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IMPLEMENTATION OF A SOFT CORE PROCESSOR ON A FPGA 

 

ABSTRACT 

 

In today’s modern, FPGAs has comes with embedded soft-core that can be 

customized for given application and synthesized for an FPGA target. In many 

applications, soft-core processors provide several advantages over custom designed 

processor such as cost, flexibility, platform independence and greater immunity to 

obsolescence. On the other hand, with today’s sensitivity of data and privacy, 

cryptology had become a demanding application. The latest cryptology that been 

proven to be most efficient and effective is AES (Advance Encryption Standard). 

AES or Rijandael algorithm is propose by two Belgian cryptographers, Joan Daemen 

and Vincent Rijmen to NIST (National Institute of Standards and Technology) when 

a new standard of encryption is request. However, due to the growing of the mass of 

our data, process for AES encryption and decryption come into the problem. AES 

algorithm mostly was performed in software platform which will take long time of 

processing. In this paper, the combination of hardware and software implementation 

on AES algorithm will be discussed. Several version of hardware and software co-

design have been introduced to the market lately, these implementation will be 

review and discuss on their implementation method, theory, and complexity of the 

implementation. As the growing of the soft-core of the FPGAs, it is expected that the 

usage of it customizable characteristic would make the soft-core processor to be 

more widespread and involve in complexity embedded system in the future. 

 

  



vii 

 

 

TABLE OF CONTENTS 

 

 

 

DECLARATION ii 

APPROVAL FOR SUBMISSION iii 

ACKNOWLEDGEMENTS v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF APPENDICES xiv 

  

 

CHAPTER 

1 INTRODUCTION 1 

1.1 Background 1 

1.2 Aims and Objectives 2 

1.3 Thesis Organization 3 

2 LITERATURE REVIEW 4 

2.1 Introduction 4 

2.2 Pure Software Implementation 4 

2.2.1 FPGAs 4 

2.2.2 Desktop PC 6 

2.2.3 Symbian OS 6 

2.3 Pure Hardware Implementation 6 

2.4 Software & Hardware Combination Implementation 8 

2.4.1 Optimized Design of Rijndael Algorithm Based on 

SOPC 8 



viii 

2.4.2 Exploring HW/SW Codesign of AES Algorithm Using 

Customs Instruction 12 

2.4.3 An AES Tightly Coupled Hardware Accelerator in an 

FPGA-based Embedded Processor Core 14 

2.4.4 Implementation of High Throughput Sequential and 

Fully Pipelined AES Processor on FPGA 18 

3 METHODOLOGY 23 

3.1 AES 23 

3.1.1 Introduction of AES 23 

3.1.2 Encryption 24 

3.1.3 Decryption 24 

3.1.4 Key Expansion 25 

3.2 Implementation Process and Flow 25 

3.3 Hardware 27 

3.3.1 Nios II 27 

3.3.2 System Structure 28 

3.4 Software 30 

3.5 Functional Description 31 

3.5.1 Encryption 32 

3.5.1.1 Add Round Key   32 

3.5.1.2 Subytes    32 

3.5.1.3 ShiftRows    33 

3.5.1.4 MixColumns    34 

3.5.2 Decryption 34 

3.5.2.1 Add Round Key   34 

3.5.2.1 InvShiftRows    35 

3.5.2.1 InvSubytes    35 

3.5.2.1 InvMixColumns   36 

3.5.3 Key Expansion 36 

3.6 Program Architecture 37 

3.6.1 Overall System Architecture 37 

3.6.2 Key Expansion 39 



ix 

3.6.3 Encryption 39 

3.6.3.1 Software    40 

3.6.3.1.1 Add Round Key 40 

3.6.3.1.2 ShiftRows  40 

3.6.3.2 Hardware    41 

3.6.3.2.1 SubBytes  41 

3.6.3.2.2 MixColumns  42 

3.6.4 Decryption 41 

3.6.4.1 Software    42 

3.6.4.1.1 Add Round Key 42 

3.6.4.1.2 InvShiftRows  42 

3.6.4.2 Hardware    42 

3.6.4.2.1 InvSubBytes  43 

3.6.4.2.2 InvMixColumns 43 

4 RESULTS AND DISCUSSIONS 44 

4.1 Result Validation 44 

4.2 Performance Benchmark 46 

4.2.1 Platform Benchmark 46 

4.2.2 Implementation Benchmark 48 

4.3 Overall Discussion 49 

5 CONCLUSION AND RECOMMENDATIONS 53 

5.1 Conclusion 53 

5.2 Recommendation 54 

REFERENCES 55 

APPENDICES 57 

 

 

  



x 

 

 

LIST OF TABLES 

 

 

 

 TABLE TITLE PAGE 

1.1   Comparison of Soft-Core Processor 2 

2.1  The signal interface of multi-cycle 

customs instruction 12 

2.2  Comparison of area and time among 

various HW/SW mixed design 13 

2.3  Execution times of Encryption/ 

Decryption 18 

4.1  Key Expansion Comparison 44 

4.2  Encryption Comparison 45 

4.3  Decryption Comparison 45 

4.4   Fully Software Performance 48 

4.5  Overall Comparison Table 50 

 

 

 

 

 

 

 

 

  



xi 

 

 

LIST OF FIGURES 

 

 

 

