o AvabnSTITAR T ' To Der epu_ No exception vector has been s CPU ize the | ssue
o o T Sel tas_aseer alon Wesery Mspped aster 10 o | [X Emor: Generalion shinped because e system has vaidsion smrs.
5 TAGUART oo debog ol |Avakn Uemery Mapped Save CEIB0008D0 (0x09000
SPIBVre Serl 2 B} onchip_memory2 0 |Dn-Chip Wemory (RAM or RON)
UART (RS-232 5 st Avalen Wemery Magped Save o 0xD0002000 | x0200E:
-Legacy Components
-Hemories and Nemory Corvu
FRP T TR A
Lm
4 ® 0 J
)] () | [eme (] [z][4](2](2] [emte] [m=nc]
1 To D cpu_: Ho eset veckr has. s A U - To Do cpu_D: Vo reset vecto s bean speciied fr s . Pease parameterize i CFU fnresol s ssue
) To Dar cpu_) Ho excepion vector has been specified for s CPU_ Please paranetere Me CPU 10 resolve s ssue: = To Do: cpu_t: ption vector has been specified for th s CPU CAltD
&] |~])) = |

Figure 3.7: SOPC Example

Debug |
e s —

30

Quartus Il software is used for analysis and synthesis of HDL designs.
Designers can compile their design, perform timing analysis, examine RTL diagrams,
simulate a design's reaction to different stimuli, and configure the target device with
the programmer (Quartus 1l, Wikipedia). Besides simulation purpose, the schematic
design system that is embedded inside the software can be used for attaching the

design modules with other peripherals such as 7-segment display, button switch, etc.

Figure 3.8: Schematic Diagram Platform, Quartus 11

8 Quartus I - DMy Document/ARG
T8 File Edit View Project Assignments Processing Tools Window Help
est

DSU@ & ® T - r@we P sD RS0 Ale
Project Navigator ~ % 3 Blockl.bdf I
Enity [
&y Cyclone Il: AUTO =2 J
» Testl Zg

erardl sp2/quartus/lir: & | |0
functi

ALTSERIAL_FLASH_LOADER

DCLKN

SCEN

SDON

NOE
ASMI_ACCESS_GRANTED

DATAGOUT 1
ASMI_ACCESS_REQUEST{—

e
i k
Ay Hienarchy [B Files | & Desion Units o

¥ Launch Megawizard Plugin

tegatwizard Plugdn Manager.

£\ System £ Processing Jy Estialnio Irfo J Warring J, Crlical'Waming } Enor Jy Suppressed J, Flsg

£ Message 4| ¥ [Cocaton =]
= i)) Tde NUM

11:58 AM
26/8/2010

4l

34 Software

Altera Corporation provides software development tools such as Eclipse IDE, Nios Il
IDE and so forth. These software development tools are used for writing programs
for the system that we created. It provides tools to accomplish software development
tasks such as editing, building, and debugging programs.

Altera Nios Il IDE will be used for the software implementation design. The
Nios Il integrated development environment (IDE) is a primary software
development tool for Nios Il family of embedded processors. We can accomplish all

software development tasks within the Nios Il IDE, including editing, building and

31

debugging. The Nios Il IDE provides a consistent development platform that work
for all Nios Il processor systems. With a PC, an Altera FPGA and JTAG download
cable; the whole process of developing the software for any Nios Il processor system

can be accomplished.

Figure 3.9: Screenshots of Nios 11 IDE tools (Hello world!! Example)

arch Project Tools Run Window Help
MCRECREE R R - X i i -m o
BB Nios T C/C++ Projects 52 = O|[[g] helloworld.c &2 [] application.stf El readme.xt = B|(5 outline 2T B[O Welcome 52

= / = . . =
- . B S |/ (come to the Altera
o main Nios Il IDE

@15 altera.compenents
£E2 hello_werld 0

[readment
system.stf

® Make.. 32 T O
oz

-5 hello_world_0

#include <stdio.h> 2% hello_world_0_sys

int main()
1
printi("Hello from Nios II!\a");

retarn 0;

% v =0

»
eclipse

o° Writable Smart Insert g5l

3.5 Functional Description

The designed system is a typical 128-bit AES system, whereby blocks of 128-bit data
will be encrypted/decrypted at a time with a 128-bit key.

Designed AES system basically can be separated into 3 major functions: Key

Expansion, Encryption and Decryption.

32

3.5.1 Encryption

3.5.1.1 Add Round Key

Add Round key is the transformation in which a round key is added to the State
using an ex-or operation. The process of round key will be explained in the Key

Expansion sections (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007).

Figure 3.10: Add Round Key Transformation

Round key

3.5.1.2 SubBytes

SubBytes is the Transformation using non-linear byte substitution table (S-box) that
operates on each of the bytes independently (Chirag Parikh, M.S. & Parimal Patel,
Ph.D, 2007). Inside each slot of 1-byte data, the input high order 4 bits or a nibble is
used as the row value of the S-box, the low order 4 bits or a nibble is used as the
column value of the S-box. The corresponding row and column element is taken out
from the S-box as an output (Shunwen Xiao, Yajun Chen & Peng Luo, 2009). For
instance, from the S-Box table below, input of hexadecimal “7a” will result

hexadecimal “da”.

33

Figure 3.11: S-Box
/
f \

] o 1 2 3 4 5 & 7 8 9's;y b o d e f
___'__'__'__'__'__'__'__'__'__'__'__k__'__'__'__'__'
00 163 7c 77 7b £2 €b &f c5 30 01;6712b fe d7 ab 76
10 |ca B2 c8 T7d fa 59 47 f£f0 ad d4 a2 jaf 8c a4 72 c0
20 |b7 fd 93 26 36 3f £7 cc 34 asles £1 71 d8 31 15
30 104 c7 23 c3 18 96 05 %a 07 12, 80 kz eb 27 b2 75
40 |09 83 2c la 1b 6e 5a ad 52 3b dé p3 29 e3 2f 84
EQ |53 d1 00 ed 20 fc bl Sk 6a ckbl be 39 43 42 58 of
60 140 ef na fh 43 Ld-B3-26-4s £o a2 b s 3g or as

~ =70 151 a3 40 8f 392 9d 38 f5 bc b6 Bl 10 £f £3 d2 "o
80 Tod O T= oo =8 fel T ek o w3 o S ™ T 7S
90 |60 81 4f dc 22 2a 90 28 46 ee, be b4 de 5e 0b db
a0 |e0 32 3a Oz 49 06 24 Sc c2 adl ac g2 91 95 =4 79
b0 |e7 cB8 37 &6d 8d d5 4e a9 &6c 56] £4 ea &5 Ta ae 08
c0 |ba T8 25 2e 1c a6 b4 c6 e8 dd, 724 IUf 4b bd 8b 8a
d0 |70 3e b5 66 48 03 £6 0= &1 asl 57 [p? 86 c1 1d %e
el |el f2 92 11 &9 d9 82= 94 9b 1=|87 e9 ce 55 28 df
£0 |8c al 89 0d bf e6 42 68 41 99 2dlof bo 54 bb 16

\"
/

3.5.1.3 ShiftRows
ShiftRows is the Transformation that processes the State(refer Figure 3.1 explanation)
cyclically shifting the last three rows of the State by different offsets; Row 1 is

circular left shift by one place, Row 2 by two, Row 3 by three places whereas, Row 0
remains unchanged(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007).

Figure 3.12: ShiftRows Transformation

Input Result
d4|e0|b8|1le d4|e0|b8|1e
27 | bf | bd| 4] |« Left Rotate aver 1 hvte bf b4d|41(27
11198 |5d|52 |« |eft Rotate over 2 hvtes 5d/52(11|98
ae| fl|eb5| 30 |« Left Rotate over 3 bvtes 30 ae|fl|eb

34

3.5.1.4 MixColumns

MixColumns is the transformation that takes all the columns of the State and mixes
their data (independently of one another) to produce new columns. Each column is
considered a polynomial over GF(2%) and multiplied modulo X*+ 1 with a fixed
polynomial C(x), where C(x) = 3x* + x* + x+ 2 (Chirag Parikh, M.S. & Parimal
Patel, Ph.D, 2007).

Figure 3.13: MixColums Transformation

02 03 01 o1| |94

01 02 03 01|, |PE
e0|b8|1e| 191 01 02 03| |5d

p41411271 103 01 01 02| |39
52(11|98| = =

The four numbers of one column
ae f]' e 5 are modulg multiplied in Rijndael's
Galois Field by a given matrix.

3.5.2 Decryption

3.5.2.1 Add Round Key

As for the decryption of the Add Round Key, the sequence of the keys used for
addition is no longer round key O until round key 10. The sequence is instead
reversed, from round key 10 until round key 0.

3.5.2.2

InvShiftRows

35

InvShiftRows operation is similar to ShiftRows operation, but instead of rotating the

bytes toward the left, now it rotates them towards the right.

Figure 3.14: Differences between ShiftRows & InvShifRows

Row 0 Sﬂﬂ S.'_'”

Rowi 5,415,

Row 2 Szﬂ 821

Rowd 554155,

3523

InvSubBytes

ShiftRows

ImyShiftRows

N

InvSubBytes operates exactly the same as SubBytes operation. However, now the S-

Box is replaced with the InvS-Box table.

00
10
20
30
40
50
&0
70
80
a0
al
bl
c0
do
el
0

| ©
[——1
| 52
| 7
| 54
|08
| 72
| 62
| 80
| dO
| 3a
EL:
|47
| £c
|1f
| 60
| a0
|17

Figure 3.15: InvS-Box

el

e

a9
c3
dl
bE
ad
45
8a
=13
df
be
oa
ec
Sc
99
Oc

£

b
cb
qdg
25
g2
84
] 3
&b
T3
oe
1b
4
R E
ef
61
Td

36

3.5.2.4 InvMixColumns

InvMixcolumns performs the same operation as the MixColumns function. The only
difference is that the polynomial used for multiplication is changed to
C (%) = 113 + 13x + 9x + 14.

Figure 3.16: InvMixColumns

— 1
(14 11 13 9] d4

9 14 11 13| |bf
e0|b8|le| |13 9 14 11|°|5g
b4|41]27] |11 13 9 14 |57
52|11/98| = =

The four numbers of one column
ae f 1 e 5 are modulo multiplied in Rijndael's
Galois Field by a given matrix,

3.5.3 Key Expansion

Throughout each round, the Add Round Key function uses different keys that been
expanded from a short key (cipher key). This expansion is called Rijndael key
schedule. The total number of round keys required is equal to Nr+ 1 (where Nr =
Number of rounds = 10). Although there are 10 rounds, eleven keys are needed
because one extra key is needed in the Initial round. The key expansion algorithm
uses bit-wise modulo-2 additions of 32-bit values obtained from the user key
combined with byte substitution, byte rotation to right and round constants (RCons)
addition(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007). The total key schedule is
44 words (32-bits) for 128-bit key.

37

3.6 Program Architecture

3.6.1 Overall System Architecture

Using the SOPC builder to design Nios Il system, | found through analysis and
research, that Nios II(f) is the most suitable processor for the system as it has higher
stage of pipelining and instruction cache which would highly increase the
performance of the system. Furthermore, using this processor would actually give us
higher flexibility in the future should we want to enhance our system. During the
generation of the Nios Il system, custom instructions and other peripherals that are
required are also included, especially SDRAM as Nios Il system requires a larger
amount of RAM compared to other systems. Outside the Nios Il processor,
connecting with other custom made peripherals would complete the system. The

flowchart and block diagram of the system are shown below:

Figure 3.17: System Block Diagram

2_columni[31.0] out_port_frc 2_columni[31.0]

Figure 3.18: System Flow Chart

Program Start
v

Enter Key

Key Expansion

Encryption/

m

O

Decryption?

A

Enter
Plain Text

Encryption

A

Output
CypherText

» Program End |«

A 4

Enter
CypherText

Decryption

A

Output
Plain Text

N

38

39

3.6.2 Key Expansion

As explained before, there are a total of 44 keys that will be expanded in the Key
Expansion process. Due to the requirement in AddRoundKey process in decryption
whereby the key required is in reverse order, keys will be expanded before the
process of encryption/decryption started. The process of the Key Expansion is shown
as below:

Figure 3.19: Key Expansion Process

W

de=i= 4N + 1)

W,

| B | .
[.. :-"—— W i TR T p— TR] p— 'l‘— Rioms |

W
AT o -
PR : i MOD 4 =0

The ByteSub & ByteRot is a shared function of Encryption. In enhancing the
efficiency of the 32-bit Nios Il processor, ByteSub has been hardware implemented,

and details will be discussed in Encryption.

3.6.3 Encryption

We can divide the 4 functions of the encryption into 2 implementation categories:

hardware or software. Hardware consists of MixColumn & SubBytes whereas

AddRoundKey & Shiftrows are software implemented.

40

3.6.3.1 Software

Software implementation requires fewer resources compared to hardware
implementation but with the drawback that effectiveness is lower as hardware
parallel execution is faster compare to software serial execution. Due to the
AddRoundKey and Shiftrow functions requiring only basic arithmetic and logical

operations; software implementation will be more suitable.

3.6.3.1.1 AddRoundKey

This function does not consist of complex algorithm, with just XoR operations, the

function is implemented in software.

3.6.3.1.2 ShiftRow

The data type that has been used in the software for the data is selected to be
unsigned integer byte which | do believe is more efficient for a 32-bit processor.
Hence in order to rotate the integer to the left, with the MSB moving to the LSB side,

a customized algorithm is implemented.

Example: 5-bit rotate to left “01101011”

0 1 1 0 0 0 0 0 LSL 5-bit“01101011”

0 0 0 0 1 1 0 1 LSL 3-bit“01101011”

0 1 1 0 1 1 0 1 Bitwise OR above

Using this algorithm, rotating an integer type in software is easily achievable.

41

3.6.3.2 Hardware

Hardware implementation of complex functions would simplify the algorithm and

indeed increase the performance of the functions.

3.6.3.2.1 SubBytes

S-BOX has been used in SubBytes function. Typical AES S-Box consists of 256 of
8-bit data, however due to the Nios Il being a 32-bit processor, 4 typical AES S-
Boxes are combined so that 32-bits of data can be directly mapped with the S-Box in
1 cycle. Hence the new S-Box would actually be 1Kbyte in size. This process is done
by designing a 1Kbyte ROM with initialization. The ROM is then connected to the
Nios Il system generated by the SOPC builder in the schematic diagram.

3.6.3.2.2 MixColumn

Due to the complex mathematic operations in MixColumn, hardware implementation
would be more effective. However, it was implemented differently compared to
SubBytes which was implemented using Parallel 10. MixColumn makes use of
custom instructions inside the Nios Il. This is because we can set the number of
cycles that the function in custom instruction will require to finish a job before the
system reads the return result and this will ensure the precision of the returned result.
Initially, MixColumn algorithm will be written in Verilog file and by using the
timing analyzing, clock cycle that been require for the process to complete is

identified and being specific during custom instructions integration in SOPC builder.