 FIGURE TITLE PAGE 

2.1 Software Implementation of AES in 

FPGA 5 

2.2 AES Encryption Process 7 

2.3 The scheme of SOPC system 9 

2.4   The design of optimized algorithm 9 

2.5 Table B generation Flow 10 

2.6 Key Generation VHDL generated module 11 

2.7  TC-Hardware and Co-processor in NIOS 

II 15 

2.8 AES Coprocessor Hardware 15 

2.9  TC-Hardware Interface. 16 

2.10 AES Tightly Coupled Hardware  17 

2.11  Comparison of coding between TC-

hardware and Coprocessor 17 

2.12 Proposed new realization for SubBytes 

and InvSubBytes Transformation 19 

2.13 Realization of CMP Circuit 19 

2.14 Decomposition of InvMixColumns 20 

2.15 Circuit Architecture of MixColumns and 

InvMixColumns( Chih-Peng Fan and Jun-

Kui Hwang,2007) 20 

2.16 Circuit architectures of sequential on-the-

fly key 21 



xii 

2.17 Circuit architectures of non-sequential on-

the-fly key 21 

2.18 Hardware architecture of the proposed 

sequential AES processor 22 

2.19 Hardware architecture of the proposed full 

pipelined AES processor 22 

3.1 Transformed Data Matrix 23 

3.2 AES-128 Encryption Flow 24 

3.3 Decryption Flow 25 

3.4 Altera DE1 Board 26 

3.5 Nios II Wizard 28 

3.6 SOPC Builder ScreenShots 29 

3.7 SOPC Example 29 

3.8 Schematic Diagram Platform, Quartus II 30 

3.9 Screenshots of Nios II IDE tools (Hello 

world!! Example) 31 

3.10  S-Box 33 

3.11 ShiftRows Transformation 33 

3.12 MixColums Transformation 34 

3.13 Add Round Key Transformation 32 

3.14 Differences between ShiftRows & 

InvShifRows 35 

3.15 InvS-Box 35 

3.16 InvMixColumns 36 

3.17 System Block Diagram 37 

3.18 System Flow Chart 38 

3.19 Key Expansion Process 39 

3.20 InvMixColumn Multiplier 43 



xiii 

4.1 Encryption 46 

4.2 Decryption 46 

4.3 Key Expansion 47 

4.4 Nios II Performance Counter Report 47 

4.5 Fully Hardware Performance 49 
 

 

 

  



xiv 

 

LIST OF APPENDICES  

 

 

 

 APPENDIX TITLE PAGE 

 A   Verilog File (S-BOX) 57 

 B   Verilog File (Inverse S-Box) 58 

C  Verilog File (256-byte ROM) 59 

D  Verilog File (MixColumn) 61 

E   Verilog File (InvMixColumn Factor) 64 

F   AES system C Code 68 

 



 

 

CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

In today’s modern, flexibility plays an important role for dynamic and unforeseen 

changes in the product. According to Ralf Joost and Ralf Salomon (2005), nowadays 

FPGAs (Field Programmable Gate-Arrays) with high performance, reasonable price 

and adaptable are demanding the market. As we know, the configuration of FPGAs is 

described in abstract hardware description language such as verilog and VHDL; the 

system can be easily modified whenever is required. 

 

 However, in compete with application-specified microcontroller; FPGAs still 

could not reach the propagation. Soft core processor hence introduce to the market. A 

soft core processor is a hardware description language (HDL) model of a specific 

processor (CPU) that can be customized for a given application and synthesized for 

ASIC or FPGA target (Jason, Anderson & Mohammed, 2006). Ralf Joost and Ralf 

Salomon (2005) also state that soft-core processors can be considered as equivalents 

to a microcontroller or “computer on chip”. 

 

 In today’s market, there are several FPGAs vendor that provide soft-core 

processor implementation in their FPGAs. Nios and Nios II soft-core processor is 

one of the leading soft-core processor provided by Altera. Nios II will be use for 

implementation throughout this project as Nios has been obsolete. Table 1.1 shows 

the comparison of market’s available soft-core processors. 
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Table 1.1: Comparison of Soft-Core Processor 

 

Nios-II is a 32-bit embedded-processor architecture designed specifically for 

the Altera family of FPGAs. It incorporates many enhancements over the original 

Nios architecture, making it more suitable for a wider range of embedded computing 

applications, from DSP to system-control.  

 

Cryptography plays an important role in today’s security of data information. 

It is widely used in communication information, national security, VPN, and others 

sensitive data storage or transmission. In September 1997, the NIST (National 

Institute of Standard and Technology) call for proposal of AES (Advance Encryption 

Standard) to replace the DES (Data Encryption Standard). In October 2000, Rijandel 

Algorithm was selected as the winner of AES development race (Arif Irwansyah & 

etc, 2009). 

 

Normally, AES is done through software implementation. However, the 

process requires long time and high performance of PC. By using the combination of 

hardware and software implementation, acceleration can be achieved. 

 

 

1.2 Aims and Objectives 

 

The aim of this project is to accelerate the AES encryption and decryption process in 

an effective and efficient way. Although the acceleration reaches max when fully 

hardware implemented, but the device will be more costly. Hence, the combination 

of hardware and software implementation will be more convenient. The final goal for 
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this project is where hardware and software implementation can be use together in a 

system so that efficiency and effectiveness can be achieved. 

 

1.3  Thesis Organization 

 

In this paper, there are 5 sections available, Introduction, Literature Review, 

Methodology, Result and Discussion, Conclusion and Recommendation. 

Introduction basically explained the brief ideas of FPGA and AES. Literature 

Review are majorly discussing the journal or research that been done by other people, 

the method of their implementation, the algorithm, platform, theory that they applied. 

Understanding people works can provide innovation to the projects ideas. 

Methodology illustrates the implementation method that I’m going to use and the 

theory about my implementation.It contain In short, methodology explains what I 

going to do to design this project the way of achieving it. Validation, Comparison 

and Discussion of my project will be done in Result and Discussion part. Last but not 

least, whole project conclusion and the recommendation of future improvement will 

be discussion on Conclusion and Recommendation section.  

  



 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

There are several journals that been review regarding AES implementation on 

various platform. The most common method is fully software implementation; 

however the process seems to be too slow for today’s mass data. Another method 

that been introduced lately is fully hardware implementation, although it reach high 

speed of encryption and decryption but due to the cost effective problem, it is still 

not the best solution ever. The latest technology is that AES been implement on the 

combination of hardware and software. This method is widely use nowadays because 

by the balance of hardware and software, cost effective and efficiency can be 

achieved. 