3.6.4 Decryption

Similar to encryption, the decryption process also consists of 4 functions:
InvSubBytes, InvShiftRows & InvMixColumns, & AddRoundKey. As explained in
encryption, InvShiftRow and AddRoundKey will be software implemented and

InvSubBytes & InvMixColumn will be hardware implemented.

42

3.6.4.1 Software

3.6.4.1.1 AddRoundKey

Function is the same as in encryption, the only difference is that the key being used
will be in reverse order, the 44™ key would be the first key followed by 43" and so
on. As the key expansion is done before the encryption or decryption processes,

timing problems will not appear

3.6.4.1.2 InvShiftRow

The algorithm for this function is similar to encryption ShiftRow function, except
that ShiftRow function rotates the data to the left while InvShiftRow rotates the data
to the right.

Example: 5-bit rotate to right “01101011”

0 0 0 0 0 0 1 1 LSR 5-bit“01101011”

0 1 0 1 1 0 0 0 LSR 3-bit“01101011”

0 1 0 1 1 0 1 1 Bitwise OR above

By using the same example, we can see that by modifying the algorithm, we can
achieve integer rotate operation.

3.6.4.2 Hardware

3.6.4.2.1 InvSubBytes

Due to the same reason that was mentioned in encryption, InvS-Box has been
designed to match the performance of Nios 11 32-bit words. Using the same approach

by combining 4 InvS-Boxes, higher efficiency can be obtained.

43

3.6.4.2.2 InvMixColumn

Looking at the theory of AES, we see that the only difference between MixColumn
and InvMixColumn is the multiplier of the matrix. Due to multiplication of the Finite
Field for higher multiplier requiring more mathematical operations, InvMixColumn
requires more resources compared to MixColumn. In order to minimize the resources
used, | have factored out the common factor of the multiplier between MixColumn

and InvMixColumn so that some resources can be shared.

Figure 3.20: InvMixColumn Multiplier

OE 0B | 0D 09 0B |08 |OB |08 02 |03 (01 |01
09 0E | OB | 0D 08 | 0B |08 |0B 01 |02 (03 |01
0D 09 (E 0B = |0B |08 |0B |08 T 01 |01 (02 |03
0B | 0D | 09 0E 08 | 0B |08 | 0B 03 |01 (01 |02

By summing the result from new finite field multiplication and MixColumn,
InvMixColumn results can be obtained. This provides a better efficiency for the

resources.

CHAPTER 4

RESULTS AND DISCUSSIONS
4.1 Result Validation
Validation of the system is done by comparing the results with AES java calculator
that has been designed by Lawrie Brown from ADFA, Canberra, Australia. Details in

each cycle are compared to validate the AES system that has been designed here.

Table 4.1: Key Expansion Comparison

Java Calculator Nios Il FPGA
R0 (Eey = 69766d79626161736e746c696105616])) |[Enter your key
Rl (Key = 259902d14bi8e3a2258coEchdacderaa) |. _
1nncvatemala§,'51a
R2 (Key = 39b12e077249cda557c5426e1d2caccd)
R3 (Key = 4c2032a33e69££0669achda8748011ac) EE f f:;gffzjif_i5;7§f::45222f53‘51‘51
RE (fey = B0a2a30IDTChSCITARTEISEa1E0E) | . 30m17e07724000055 70042601 d20mmnd
R (Key = (d2ear9dbaeif’laaedf2l3focebsedlf) [R3 : 4c2032233e69£f0669acbdEaT4a011ac
R [Fey = 603fcli6dadadthcbesed0daniidesds) |52 ¢ BPsesdsibicbscsTAmcTelSTaacTOss
ES : dieaefdbaeeiflaafd82l3fScease3la
R7 (Key = 07114547ddcb76£b639356b21320951d) |me : 603fc116dada3sbebessz049703de34E
RE (Key = 633bll3abef067c1dd6331 3cecdadte) EZ f z;;zi:;ﬂzﬂf;:fbizz;:fffaejfj
R3 (Key = c7208b17b626570a6e] 5e03682ctatd) R; c-.5?20ab:?zééaésna5e15e;3:§;;‘a;;
R10 (Key = 825f55f4f%dd3aR4513c64873710920a) [R10 : 825£55£4£9dd3aB45£3c64873710%e0a

45

Table 4.2: Encryption Comparison

Java Calculator

Nios Il FPGA

B0 = lele0cd801080£4a01180kb300c0c330
Rl = e9a563fade33004fecdddbiBT7450c5¢ch
B2 = c0d3788cadalTaifsa3fas9clataidie
p3 = 6aeddd70d31bid3B60a6e7981480c]1e
R4 = 8130akelf273%af4l46de0dat0d3deh
RS = 66c9bbTeeladd7a006b082c8165501e]
R§ = £a75647d924703£c915eb4ed50beeki]
r7 = fzjaaladbdebblTeddTates21lbiiledc
Rg = 6dfedfffdlabo240858014632720e5d3
gy = 2b3177c539f60ab2aelb92L2745827749
Bl = 73ldlad2ebicae22bbTd91b0a547L983

Enter your text
woochiliang 0921

Input ASCIT : 776861306f696e396£6c6T73263695131
lele0cd491080£4a21180b5ke0c3e50
£9a563fad633004fecd8EbiET450c5Cs
c0d3788cadal7a395a3£a59cas63dae
6aed9d70431b{d3568a62T981480ch1e
8130abel£273%=af4146dc0da80d3dek
66c9bbTeel2ad97a6b082cE16551e]
f£2756474924703£c9E5eb4e450kbechs]
fz3zaladbdebb2Ted4Tafel21b35165c
6d2ed6f631a59240852014632720=5d3
2b3177c539L60ab2ae(b92£27415a779
T31d1a42ebfaa622bbTd91b0a5dTL983

Bound 0 Cypher
Eound 1 Cypher
Bound 2 Cypher
Bound 3 Cypher
Round 4 Cypher
Bound 5 Cypher
Bound & Cypher
Bound 7 Cypher
Round & Cypher
Bound % Cypher
Round 10 Cypher :

Table 4.3: Decryption Comparison

Java Calculator

Nios Il FPGA

R0 = £1424706127b50afedd 153792076789
Rl = 3c06f26607cdd9429707£609001945 5k
R2 = 2de99feb7adad749480732£3a5803700
B3 = 2da08dd14£58e97Fdbard3b0539d7had
R4 = 33e530£87876d153634deadalcdd3sT]
B3 = (cBfRE7£29522790R3d 762790204 0bdT
RE = 02a£947266240451450d520752555446
BT = pa32061995752764beblbcl 26766dade
RS = lec33daffaflas2dees3fhado2066341
RY = 72302b537cadb23bTcfefedsfaT27630
RL0 = 776861306F6 9623965 ACE73263695531

C

INFUT:731dlad2ebfa6622bbT7d91b0a547£5983

QUIFUT 0 : f£1424fb6122b5cated41f53792c76785
QUIFUT 1 : 3cO06fa6fcTcdd34297b7L609ccli4ith
QUIFUT 2 : 2de%9febTadad749480732L3a£803700
QUIFUT 3 : 2dalf8ddl4f5&edffdbaesd3b0539d47bas
OUIPUT 4 : 33e530£Bf87f£d1f3634deadacdd3sTl
QUIPUT 5 : cBiB2&7L£EB95a2279b83476279c2040k47
CQUIPUT & : 2af94726624b45145cd5e07fa555444
QUIFUT 7 : ba320619395752764beblbclieTabdade
QUIFUT 8 : lec33da6f&flafidce53fbi452066341
QUIFUT 9 : T72302b537cadbi3bTcfefed6feT27635
QUIPUT 10 : 776861306L696e396f6cAT3263095031
YOUR TEXT:

woochiliang 0921

From the comparison above, both systems produce the same values. Hence, we can

conclude that the designed AES system is verified to be fully functional.

46

4.2 Performance Benchmark

421 Platform Benchmark

In recent years, softcore is claimed to have higher flexibility and performance
compared to a microcontroller. Hence, | have chosen an AES system based on a
microcontroller to be benchmarked with my softcore AES system. Fortunately, there
is a student in UTAR developing AES on microcontroller for his project. Due to the
similarity of our algorithms, differences in performance can be observed and
compared.

Microcontroller

Figure 4.1: Encryption

He [Yov Pomt Devipr Pogime sos Conigwe Wodow Hep.
ANw

Sopwach To Sinoled

[Syoch] nincton s U
T'rre (uSecs) 0000000 19147600000
Procassor Frequency MHz) 20000000

e 4t ow owt Qg ogweme on Goigun Moo 15

D@ (%8 SASILTY Dim -daEBR0 SHAER
v

Stopralch T St

(peh] Ituctin Cycks M0 040

’[@ Tme (Sect) goemm eosm

Processor Frequency (MHz) 20000000

47

Figure 4.3: Key Expansion

ouct Oubugger Fogommes Toch Corbgun Wadow Fep

T ety riFEORO SHER

PURBPORO| ouonm e . 1| Stopwatch [olE ks

Stopwatch Total Siulaled
L Smch‘ Instuchion Cycles 14604 44604

(Zao| e (WBect) guAEN) QSN0

Processor Frequency (MHz) 20,000000

Nios Il FPGA

Figure 4.4: Nios Il Performance Counter Report

——Performance Counter Report——
Total Time: 16.0211 seconds (2403172145 clock-cycles)

o = e e e +
| Section | % | Time (3ec)| Time ({clocks) |Occurrences|
o = e e e +
|Encryption [0.0002811 0.00005] 6752 1]
o mm e to—m—— Fommmm e ommm o bommm - +
| Decryption [0.000291] 0.00005] 69831 1]
o mm e to—m—— Fommmm e ommm o bommm - +
|Key Generator |0.0002 0.00003] 4802 1]
o = e e e +

From the comparison above, we can see that the AES in Nios Il system is way faster
than the AES system in microcontroller. There are a few reasons that we can find to
explain the differences in performance. The advantage of Nios Il is that it is a 32-bit
processor whereas the microcontroller has an 8-bit processor. The most important
factor that determines the extraordinary performance is that the Nios Il system can
support external custom peripherals & custom instructions which allows for some of
the functions to be accelerated. Memory in the microcontroller is also limited, and
this is very critical for AES system as the S-Box required in SubBytes function
requires quite a bit of memory. The pipelining of instructions and the instruction

cache that is found in Nios I1(f) also help the system to achieve high performance.

48

4.2.2 Implementation Benchmark

An AES system typically can be categoriesd into fully hardware and fully software
implementation. In this project, traditional method is replaced with co-design where
both software and hardware are implemented into the same system for high
efficiency.

Table 4.4: Fully Software Performance

Table 1: Comparison of AES on software platform

SW ooy | S/W on ||Desktop | PDA
FPGA || FPGA PC

(W/o (with

cache) || cache)
Key 1.4 0.14 0.0055 0.008
Encryption | 119.7 11.2 0.019 0.3

Decryption | 13857 || 12.86 0.029 0.4

The benchmark above is obtained from “Performance Evaluation of AES Algorithm
on Various Development Platforms” (Chirag Parikh, M.S. , Parimal Patel, Ph.D.,
2007). As mentioned in the article, the unit for the readings is millisecond. Looking
at the FPGA with cache (Nios II(f)) performance, we can see that the performance
for the fully software implementation is still slower than this project’s system. This
can be explained by the custom made hardware functions which are used for certain
hardware acceleration. As mention in the article, the clock speed of the processor in
the Desktop (Pentium 4) and PDA (UIQ emulator (ARM9)) platform is higher than
FPGA applied clock speed and is faster than the fully software implementation in

FPGA. However, my designed of AES system is yet faster than above platforms.

49

Figure 4.5: Fully Hardware Performance

Table 2: Hardware Implementation Results
Usage Encryption/Decryption
of Slices (13,696 Total) | 5336 (3%)

of Slice FFs (27,392) 620 (2%)
Achieved Speed 6.646 ns (150.5 MHz)
Data Rate 221.4 Mbps

The performance for full hardware implementation is outstanding and is even faster
when compared to my AES design. However, hardware implementation consumes a
lot of resources and will be very costly. Furthermore, fully hardware implementation
has as its largest drawback its flexibility whereby it requires add-on resources during
future modifications or improvements. This problem will not affect software
implementation much as we just need to add in some extra code for extra features.
By using the combination of hardware and software implementation, minor future
improvements or modifications that do not require hardware implementation can
actually be done without adding on any LEs (Logic Element), it would save a lot of

resources.

4.3 Overall Discussion

By having 128-bits of key, we would have 2 to the 128th power, or 3.4 x 10 to the
38th power numbers. Seagate Technology had come out the calculation where if
presume that:

e Every person on the planet owns 10 computers

e There are 7 billion people on the planet.

e Each of these computers can test 1 billion key combinations per second.

e On average, you can crack the key after testing 50 percent of the possibilities

50

Table 4.5: Time require for Key Cracking

Computation Reference for
128-Bit Key Crack Example

People TO0E+08
Computers per person 10.00

Computers 1.00E+03
Combos per second per computer TO0E+13
Total combos per second T00E+13
Seconds per year 35E+07
Total comibos per year 222E+12
128-bit key combos (*50%) 1.70E+38
Years to crack T.BBE+23

it will require 77,000,000,000,000,000,000,000,000 years to crack a single key.
According to NIST (National Institute of Standards and Technology), AES would be

secure for at least 20-30 years.

Encryption process in fully software implementation is observable in memory, and it

would give a path for the attacker to reveal the key. By using co-design where

hardware and software are implemented together, key would be secure during the

process.
Table 4.6: Overall Comparison Table
Nios Il Microcontroller Fully Software Fully Hardware
FPGA (my Implementation | Implementation
design)
Encryption 0.04 ms 19.00 ms 11.2 ms 6.646ns
Decryption 0.05 ms 60.00 ms 12.86 ms 6.646ns
Key 0.03 ms 8.00 ms 0.14 ms 6.646ns
Resources | 5,259 LEs - N/A 13,696 slices

As the comparison above shows, the performance of my design is slightly better than

that of a fully software implementation and is much worse compared to that of a fully

hardware implementation. This can be explained as the algorithm that has been used

is optimized for the fully hardware implementation. As for my algorithm, typical

o1

AES algorithm is applied which is a disadvantage for my design. It should achieve a
higher performance if the algorithm is optimized. The performance of my design is
also slower than my expectation as | thought that it would be faster compared to the
fully software implementation and only slightly slower than the fully hardware

implementation.

Typical AES system takes in hexadecimal as its input, this would be very
troublesome as people would have to find the hexadecimal representation for their
input. As for my design of AES, the input to the system is character type where
symbols or characters will be converted into hexadecimal based on their ASCII code.

This is more convenient compared to a typical AES system.

From the comparison table, my design of AES scores the speed of 3.2Mbps for
encryption and 2.56Mbps for decryption. Hence it can be applied in devices which
require moderate performance with limited resources such as VOIP, Radio
Frequency device, ATM machine, transceiver, video conferencing, etc. With the
performance that been achieved, typical home-based internet usage or WIFI

communication can be supported.