 

2.2 Pure Software Implementation 

 

2.2.1 FPGAs 

 

The algorithm was developed using Xilinx Platform Studio 8.1i and uses C 

programming language. The reason why the evaluation was done by using C 

language was because the compiled high-level language like C is better adapted to 

optimizing performance compare to interpreted language like Java, besides C and 

C++ languages are supported by the development tools. There are 2 functions the 

design, the sub-key generation and the encryption/decryption process shown in 

Figure 2.1 (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007) 
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Figure 2.1: Software Implementation of AES in FPGA (Chirag Parikh, M.S. & 

Parimal Patel, Ph.D, 2007) 

 

 

 

 

 

 

 

 

  

The sub-key operation include bit-wise additions modulo 2 of 32-bit values 

obtained from user key combined with byte substitution, byte rotation and round 

constant (RCons) addition. After obtaining the key from the user, the sub-key 

functions start to generate 44 32-bit sub-keys and stored in memory. By storing the 

decryption keys just below the encryption key, we can assure that the decryption key 

can be use in the same order as encryption key which is different with the traditional 

method where encryption & decryption uses same sub-keys but is reverse order. The 

decryption key is generated by keeping the first and the last 128-bit sub-keys as it is 

and InvMixColumn operation on remaining intermediate 128-bit sub-keys. While 

having all the keys ready and stored in the memory for a given connection between 

source IP and destination IP. (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007) 

 

Considered 128-bit data coming from memory into the encryption/decryption 

function that’s operated in serial fashion, it takes 32-bits of data a time. The sub-

function like SubBytes and RowShift are performed on 128-bit data while 

AddRoundKey and MixColumn are performed on 32-bits at a time. The final 

encrypted or decrypted data was stored in memory in a serial fashion, 32-bits at a 

time. This design that Chirag Parikh, M.S. & Parimal Patel, Ph.D (2007) develop was 

using 2 approaches: one without enabling any form of cache and one with instruction 

and data cache enabled. The reason of enabling the cache was to enable fast access to 

frequently used program instruction and data. (Chirag Parikh, M.S. & Parimal Patel, 

Ph.D, 2007) 
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2.2.2 Desktop PC 

 

The same developed C Code on the FPGAs was ported to the Visual C++ 6.0 

complier and targeted it to Desktop PC. The code and design was similar with the 

FPGAs software implementation except that the platform and the environment had 

change (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007). 

 

2.2.3  Symbian OS 

 

The developed C Code as now targeted to Mobile platform with Symbian as 

operating system. The reason that Symbian was targeted as the choice of the 

application development environment is because the popularity of the Symbian 

operating system is coupled with excellent developer support. UIQ and Series 60 are 

the user interfaces that available for Symbian OS in which third-party developers can 

write C/C++ application. Simulation is done under Metrowerks CodeWarrior IDE 

(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007).   

 

2.3  Pure Hardware Implementation 

 

At first, the algorithm was developed in pure hardware using Xilinx ISE 8.1i tools 

and implemented in Xilinx’s Virtex-IIPro (XC2VP3Off896-6) FPGA. The design 

was modeled in Verilog HDL, synthesized using Xilinx’x XST synthesis tools, 

simulated using Modeltech’s Modelsim 6.0d simulator and implemented using 

Xilinx’s Place and Route tools integrated in ISE 8.1i tools. (Chirag Parikh, M.S. & 

Parimal Patel, Ph.D, 2007).   

  

 The algorithm for the hardware implementation is as below. As the data 

packet was received either from outside (inbound) or application (outbound), its then 

stored in the BRAM by the receiver engine and a start signal is generated. Upon the 

receiving of the start signal, the AES cores will decides the operation 

(encryption/decryption) based on the data transfer direction and sends back an 

appropriate acknowledge signal. The first 128-bits data is then taken from the BRAM 



7 

 

(32-bits per time) and pass the data on the Initial round. Due to the State bytes (Data) 

are operated individually, each AES round require 8-bit by 8-bit LUTs (Look Up 

Table) which will cause additional slice resources to be used up. BRAMS will be 

comes useful as the same purpose as they are provided by the family and will be 

wasted if unused. This technique can save some slice for other logic operation. By 

using implementing the S-BOX as LUT or ROM for SubBytes function, the 

operation is proven to be faster and more cost-effective than implementing the 

multiplicative inverse operation and affine transformation. There are no problems 

with ShiftRows and MixColumn operations as only AND and XOR logic included. 

The overall flow for AES Encryption Process is as Figure 2.2. (Chirag Parikh, M.S. 

& Parimal Patel, Ph.D, 2007).   

 

 

Figure 2.2: AES Encryption Process (Chirag Parikh, M.S. & Parimal Patel, 

Ph.D, 2007) 
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2.4 Software & Hardware Combination Implementation 

 

As above mention, the software implementation of AES is having slow processes and 

it’s having the tendency to expose the plaintext (origin data), while hardware 

implementation of AES require larger space of hardware which cause the increase of 

the cost. Lately, studies of software and hardware combination implementation have 

been done and it was found to be more efficient than software implementation and 

more cost effective compare to hardware implementation. There are various method 

that been use to balance the hardware and software implementation.  

 

2.4.1 Optimized Design of Rijndael Algorithm Based on SOPC  

 

From the analyzing the round transformation and key expansion of AES, it was clear 

that the algorithm can be optimized through the Look-Up Table. The design of 

optimized Rijandael algorithm can be done through SOPC (System on 

Programmable Chip) and implemented through software and hardware.  