There are two major bugs that can be found in my design: spacing input problem,
overflow input problem. As these two scenarios occur, the process of my system will
result abnormal. These 2 problems is due to the usage of “scanf(“%s”)” as input
command where according to Wikipedia, “scanf(“%s ") scan a character string. The
scan terminates at whitespace. A null character is stored at the end of the string,
which means that the buffer supplied must be at least one character longer than the
specified input length.” This means that input shall not contain any spacing in
between else the scanning will be terminated by the spacing. As declared input
length for my design to be 16 words (1 byte each), overflow input would cause the
system to be malfunction. These can be fix by replacing “scanf(*“%s”)” with other
input command such as fgets or fscanf. However further research on the functionality
and characteristic of the command shall be done before being applied so that similar

bugs won’t occur.

52

The advantages where further application or function can be built directly on the
Nios Il system without much modification can save a lot of resources and space
compared to hardware implementation and the performance is faster compared to

fully software or a microcontroller platform.

I have tried 3 types of Nios Il processor during the implementation and Nios Il (f)
gives the best performance and it can support up to 150Mhz. Despite the
performance, resources of Nios II(f) is just slightly higher compare to Nios Il(e) &
Nios 1I(s) . The major disadvantage of this soft core is where it require license from
Altera Technology for commercial purpose.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

51 Conclusion

There are few conclusions that we can draw from this project “Implementation of

Soft Core” and the system for the implementation is AES, Advance Encryption

Standard.

AES on Nios Il system is not as effective as it expected to be. The reason is where
major flow of the system is still software implemented and the algorithm that been
applied is a typical AES algorithm where optimizations are not applied.

Efficiency of the system is acceptable where compare to a fully hardware
implementation system (with optimization) where it require more than 10000 slices
of resources, my design only require approximately 5000 slices of resources in the
FPGA.

Soft core have a significant advantages in performance and resources compare to a
microcontroller. From the result, soft core system performs at least 3 times faster
than the microcontroller system. However, it is known that FPGA is more expensive
compare to a microcontroller. Hence, only system which requires higher

performance spec is recommend to design on soft core, FPGA system.

Designed AES system has been validated on its functionality with comparison with
with AES java calculator that has been designed by Lawrie Brown from ADFA,

Canberra, Australia. The result is positive and is conclude to be fully functional

54

There are still some bugs in the software where spacing in the sentence and overflow
of the input are not allowed for the system. As explained in discussion, these bugs

can be fixed by replacing scanf with other command.

Nios I1(f) is found to be most suitable soft core for the system and having the highest
specification among the Nios Il family provides us with higher flexibility in future
improvement. Any software application or design can develop directly on the Nios Il

system without any extra resources.

My design of AES system score 3.2Mbps in encryption and 2.56Mbps in decryption
whereby normal audio or video communication can be secure with real time

operation.

5.2 Recommendation

Future improvement has to implement for the system commercialization. There are

few recommendations that | think would help in system improvement.

Research on AES algorithm shall be done for finding the optimize algorithm for the
software/hardware codesign platform. By implementing the optimized algorithm, it is

believe that the performance can dramatically improve.

Current design of the system is using standard input (keyboard) as the input interface.
In future, other transmission interface can be used for replacement. This would allow
the user to transfer their file to the FPGA for encryption/decryption, which would be
more convenient. Serial port interface would be recommended as the DEL1 is supplied
with RS232 port. PCI Express interface can be used if require high speed
transmission. However, PCI Express interface would be more difficult to program

and use compare to RS232 port.

As mention earlier, audio or video transmission application can be applied to the
system. DE1 development board contain DSP (Digital Signal Processing) core and it
can be integrated to the system if necessary. Integrating a DSP core, audio or video

processing can be done through the FPGA.

55

REFERENCES

(n.d.). Retrieved 2010, from Animation of AES:

http://www.formaestudio.com/rijndaelinspector/

Advanced Encryption Standard. (n.d.). Retrieved 2010, from Wikipedia:
http://en.wikipedia.org/wiki/Advanced Encryption_Standard

Arif Irwansyah, Vishnu P. Nambiar, Mohamed Khalil-Hani. (2009). An AES Tightly

Coupled Hardware Accelerator in an FPGA-based.

Ashwini M. Deshpande, Mangesh S. Deshpande and Devendra N. Kayatanavar.
(2009). FPGA Implementation of AES Encryption and Decryption.

Chen JianHong, Liu Yu, and Chia-Hau Shiu. (2005). High Aberrance AES System

Using a Reconstructable Function Core Generator. Taiwan.

Chih-Peng Fan and Jun-Kui Hwang. (2007). Implementations of High Throughput
Sequential and Fully Pipelined AES.

Chirag Parikh, M.S. , Parimal Patel, Ph.D. (2007). Performance Evaluation of AES

Algorithm on Various Development Platforms.

Gurkaynak, F. K. (n.d.). Cryptographic Accelerators. Retrieved 2010, from GALS
System Design:Side Channel Attack Secure Cryptographic Accelerators:
http://www.iis.ee.ethz.ch/~kgf/acacia/c3.html#tth_sEc3.3.2

Jason G. Tong, lan D. L. Anderson and Mohammed A. S. Khalid. (2006). Soft-Core

Processors for Embedded Systems.

Jianzhuang Wang, Youping Chen, Jingming Xie, Bing Chen, Haiping Lin. (2008).
System Structure for FPGA-Based SOPC Design Using Hard Tasks.

56

Kuan Jen Lin, Chin-Mu Hsiao and Ching Hung Jhan. (2009). Exploring HW/SW
Codesign of AES Algorithm Using Custom Instructions.

Nios Il. (n.d.). Retrieved 2010, from Wikipedia: http://en.wikipedia.org/wiki/Nios_II

Ralf Joost, Ralf Salomon. (2005). Advantages of FPGA-Based Multiprocessor

Systems in Industrial Applications.

scanf. (n.d.). Retrieved from cplusplus.com:

http://www.cplusplus.com/reference/clibrary/cstdio/scanf/

Shunwen Xiao, Yajun Chen, Peng Luo. (2009). The Optimized Design of Rijndael
Algorithm Based on SOPC.

Somsak Choomchuayl, Surapong Pongyupinpanich, and Somsanouk Pathumvanh3.
(2008). A Compact 32-bit Architecture for an AES System.

Sopc builder. (n.d.). Retrieved 2010, from Wikipedia:
http://en.wikipedia.org/wiki/Sopc_builder

Stalling, W. (2003). Cryptography and Network Security. New Jersey: Person

Education.