 

 The AES algorithm based on SOPC system is shown in Figure 2.3.  By using 

the standard version of Altera NIOS II embedded CPU, it guarantee for the large and 

systematic data processing. The system is composed of FPGA, memory and external 

interface. On the system, the peripheral circuit and the NIOS II are integrated to 

realize the control functions. As the function of the control core, NIOS II require a 

balance between its resource occupation and function when is generated. As the 

NIOS II was generated by SOPC Builder customization, the demand of the system 

resources is greatly reduced. Due to mass data need to be execute in algorithm, the 

algorithm round transformation is completed by using NIOS II and the key 

generation is executed by the key generator in FPGA. The external interface if FPGA 

is a part including some interface devices and circuit modules, which use for 

interfacing the data input/output and etc. The process flow for the optimized 

algorithm is shown as Figure 2.4. (Shunwen Xiao, Yajun Chen & Peng Luo, 2009). 
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Figure 2.3: The scheme of SOPC system (Shunwen Xiao, Yajun Chen & Peng 

Luo, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: The design of optimized algorithm (Shunwen Xiao, Yajun 

Chen & Peng Luo, 2009). 
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 The key of optimized Rijindael algorithm is the Table B. Table B is a Look-

Up table that is mixture of S-BOX with RowShift Operation and MixColumn 

Operation. The derivation of the table is shown below:  

 

Figure 2.5: Table B generation Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial S-Box Transformation 

RowShift 

MixColumn Operation 

B0[x] + B1[x] + B2[x] + B3[x] 

E
q

u
a
l 

TABLE B 
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From the table, we can see that only Table B0 required to be created as the other 

three Look-Up Tables B1, B2 & B3 can be obtained by cyclical shift of the bytes. 

Due to there is no mix-column for the final round in the round operation, the Table 

B0 is then change back to traditional S-BOX (Shunwen Xiao, Yajun Chen & Peng 

Luo, 2009). 

 

 As for the key generation operation, by using the initial key (w(0), w(1), w(2) 

and w(3)) the key generator generates w (4) ~ w (43) and stores them in the memory 

(complete memory initialization). During the period of round transformation, the 

quadruple frequency of the round clock is conducted by frequency multiplier and 

counting value is taken as the Look-up Table circuit address. There are 4 Look-up 

tables are implemented in a round clock period and w4i+0 ~ w4i+3 are sent out. 

During the same time, the 128-bits round key is exported through the serial-in 

parallel-out shift register. The function of description for the key generation module 

is as below(Shunwen Xiao, Yajun Chen & Peng Luo, 2009): 

 

Figure 2.6: Key Generation VHDL generated module (Shunwen Xiao, Yajun 

Chen & Peng Luo, 2009). 
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2.4.2 Exploring HW/SW Codesign of AES Algorithm Using Customs 

Instruction 

 

Altera Nios II (Cyclone Version) have been use to implement the AES algorithm 

using custom hardware instructions. By using the custom instruction, the sequence of 

instruction can be reduced and the speed of processing can be accelerated by 

hardware (Kuan Jen Lin, Chin-Mu Hsiao and Ching Hung Jhan, 2009). 

 

 With the Nios II development kits, we can convert a hardware circuit into a 

custom instruction and treat it as the instruction set of the CPU. Depending on the 

data amount and execution cycle, NIOS II supports 4 types of custom instruction: 

combinatorial, multi-cycle, extended and register file. The design had selected multi-

cycle custom instruction and the signal interface is given as Table 2.1 

 

Table 2.1: The signal interface of multi-cycle customs instruction (Kuan Jen Lin, 

Chin-Mu Hsiao and Ching Hung Jhan, 2009). 

 

 

 

 

 

 

 

 

 

 

 By designing the circuit in accordance with the signal interface, the circuit is 

now ready for customs instruction conversion where is done through Quartus II. Now, 

the circuit can be called as a function in C programming. There are few design spec 

with parameterized synthesizable design have been explored. Relevant 

programmable parameters include: 
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i. SW, TSBOX or GSBOX: A user can choose software table (SW), pre-store 

hardware table (TSBOX), generating transformation by combinational logic 

to implement SBOX (GSBOX), which is realized by composite field 

arithmetic as stated in the third section. 

ii. Number of SBOX: If using TSBOX or GSBOX, a user can choose how many 

SBOX to implement: 1, 4, 8 or 16. 

iii. MixColumn: A user can choose whether to implement it using hardware. 

iv. ShiftRow+AddRoundkey: A user can choose whether to implement it using 

hardware. 

By using the combination of the relevant programmable parameter, 36 combinations 

can be made and Table 2.2 showing the performance of each parameter used. In table 

2.2, T# indicates the number of SBOX(s) to implement the customs instruction, and 

G# indicates the number of SBOX(S) made using combinatorial logic. As for the 

Sh_addk(shiftrow-addkey), √ indicates that it was implemented by hardware custom 

instruction and O indicates it was adopted by software implementation. (Kuan Jen Lin, 

Chin-Mu Hsiao and Ching Hung Jhan, 2009). 

 

Table 2.2: Comparison of area and time among various HW/SW mixed design 
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Throughout the design, the NIOS II is set to be run on 50MHz and the time is 

measured on running 32 packets of data with each having 128-bits. The key 

generation is done using same implementation method (LUT/combinational logic) as 

used in the data path. After the cipher keys are generated, data are encrypted 

sequentially (Kuan Jen Lin, Chin-Mu Hsiao and Ching Hung Jhan, 2009). 

 

 From table 2.2, we can see that the design with 4 S-Boxes of combinational 

logic require the least hardware area among those having the best performance 

(1.44ms), hence it is the best choice for high performance needs. If using less than 4 

S-Boxes, the design using GSBOX has better performance compare to TSBOX. In 

other hand, when more than 4 S-Boxes required. GSBOX have similar performance 

but TSBOX implementation require less area. Hardware implementation for SBOX 

and MixColumn operation improve the performance, however the hardware 

implementation for AddRoundKey and ShiftRow may take the performance even 

worse than pure software implementation. Due to the limitation for the bus width, by 

increasing the S-Boxes that been used, the performance is not further improved 

(Kuan Jen Lin, Chin-Mu Hsiao and Ching Hung Jhan, 2009). 