Techonology, S. (n.d.). 128-Bit Versus 256-Bit. Retrieved from
http://www.seagate.com/staticfiles/docs/pdf/whitepaper/tp596_128-
bit_versus_256_bit.pdf

Wikipedia. (n.d.). Scanf. Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Scanf

57

APPENDICES

APPENDIX A: Verilog File (S-BOX)

/* This module is designed to combine four 256-bytes ROM so that the system can

perform 32-bit substitution*/

module s_box_32
(clk,data,output_data);
input clk;

input [31:0] data;
output[31:0] output_data;

Ipm_rom0s_box1(//lpm_romO is a 256-byte ROM with initialization
.address(data[7:0]),
.clock(clk),
.g(output_data[7:0]));

Ipm_rom0 s_box2(
.address(data[15:8]),
.clock(clk),
.q(output_data[15:8]));

Ipm_rom0 s_box3(
.address(data[23:16]),
.clock(clk),
.g(output_data[23:16]));

Ipm_rom0 s_box4(
.address(data[31:24]),
.clock(clk),
.q(output_data[31:24]));

endmodule

APPENDIX B: Verilog File (Inverse S-Box)

/* This module is designed to combine four 256-bytes ROM so that the system can
perform 32-bit substitution*/

module invS_box

(clk,address,result_out);

input clk;
input [31:0] address;
output [31:0] result_out;

Ipm_rom2 invsbox1 //lpm_rom2 is a 256-byte ROM with initialization
(.clock(clk),

.address(address[31:24]),

.g(result_out[31:24]));

Ipm_rom2 invsbox2
(.clock(clk),
.address(address[23:16]),
.g(result_out[23:16]));

Ipm_rom2 invsbox3
(.clock(clk),
.address(address[15:8]),
.q(result_out[15:8]));

Ipm_rom2 invsbox4
(.clock(clk),
.address(address[7:0]),
.g(result_out[7:0]));

Endmodule

58

59

APPENDIX C: Verilog File (256-byte ROM)

[*This function is generated using Altera Mega Function. This is S-box ROM
module. Inverse S-Box ROM module is similar with S-box ROM module. The only

different is the initialization file name and the module name*/

“timescale 1 ps/ 1 ps
module Ipm_romO (
address,

clock,

a);

input [7:0] address;
input clock;
output [7:0] q;

wire [7:0] sub_wire0;
wire [7:0] g = sub_wire0[7:0];

altsyncram altsyncram_component (
.clockO (clock),
.address_a (address),
._a (sub_wire0),
.aclr0 (1'b0),
.aclrl (1'b0),
.address_b (1'b1),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
Jbyteena_a (1'bl),
Jbyteena_b (1'b1),
.clockl (1'b1),
.clockenO (1'bl),
.clockenl (1'b1),

.clocken2 (1'bl),
.clocken3 (1'b1),
.data_a ({8{1'b1}}),
.data_b (1'b1),
.eccstatus (),

.q_b (),

rden_a (1'b1),
.rden_b (1'b1),
.wren_a (1'b0),
wren_b (1'b0));

defparam

“ifdef NO_PLI

“else

“endif

altsyncram_component.clock_enable_input_a = "BYPASS",

altsyncram_component.clock_enable_output_a = "BYPASS",

altsyncram_component.init_file = "S_BOX.rif" //initialization file

altsyncram_component.init_file ="S_BOX.hex"//initialization file

altsyncram_component.intended_device_family = "Cyclone II",

altsyncram_component.lpm_hint =

"ENABLE_RUNTIME_MOD=NO",

endmodule

altsyncram_component.Ilpm_type = "altsyncram",
altsyncram_component.numwords_a = 256,
altsyncram_component.operation_mode = "ROM",
altsyncram_component.outdata_aclr_a = "NONE",
altsyncram_component.outdata_reg_a = "CLOCKUO0",
altsyncram_component.widthad_a = 8,
altsyncram_component.width_a =8,

altsyncram_component.width_byteena_a = 1;

60

APPENDIX D: Verilog File (MixColumn)

module mixcolum_en_32

(data_in,clk,result_out);

input clk;

input [31:0] data_in;
output[31:0] result_out;
wire [7:0]

result_2i,result_3i,result_2ii,result_3ii,result_2iii,result_3iii,result_2iv,result_3iv;

GF_2x mix2i
(.data(data_in[31:24]),
.clk(clk),
result(result_2i));

GF_3x mix3i
(.data(data_in[23:16]),
.clk(clk),
result(result_3i));

assign result_out[31:24] = result_2i ” result_3i ” data_in[15:8] ~ data_in[7:0];

GF_2x mix2ii
(.data(data_in[23:16]),
.clk(clk),

result(result_2ii));

GF_3x mixa3ii
(.data(data_in[15:8]),
.clk(clk),
result(result_3ii));

61

assign result_out[23:16] = result_2ii ~ result_3ii ~ data_in[31:24] ~ data_in[7:0];

GF_2x mix2iii
(.data(data_in[15:8]),
.clk(clk),
result(result_2iii));

GF_3x mix3iii
(.data(data_in[7:0]),
.clk(clk),

result(result_3iii));

assign result_out[15:8] = result_2iii ~ result_3iii ~ data_in[31:24] ” data_in[23:16];

GF_2x mix2iv
(.data(data_in[7:0]),
.clk(clk),
result(result_2iv));

GF_3x mix3iv
(.data(data_in[31:24]),
.clk(clk),

result(result_3iv));

assign result_out[7:0] = result_2iv ” result_3iv ~ data_in[23:16] ~ data_in[15:8];

endmodule

module GF_2x
(data,clk,result);

input clk;
input [7:0] data;
output reg [7:0] result;

62

always @(posedge clk)
begin

result = data<<1,

if(data[7] == 1)
result=result * 8'b00011011,;
end

endmodule

module GF_3x
(data,clk,result);

input clk;
input [7:0] data;
output reg [7:0] result;

always @ (posedge clk)
begin

result = data<<1,

if(data[7] == 1)
result=result ~ 8'000011011;
result = result ~ data;

end

endmodule

63

APPENDIX E: Verilog File (InvMixCoulumn Factor)

module invmixcolumn

(clk,data_in,mix_data,result);

input clk;

input [31:0] data_in,mix_data;
wire [15:0] result_12_8x;
output [31:0] result;

invmixcolumn_12x_8x invmix
(.clk(clk),

.data_in(data_in),
result(result_12 8x));

assign result[31:24] = mix_data[31:24] " result_12_8x[15:8];
assign result[23:16] = mix_data[23:16] " result_12_8x[7:0];
assign result[15:8] = mix_data[15:8] " result_12 8x[15:8];
assign result[7:0] = mix_data[7:0] ” result_12_8x[7:0];

endmodule

module invmixcolumn_12x_8x

(data_in,clk,result),

input [31:0] data_in;
input clk;
output [15:0] result;
wire [7:0]

64

result_12i,result_8i,result_8ii,result_12ii,result_8iii,result_12iii,result_12iv,result_8i

v,

GF_12x invmix12i
(.clk(clk),
.data(data_in[31:24]),
result(result_12i));

GF_8x invmix8i
(.clk(clk),
.data(data_in[23:16]),

result(result_8i));

GF_12x invmix12ii
(.clk(clk),

.data(data_in[15:8]),
result(result_12ii));

GF_8x invmix8ii
(.clk(clk),
.data(data_in[7:0]),

result(result_8ii));

assign result[15:8] = result_12i ” result_8i ” result_12ii ” result_8ii;

GF_8x invmix8iii
(.clk(clk),
.data(data_in[31:24]),

result(result_8iii));

GF_12x invmix12iii
(.clk(clk),
.data(data_in[23:16]),
result(result_12iii));

GF_8x invmix8iv
(.clk(clk),

65

.data(data_in[15:8]),
result(result_8iv));

GF_12x invmix12iv
(.clk(clk),
.data(data_in[7:0]),

result(result_12iv));

assign result[7:0] = result_212iii ” result_8iii ™ result_12iv " result_8iv;

endmodule

module GF_8x
(data,clk,result);

input [7:0] data;
input clk;
output [7:0] result;

wire [7:0] result_templ,result_temp2;

GF_2x gf2
(.clk(clk),
.data(data),

result(result_templ));

GF_2x gf4
(.clk(clk),
.data(result_templ),

result(result_temp?2));

GF_2x gf8
(.clk(clk),
.data(result_temp2),

result(result));

66

Endmodule
module GF_12x
(data,clk,result);

input [7:0] data;

input clk;

output [7:0] result;

wire [7:0] result_temp1,result_temp2;

GF_2x gf2

(.clk(clk),

.data(data),
result(result_templ));

GF_2x gf4
(.clk(clk),
.data(result_temp1),

result(result_temp2));

GF_3x gf12
(.clk(clk),
.data(result_temp2),

result(result));

endmodule

67

68

APPENDIX F: AES system C Code

/*

Copyright (C) 2010-2011 Woo Chi Liang

This is an AES system that been develop using soft-core with
hardware acceleration.