 

2.4.3  An AES Tightly Coupled Hardware Accelerator in an FPGA-based 

Embedded Processor Core 

 

The common method to enhance the performance of the AES algorithm is to 

incorporate a crypto co-processor dedicated to execute certain parts of the algorithm, 

offloading the main embedded processor of specific compute-intensive routines, thus 

accelerating the execution the overall algorithm. The disadvantages on this 

implementation method are that the co-processor are loosely-coupled to the main 

processor and the interface between the main processor and the co-processor also 

incur severe performance bottleneck due to system bus communication and 

synchronization overhead. The new and recent trend of enhancing the AES algorithm 

is to extend the instruction set architecture (ISA) of the processor with custom 

instruction for performance critical operation. In this approach, some hardware 

implementation in custom logic is tightly-coupled to the embedded processor (Arif 

Irwansyah, Vishnu P. Nambiar & Mohamed Khalil-Hani, 2009) 
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Figure 2.7: TC-Hardware and Co-processor in NIOS II (Arif Irwansyah, 

Vishnu P. Nambiar & Mohamed Khalil-Hani, 2009) 

 

 

 

 

 

 

 

 

 

As for co-processor design, an Avalon Switch Fabric System Bus is designed 

to interface the whole AES core with the Nios II. The AES hardware can be access 

through memory mapping. From figure 2.7, we can see that the co-processor is 

loosely coupled to the Nios II processor.  The system structure of AES co-processor 

was illustrated as figure 2.8. From the figure, it can be seen that the AES co-

processor have only 1 port (32-bits) input for data and cipher key to AES core where 

the port is named as WriteData port and 1 output port to have data transfer from AES 

core. (Arif Irwansyah, Vishnu P. Nambiar & Mohamed Khalil-Hani, 2009) 

 

Figure 2.8: AES Coprocessor Hardware 
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Unlike coprocessor, TC-Hardware custom instruction is attach directly to the 

ALU in the main processor’s data path. Custom instructions give the designer ability 

to accelerate time critical software algorithms by converting to custom hardware 

logic blocks. TC-hardware custom instructions also reduce the communication 

overhead between the AES core and the processor. In addition, it also allows us to 

fetch the data input or key input using two ports at the same time. This option 

reduces the time for supplying inputs to the AES core dramatically. The TC-

hardware interface can be seen as figure 2.9. (Arif Irwansyah, Vishnu P. Nambiar & 

Mohamed Khalil-Hani, 2009) 

 

Figure 2.9: TC-Hardware Interface. (Arif Irwansyah, Vishnu P. 

Nambiar & Mohamed Khalil-Hani, 2009) 

 

 

 

 

 

 

 

 

 

 

 Figure 2.10 shows that the organization how AES works. Data_A and Data_B 

ports are 32-bit input port that transfer 128-bit of data input and 128 until 256 bits of 

keys for AES core. Both input transfer can occur at the same time, hence fetching 

128-bit of data input just require 2 cycle as compare to coprocessor approach that 

require 4 cycles. As for the key input for 128,192 & 256 bits, the AES TC-hardware 

require 2,3 & 4 cycles which is contrary with the co-processor that require 4,6 & 8 

cycles.  The N-port is a 2-bit port that selects the operation in AES TC-interface and 

the result port is 32-bit output port that read data from AES core.  
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Figure 2.10: AES Tightly Coupled Hardware (Arif Irwansyah, Vishnu P. 

Nambiar & Mohamed Khalil-Hani, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In terms of coding design, the C program for Nios II using TC-hardware is 

simpler and effective compare to coprocessor version. Comparison can be seen as 

below figure 2.11. The execution times of Encryption/Decryption for Co-processor 

and TC-hardware is illustrated on table 2.3. 

 

Figure 2.11: Comparison of coding between TC-hardware and 

Coprocessor(Arif Irwansyah, Vishnu P. Nambiar & Mohamed Khalil-Hani, 

2009) 

 

 

 

 

 

 

 

 

TC-Hardware version      Co-Processor Version 
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Table 2.3: Execution times of Encryption/Decryption (Arif Irwansyah, Vishnu P. 

Nambiar & Mohamed Khalil-Hani, 2009) 

 

 

2.4.4 Implementation of High Throughput Sequential and Fully Pipelined 

AES Processor on FPGA 

 

In this implementation, FPGA chips is used to realize the high throughput 128-bits 

AES cipher processor by new high-speed and hardware sharing functional blocks. As 

we know, AES functional calculation includes SubBytes, ShiftRows, MixColumns 

and AddRoundKey. By replacing the old fashion ways of ROM mapping for 

SubBytes with CAM (content-addressable memory) to achieve new proposed high-

speed SubBytes block. The new hardware sharing architecture is applied to 

implement the proposed high-speed MixColumns block. Efficient low-cost 

AddRoundKey architecture is used for real-time key generations.( Chih-Peng Fan 

and Jun-Kui Hwang,2007) 

 

 For the high speed realization of the SubBytes and InvSubBytes hardware the 

traditional ROM-based concept could not reach very high speed operation. By 

applying the content-addressable memory (CAM) based architecture as Figure 2.12 

to realize SubBytes and InvSubBytes circuit, high speed operation can be achieve. 

From the figure, we can see that as we enable the SubBytes operation, the registers ai, 

for i= 1,2,3,4,….,256, will output the 8 most significant bits to the inputs of CMP 

circuit(Figure 2.13). In order for further high-speed full pipelined AES 

implementation, the SubBytes and InvSubBytes can be divided into 3 pipelining 

stage by adding 2 pipelined register arrays. The 3 phase pipelined 
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SubBytes/InvSubBytes module can achieve higher operational frequency than the 

traditional ROM-based scheme. ( Chih-Peng Fan and Jun-Kui Hwang,2007) 

 

Figure 2.12: Proposed new realization for SubBytes and InvSubBytes 

Transformation ( Chih-Peng Fan and Jun-Kui Hwang,2007) 

 

Figure 2.13: Realization of CMP Circuit ( Chih-Peng Fan and Jun-Kui 

Hwang,2007) 
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As the AES theory states that the operation of MixColums and Inverse 

Mixcolumns transformation is having different corresponding matrix polynomial. 