Please email woochiliang@msn.com for details
*

*/

#include <stdio.h>

#include <system.h>

#include <stdlib.h>

#include <altera avalon pio regs.h>

#include <string.h>

#include <io.h>
#include<altera avalon performance counter.h>

///FUNCTION
INITIALIZATION////////// /77777 /7777777777777 77777777/ 77/ 77777777/ /
L1177 77 77777777777 77777777777777777777777777777777777/77777777777777
/1117117717

void character_handler (char* char store);

void Key Scheduler (unsigned int KEY IN[4]);

void encryption (unsigned int TEXT IN[4]);

unsigned int rotate_left (unsigned int data,int shift);

void character handler2 (char* char store);

void column2row (unsigned int input[4]);

void decryption (unsigned int CYPHER IN[4]);

L1177 77 7777777777777 7777777777/77/777777777777777777777/77777777777777
L1707 77 7777777777777 7777777777/7777777777777777777/7777777777777777

///GLOBAL VARIABLE
DECLARATION////////////////// /7777 /77777 /777777777 /7777777777777
L1177 77 7777777777777 77777777/77/7777777777777777777777777777777777777
/1117117717

char char swap[4][4],char swap2[4][4];

char input key [][4]=

{{0x2b, 0x28, 0xab, 0x09}, {0x7e, Oxae, 0xf7,0xcf}, {0x15,0xd2,0x15,0x4f}, {
0x16,0xa6,0x88,0x3c}};

char input text [][4] =

{{0x32,0x88,0x31,0xe0}, {0x43,0x5a,0x31,0x37}, {0xf6,0x30,0x98,0x07}, {
Oxa8,0x8d,0xa2,0x34}};

char input cypher([][4] =

{{0x39,0x02,0xdc,0x19}, {0x25,0xdc,0x11,0x06a}, {0x84,0x09,0x85,0x0b}, {
0Ox1d,0xfb,0x97,0x32}};

unsigned int cypherkey[44];

unsigned int process datal[4];

unsigned int
RCON[]={0x01000000,0x02000000, 0x04000000, 0x08000000,0x10000000,0x200
00000, 0x40000000,0x80000000,0x1B0O00O0O00O, 0x36000000};

unsigned int process data_ int[4];

L1177 7777777777777 7777777777777 7777777777777/ 777777777777 777777777
L1707 77 777777777 77777777777777/77777777777777777777777777777777777
int main ()

{

69

char key [4][4],text[4][4];

char* char pointer;
unsigned int test cypher[4];

int select;

//char key swap [4][4];

//unsigned int char int[4];

//unsigned int KEY IN[4],i,7J;

PERF RESET (PERFORMANCE COUNTER 0 BASE) ;
while (1)

{
printf ("\nEnter your key\n");

fflush (stdin) ;
char pointer = &key[0][0];
scanf ("%s",char pointer);
character handler (&key) ;
Key Scheduler (char swap);

printf ("\n 1l:Encryption \n 2:Decryption");
scanf ("%d", &select) ;
if (select == 1)
{
printf ("Enter your text ") ;
fflush(stdin) ;
scanf ("%s", &text) ;
character handler2 (&text);
encryption(char swap2);
//character handler2 (&process_datal[0]);
printf ("\nYOUR
CYPHERTEXT:\n%x %x %x %x\n",process_data[O],process_data[l],process_
data[2],process data[3]);
}

else if (select == 2)

{
printf ("Enter your text ")/
fflush(stdin);
scanf ("$x", &test cypher[0]);
fflush(stdin);
scanf ("$x", &test cypher[1l]);
fflush(stdin) ;
scanf ("$x", &test cypher[2]);
fflush (stdin);
scanf ("%x", &test cypher[3]);*/

scanf ("%x %x %x %x",&test cypher[0], &test cypher[l], &test cyph
er[2], &test _cypher[3]);
//character handler2 (&text);
decryption(test cypher);
//character handler2 (process data);

character handlerZ2 (&process data[0]);
/*

process data[0] rotate left
process datal[1l] rotate left
process data[2] = rotate left
process data[3] = rotate left

4 ’

process data[0], 3)

process datal[l],3);
process datal[2], 3)
process data[3],3)

’

’

o~~~ —

4

*/

printf ("\nYOUR TEXT:\n%s\n",char swap2);

70

perf print formatted report(

(void *)PERFORMANCE_COUNTER_O_BASE, // Peripheral's HW
base address

alt_get_cpu freq(), // defined in "system.h"

3, // How many sections to print

"Encryption", // Display-names of sections

"Decryption",

"Key Generator");

}

}

/*
for (1i=0;i<=3;i++)
{
for (3J=0;3<=3;Jj++)
{
key swap[j][3-il=key[i][]];
}
}
for (1=0;1<=3;1i++)
printf ("$x%x%x%$x\n",key swap[i] [0],key swap[i][1],key swap[i]|
2]1,key swap[i][3]);
*/
/
character handler (input key);
Key Scheduler (char swap) ;
//character handler2 (input text);
//encryption (char swap2);
character handler2 (input cypher);
decryption (char swap2);

*/

return 0O;

}

void Key Scheduler (unsigned int KEY IN[4])
{

PERF START MEASURING (PERFORMANCE COUNTER O BASE) ;

unsigned int j,y,x,KEY TEMP,1i;
unsigned int KEY OUT[10] [4];

PERF BEGIN (PERFORMANCE COUNTER 0 BASE, 3);

cypherkey[0]=KEY IN[O];

cypherkey[1]=KEY IN[1

cypherkey[2]=KEY IN[

cypherkey[3]=KEY IN][

//printf ("\nRO : %$x%
eyl[2],cypherkey[3]);

for (j=1;3<=10;j++)

{

’

]
2]’
31;
x%x%x\n", cypherkey[0],cypherkey[1], cypherk

KEY TEMP = KEY IN[0];
IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, KEY IN[3]);

KEY IN[0] = IORD ALTERA AVALON PIO DATA(PIO 0 BASE);
KEY IN[0] = rotate left (KEY IN[0],1);
KEY_IN[O] = KEY_IN[O] ~ RCON[j-11 ~ KEY TEMP;
for (i=1;i<=3;1++)
KEY IN[i] = KEY IN[i-1] ~ KEY IN[i];

cypherkey[j*4]=KEY IN[O];
cypherkey[(J*4)+1]=KEY IN[1];

71

cypherkey [(J*4)+2]=KEY IN[2];
cypherkey[(J*4)+3]=KEY IN[3];

//printf ("R%d : %$x%x%x%x\n", J,cypherkey[(j*4)+0],cypherkey[(J*
4)+1],cypherkey[(j*4)+2],cypherkey[(J*4)+3]);

}

PERF END (PERFORMANCE_COUNTER_O_BASE ,3);
}

unsigned int rotate_left (unsigned int data,int shift)

{

unsigned int result;
result = (data << (shift*8) | (data >> (32 - (shift*8))));

return result;

}

unsigned int rotate_right (unsigned int data,int shift)

{

unsigned int result;
result = (data >> (shift*8) | (data << (32 - (shift*8))));

return result;

}

void character_ handler (char* char store)