Instead of creating two separate hardware architecture, hardware sharing architecture 

are design for both operation. Firstly, the operation of InvMix was decomposed so 

that it will have common factor with MixColumns operation. The decomposition can 

be illustrated as figure 2.14. By using these common factors, high-speed hardware 

sharing circuits can the design to implement these transformations.  

 

Figure 2.14: Decomposition of InvMixColumns( Chih-Peng Fan and Jun-Kui 

Hwang,2007) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Circuit Architecture of MixColumns and InvMixColumns( Chih-

Peng Fan and Jun-Kui Hwang,2007) 
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 A real time high speed Key expansion for generation of 128-bit was designed. 

The realized Key expansion circuits can generates keys for AES encryption and 

decryption. Due to the asymmetric of the decryption process, the key expansion 

circuit for decryption needs to collocate the InvMixColumns circuits. In the 

operation of Key expansion, the 128-bits keys is segmented into 4 32-bits data and 

stored in 4 corresponding a, b, c, d registers. The output of register d must be pass 

through the operation of ROT, S-Box and RCON. Figure 2.16 showing the circuit 

architectures of sequential on-the-fly key expansions and figure 2.17 shows the 

circuit architecture for non-sequential on-the-fly key expansion. ( Chih-Peng Fan and 

Jun-Kui Hwang,2007) 

 

Figure 2.16: Circuit architectures of sequential on-the-fly key 

expansions( Chih-Peng Fan and Jun-Kui Hwang,2007) 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: Circuit architectures of non-sequential on-the-fly key 

expansions( Chih-Peng Fan and Jun-Kui Hwang,2007) 
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 From what have discuss, there are two architectures that provide high-speed 

processing, which are sequential and full pipelined schemes. Figure 2.18 shows the 

Hardware architecture of the proposed sequential AES processor and figure 2.19 

shows the Hardware architecture of the proposed full pipelined AES processor. 

( Chih-Peng Fan and Jun-Kui Hwang,2007) 

 

Figure 2.18: Hardware architecture of the proposed sequential AES 

processor( Chih-Peng Fan and Jun-Kui Hwang,2007) 

Figure 2.19: Hardware architecture of the proposed full pipelined AES 

processor( Chih-Peng Fan and Jun-Kui Hwang,2007) 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

3.1 AES 

 

3.1.1 Introduction of AES 

 

AES (Advance Encryption Standard) is a symmetric-key encryption standard 

adopted by the U.S. government. It comprises three block ciphers, AES-128, AES-

192 and AES-256. Encryption is the process of transforming information (normally 

referring as plaintext) using a string of bits (called key) to make it unreadable to 

anyone except those possessing the key. Inversely, decryption is to transform the 

cipher text to readable information by using the key and the proper algorithm.  In our 

case, AES is the algorithm that going to be use in encryption.  

 

Basically AES can be divided into 3 processes: Encryption, Decryption, and 

Key Expansion. According to the theory of AES, the data in groups of 128-bits will 

be initially transformed into a 4 x 4 matrix with each slot containing 1 byte of data 

and called a State.  

 

Figure 3.1: Transformed Data Matrix 
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3.1.2 Encryption 

 

There are 4 functions inside the encryption process (SubBytes, ShiftRows, 

MixColumns & AddRoundKey). Based on the selected block ciphers, the number of 

rounds the functions will be applied is determined: 10 rounds for 128-bit keys, 12 

rounds for 192-bit keys, and 14 rounds for 256-bit keys. 

 

Figure 3.2: AES-128 Encryption Flow 

 

 

3.1.3 Decryption 

 

The process of decryption is similar to that of encryption. The differences are: each 

of the SubBytes, ShiftRows, MixColumns function is replaced with InvSubBytes, 

InvShiftRows & InvMixColumns, while Add Round Key remains unchanged. The 

sequence of the functions is also is rearranged in a reversed way.  
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Figure 3.3: Decryption Flow 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.4 Key Expansion 

 

Throughout each round, the Add Round Key function uses a different key that has 

been expanded from a short key (cipher key). This expansion is called Rijndael key 

schedule. The total number of round keys required is equal to Nr + 1 (where Nr = 

Number of rounds = 10). Although there are 10 rounds, eleven keys are needed 

because one extra key is needed in the Initial round. The key expansion algorithm 

uses bit-wise additions modulo 2 of 32-bit values obtained from user key combined 

with byte substitution, byte rotation to right and round constants (RCons) addition 

(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007). 

 

 

3.2 Implementation Process and Flow 

 

The above explained AES algorithm is based on 8-bits processing scheme. As for the 

Nios II where it’s having 32-bits of processing power, modification on the traditional 

algorithm would make the system to be more efficient. Based on the AES theory, we 

have encryption, decryption and key expansion process. Firstly, modification and 

implementation method of encryption will be explained as decryption is just an 

inverse of encryption. 
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 Encryption process include of SubBytes, RowShift, MixColumns and 

AddRoundKey. Traditionally, S-Box for SubBytes  is meant for 8-bit substitution. 

However, now the designs are made in 32-bits architecture, modification of S-Box 

can be made to come across 32-bits substitution.  

 

 Basically the design I implemented can be categorised into 3 stages where at 

first SOPC builder will be used to generate blocks for the customized module with 

Nios II embedded with custom instructions. This custom instruction will be first 

written in a Verilog file. After completing the system for the Nios II, Quartus II 

schematic diagram will be used to draw the connection between the built Nios II 

system with peripherals and other modules of the overall system such as S-Box 

substitution ROM. As the last stage, Nios II IDE software development kit will be 

used to write a C code program, which will be loaded to the Nios II module. The 

program includes some simple logic operation such as XOR for the AddRoundKey 

function. 