{

int i,7;
for (i=0;1i<=3;i++)
{
for (j=0;j<=3;j++)
{
char swap[j] [3-i]=*((char store+j)+(i*4));

}

}

void character handler2 (char* char store)
{
int 1i,3;
for (1i=0;1i<=3;1++)
{
for (j=0;j<=3;j++)
{
char swap2[i] [3-]]=
* ((char store+j)+(i*4));
}
}
}

void encryption (unsigned int TEXT IN[4])
{

int round;

PERF BEGIN (PERFORMANCE COUNTER 0 BASE, 1) ;

//printf ("\n\n%$x\n%x\n%x\n%x\n", TEXT IN[O0],TEXT IN[1],TEXT IN[
2], TEXT IN[3]);

column2row (TEXT IN);

72

//printf ("\n\nInput
ASCIT : %x%x%x%x",process data[0],process data[l],process datal[2Z],pr
ocess _datal[3]);

process_data[0] *=cypherkey[0];

process _data[l]*=cypherkey[1l];

process _datal[2]*=cypherkey[2];
[3] [3]

process_data ~“=cypherkey ;
//al0]=rotate left (TEXT IN[0],0);
//printf ("\n\nRound 0
Cypher : 3%x%x%x%x",process data[0],process data[l],process datal[2],p
rocess _datal[3]);
column2row (process_data);
//printf ("\n\n%x\n%x\n%x\n%x",process _datal[0],process _datal[l],
process data[2],process datal[3]);

for (round=1; round<=10; round++)

{

IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, process datal0]);

process_data[0]=IORD ALTERA AVALON PIO DATA(PIO 0 BASE);

IOWR ALTERA AVALON PIO DATA (PIO 0 BASE, process data[l]);

process_data[l]=IORD ALTERA AVALON PIO DATA(PIO 0 BASE);

IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, process datal2]);

process_data[2]=IORD ALTERA AVALON PIO DATA(PIO 0 BASE);

IOWR ALTERA AVALON PIO DATA(PIO 0O BASE, process data[3]);

process_data[3]=IORD ALTERA AVALON PIO DATA(PIO 0 BASE);

//printf ("\n\nSUB-
BYTE\n\n%$x\n%$x\n%x\n%x",process datal[0],process datal[l],process data
[2] ,process _datal[3]);

process data[l]=rotate left (process datal[l],1);

process data[2]=rotate left (process datal[2],2);

process data[3]=rotate left (process datal[3],3);

//printf ("\n\nSHIFT\n\n%x\n%x\n%x\n%x",process datal[0],process
_datal[l],process data[2],process datal[3]);

column2row (process_data) ;

if (round!=10)
{

process _data[0]=ALT CI MIXCOLUMN EN 32 INST (process_datal0]);
process _data[l]=ALT CI MIXCOLUMN EN 32 INST (process datall]);
process _data[2]=ALT CI MIXCOLUMN EN 32 INST (process_datalZ2]);

process _data[3]=ALT CI MIXCOLUMN EN 32 INST (process_datal3]);
}

//printf ("\n\nMIX\n\n%$x\n%x\n%$x\n%x",process _data[0],process d
ata[l],process data[2],process datal[3])

process data[0] *=cypherkey [0+ (round*4)];
process data[l]*=cypherkey[l+ (round*4)];
process data[2]"=cypherkey[2+ (round*4)];
process data[3]*=cypherkey[3+ (round*4)];

73

//printf ("\nRound %d
Cypher : %x%x%x%x",round,process datal[0],process data[l],process dat
al2],process datal[3]);
column2row (process_data);
}
//printf ("\n\CYPHER
TEXT:\n\n%x\n%x\n%x\n%x",process datal[0],process data[l],process dat
al2],process datal[3]);

PERF_END (PERFORMANCE COUNTER 0 BASE, 1) ;

//printf ("\nCYPHER
TEXT:\n\n%x\n%x\n%x\n%x",process datal[0],process data[l],process_dat
al2],process datal[3]);

}

void decryption (unsigned int CYPHER IN[4])
{
int round;
unsigned int temp[4];
PERF BEGIN (PERFORMANCE_COUNTER_O_BASE ,2);
column2row (CYPHER IN);
//printf ("\n\nINPUT:%$x%x%$x%x",process data[0],process datal[ll],
process data[2],process datal[3]);
process_data[0] *=cypherkey
process_data[l]“=cypherkey
process_data[2] *=cypherkey
process_data[3]*=cypherkey
//printf ("\n\nOUTPUT
0 : %x%x%x3%x",process datal[0],process data[l],process datal[2],proces
s datal[3]);
column2row (process_data) ;
for (round=9; round>=0; round--)

{

process data[l] = rotate right(process datall],1);

process data[2] = rotate right (process datal2],2);

process data[3] = rotate right(process datal[3],3);

IOWR ALTERA AVALON PIO DATA(PIO 1 BASE,
process_datal[0]);

process data[0]=IORD ALTERA AVALON PIO DATA(PIO 1 BASE);
IOWR ALTERA AVALON PIO DATA(PIO 1 BASE,
process_datal[l]);

process data[1l]=IORD ALTERA AVALON PIO DATA(PIO 1 BASE);
IOWR ALTERA AVALON PIO DATA(PIO 1 BASE,
process_datal[2]);

process_data[2]=IORD ALTERA AVALON PIO DATA (PIO 1 BASE);
IOWR ALTERA AVALON PIO DATA(PIO 1 BASE,
process_datal3]);

process_data[3]=IORD ALTERA AVALON PIO DATA (PIO 1 BASE);
column2row (process_data) ;

process data[0] *=cypherkey [0+ (round*4)];
process data[l]*=cypherkey[l+ (round*4)];
process data[2] *=cypherkey[2+ (round*4)];
process data[3]*=cypherkey[3+ (round*4)];

if (round!=0)

{

74

temp[0]=ALT CI MIXCOLUMN EN 32 INST (process datal0]);
temp[1]=ALT CI MIXCOLUMN EN 32 INST (process datall]);
temp[2]=ALT CI MIXCOLUMN EN 32 INST (process datal2]);

temp[3]=ALT CI MIXCOLUMN EN 32 INST (process datal[3]);
process _data[0]

ALT CI INVMIX 32 NEW INST (process _data[0],temp[0]);
process datal[l] =
ALT CI INVMIX 32 NEW INST (process data[l],temp[1]);
process data[2] =
ALT CI INVMIX 32 NEW INST (process datal[2],temp[2]);
process data[3] =
ALT CI INVMIX 32 NEW INST (process data[3],temp[3]);
}
//printf ("\nOUTPUT %d : $x%x%x%x", ((round-9) *-

1)+1,process _data[0],process data[l],process data[2],process datal[3]
)7
column2row (process_data);

}
PERF_END (PERFORMANCE COUNTER 0 BASE, 2) ;

}
void column2row (unsigned int input[4])
{
IOWR_ALTERA AVALON PIO DATA (COLUMN1 BASE, input[0]);
IOWR _ALTERA AVALON PIO DATA (COLUMN2 BASE,
input[1l]);
IOWR_ALTERA_AVALON_PIO_DATA(COLUMN3_BASE,
input[2]);
IOWR_ALTERA_AVALON_PIO_DATA(COLUMN4_BASE,input[3]);
process_data[O]:IORD_ALTERA_AVALON_PIO_DATA(COLUMNI_BASE);
process data[l]=IORD ALTERA AVALON PIO DATA (COLUMNZ BASE);
process_data[Z]:IORD_ALTERA_AVALON_PIO_DATA(COLUMN3_BASE);

process data[3]=IORD ALTERA AVALON PIO DATA (COLUMN4 BASE);