 

 Evaluation will be done on DE1 board manufactured by Altera. The figure 

3.4 below shows the diagram of the DE1 development board. 

 

Figure 3.4: Altera DE1 Board 
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3.3 Hardware 

 

3.3.1 Nios II 

 

Nios II is designed by one of the leading vendors of Programmable Logic Devices, 

Altera Corporation. Nios II can be implemented in Stratix, Stratix II ,and Cyclone 

Families of FPGA that are also manufactured by Altera. 

 

 Nios II soft-core processor is a general purpose Reduced Intruction Set 

Computer (RISC) processor core and features Harvard memory architecture (Jason, 

Anderson & Mohammed, 2006). According to the specifications provided by Altera 

Corporation, Nios II is featured with full 32-bit Instruction Set Architecture (ISA), 

32 general purpose registers, single-instruction 32x32 multiply and divide operation, 

and dedicated instructions for 64-bit and 128-bit products of multiplication.  

 

 Based on Altera, Nios II processor comes in three version of design: economy, 

standard and fast core. Each core version is different in terms on number of 

pipelining stages, instruction & data cache memories and hardware components for 

multiply and divide operations. Based on the requirements of the system, one of 

cores can be selected. 

 

 Peripherals can be added to Nios II through the Avalon Interface Bus which 

contains the necessary logic to interface the processor with the off-the-shelf IP cores 

or custom-made peripherals (Jason, Anderson & Mohammed, 2006). 
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Figure 3.5: Nios II Wizard 

 

3.3.2 System Structure 

 

In order to produce a workable embedded system, the structure for the system must 

be known. There are various software and systems that have been provided by the 

vendor to help the users in their system design. As for Altera Corporation, SOPC 

builder, Ouartus II, Eclipse IDE, etc., are systems and software that can be 

downloaded from their website. 

 

According to Wikipedia, FPGA-based SOPC (system on Programmable Chip) 

is a platform made by Altera that automates connecting soft-hardware components to 

create a complete system that runs on any of its various FPGA chips. SOPC Builder 

incorporates a library of pre-made components (including the flagship Nios II soft 

processor, memory controllers, interfaces, and peripherals) and an interface for 
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incorporating custom ones. Interconnections are made though the Avalon bus. Bus 

arbitration, bus width matching, and even clock domain crossing are all handled 

automatically when SOPC Builder generates the system (SOPC Builder, Wikipedia). 

By using SOPC builder, we can describe the relationship between modules and link 

the whole system up. Below is shown a screen capture of SOPC Builder software 

 

Figure 3.6: SOPC Builder ScreenShots  

 

Figure 3.7: SOPC Example 
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Quartus II software is used for analysis and synthesis of HDL designs. 

Designers can compile their design, perform timing analysis, examine RTL diagrams, 

simulate a design's reaction to different stimuli, and configure the target device with 

the programmer (Quartus II, Wikipedia). Besides simulation purpose, the schematic 

design system that is embedded inside the software can be used for attaching the 

design modules with other peripherals such as 7-segment display, button switch, etc. 

 

Figure 3.8: Schematic Diagram Platform, Quartus II 

 

  

 

3.4 Software 

 

Altera Corporation provides software development tools such as Eclipse IDE, Nios II 

IDE and so forth. These software development tools are used for writing programs 

for the system that we created. It provides tools to accomplish software development 

tasks such as editing, building, and debugging programs.  

 

 Altera Nios II IDE will be used for the software implementation design. The 

Nios II integrated development environment (IDE) is a primary software 

development tool for Nios II family of embedded processors. We can accomplish all 

software development tasks within the Nios II IDE, including editing, building and 
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debugging. The Nios II IDE provides a consistent development platform that work 

for all Nios II processor systems. With a PC, an Altera FPGA and JTAG download 

cable; the whole process of developing the software for any Nios II processor system 

can be accomplished. 

 

Figure 3.9: Screenshots of Nios II IDE tools (Hello world!! Example) 

 

 

 

3.5 Functional Description 

 

The designed system is a typical 128-bit AES system, whereby blocks of 128-bit data 

will be encrypted/decrypted at a time with a 128-bit key.  

 

Designed AES system basically can be separated into 3 major functions: Key 

Expansion, Encryption and Decryption.  
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3.5.1 Encryption 

 

3.5.1.1 Add Round Key 

 

Add Round key is the transformation in which a round key is added to the State 

using an ex-or operation. The process of round key will be explained in the Key 

Expansion sections (Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007). 

 

Figure 3.10: Add Round Key Transformation 

 

 

 

 

3.5.1.2 SubBytes  

SubBytes is the Transformation using non-linear byte substitution table (S-box) that 

operates on each of the bytes independently (Chirag Parikh, M.S. & Parimal Patel, 

Ph.D, 2007).  Inside each slot of 1-byte data, the input high order 4 bits or a nibble is 

used as the row value of the S-box, the low order 4 bits or a nibble is used as the 

column value of the S-box. The corresponding row and column element is taken out 

from the S-box as an output (Shunwen Xiao, Yajun Chen & Peng Luo, 2009).  For 

instance, from the S-Box table below, input of hexadecimal “7a” will result 

hexadecimal “da”.  
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Left Rotate over 1 byte 

Left Rotate over 2 bytes 

Left Rotate over 3 bytes 

  

Figure 3.11: S-Box 

 

 

 

 

    

 

3.5.1.3 ShiftRows 

 

ShiftRows is the Transformation that processes the State(refer Figure 3.1 explanation) 

cyclically shifting the last three rows of the State by different offsets; Row 1 is 

circular left shift by one place, Row 2 by two, Row 3 by three places whereas, Row 0 

remains unchanged(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007). 

 

 

 

Figure 3.12: ShiftRows Transformation 

 

    Input        Result 
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3.5.1.4 MixColumns 

 

MixColumns is the transformation that takes all the columns of the State and mixes 

their data (independently of one another) to produce new columns. Each column is 

considered a polynomial over GF(2
8
) and multiplied modulo X

4
+ 1 with a fixed 

polynomial C(x), where  C(x) = 3x
3
 + x

2
 + x + 2 (Chirag Parikh, M.S. & Parimal 

Patel, Ph.D, 2007). 

 

Figure 3.13: MixColums Transformation 

 

 

 

 

3.5.2 Decryption 

 

 

3.5.2.1  Add Round Key  

 

As for the decryption of the Add Round Key, the sequence of the keys used for 

addition is no longer round key 0 until round key 10. The sequence is instead 

reversed, from round key 10 until round key 0. 
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3.5.2.2 InvShiftRows 

 

InvShiftRows operation is similar to ShiftRows operation, but instead of rotating the 

bytes toward the left, now it rotates them towards the right. 

 

Figure 3.14: Differences between ShiftRows & InvShifRows 

 

 

3.5.2.3  InvSubBytes 

 

InvSubBytes operates exactly the same as SubBytes operation. However, now the S-

Box is replaced with the InvS-Box table.  

 

Figure 3.15: InvS-Box 
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3.5.2.4  InvMixColumns 

 

InvMixcolumns performs the same operation as the MixColumns function. The only 

difference is that the polynomial used for multiplication is changed to     

C
− 1

(x) = 11x
3
 + 13x

2
 + 9x + 14. 

 

Figure 3.16: InvMixColumns 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.3 Key Expansion 

 

Throughout each round, the Add Round Key function uses different keys that been 

expanded from a short key (cipher key). This expansion is called Rijndael key 

schedule. The total number of round keys required is equal to Nr+ 1 (where Nr = 

Number of rounds = 10). Although there are 10 rounds, eleven keys are needed 

because one extra key is needed in the Initial round. The key expansion algorithm 

uses bit-wise modulo-2 additions of 32-bit values obtained from the user key 

combined with byte substitution, byte rotation to right and round constants (RCons) 

addition(Chirag Parikh, M.S. & Parimal Patel, Ph.D, 2007). The total key schedule is 

44 words (32-bits) for 128-bit key. 
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3.6 Program Architecture 

 

3.6.1 Overall System Architecture 

 

 

Using the SOPC builder to design Nios II system, I found through analysis and 

research, that Nios II(f) is the most suitable processor for the system as it has higher 

stage of pipelining and instruction cache which would highly increase the 

performance of the system. Furthermore, using this processor would actually give us 

higher flexibility in the future should we want to enhance our system. During the 

generation of the Nios II system, custom instructions and other peripherals that are 

required are also included, especially SDRAM as Nios II system requires a larger 

amount of RAM compared to other systems. Outside the Nios II processor, 

connecting with other custom made peripherals would complete the system. The 

flowchart and block diagram of the system are shown below: 

 

Figure 3.17: System Block Diagram 
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Figure 3.18: System Flow Chart 

 

Program Start

Enter Key

Key Expansion

Encryption/

Decryption?

Enter

 Plain Text

Enter 

CypherText

Encryption Decryption

Program End

E D

Output 

CypherText

Output 

 Plain Text
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3.6.2 Key Expansion 

 

As explained before, there are a total of 44 keys that will be expanded in the Key 

Expansion process. Due to the requirement in AddRoundKey process in decryption 

whereby the key required is in reverse order, keys will be expanded before the 

process of encryption/decryption started. The process of the Key Expansion is shown 

as below: 

Figure 3.19: Key Expansion Process 

 

The ByteSub & ByteRot is a shared function of Encryption. In enhancing the 

efficiency of the 32-bit Nios II processor, ByteSub has been hardware implemented, 

and details will be discussed in Encryption. 

 

3.6.3 Encryption 

 

 

We can divide the 4 functions of the encryption into 2 implementation categories: 

hardware or software. Hardware consists of MixColumn & SubBytes whereas 

AddRoundKey & Shiftrows  are software implemented. 
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3.6.3.1 Software 

 

Software implementation requires fewer resources compared to hardware 

implementation but with the drawback that effectiveness is lower as hardware 

parallel execution is faster compare to software serial execution. Due to the 

AddRoundKey and Shiftrow functions requiring only basic arithmetic and logical 

operations; software implementation will be more suitable.  

 

 

 

3.6.3.1.1    AddRoundKey 

 

This function does not consist of complex algorithm, with just XoR operations, the 

function is implemented in software. 

 

3.6.3.1.2    ShiftRow 

 

The data type that has been used in the software for the data is selected to be 

unsigned integer byte which I do believe is more efficient for a 32-bit processor. 

Hence in order to rotate the integer to the left, with the MSB moving to the LSB side, 

a customized algorithm is implemented. 

 

Example: 5-bit rotate to left “01101011” 

LSL 5-bit“01101011” 

LSL 3-bit“01101011” 

Bitwise OR above  

 

Using this algorithm, rotating an integer type in software is easily achievable.  

 

 

 

  

0 1 1 0 0 0 0 0 

0 0 0 0 1 1 0 1 

0 1 1 0 1 1 0 1 
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3.6.3.2 Hardware 

 

Hardware implementation of complex functions would simplify the algorithm and 

indeed increase the performance of the functions.  

 

3.6.3.2.1    SubBytes 

 

S-BOX has been used in SubBytes function. Typical AES S-Box consists of 256 of 

8-bit data, however due to the Nios II being a 32-bit processor, 4 typical AES S-

Boxes are combined so that 32-bits of data can be directly mapped with the S-Box in 

1 cycle. Hence the new S-Box would actually be 1Kbyte in size. This process is done 

by designing a 1Kbyte ROM with initialization. The ROM is then connected to the 

Nios II system generated by the SOPC builder in the schematic diagram. 

3.6.3.2.2     MixColumn 

 

Due to the complex mathematic operations in MixColumn, hardware implementation 

would be more effective. However, it was implemented differently compared to 

SubBytes which was implemented using Parallel IO. MixColumn makes use of 

custom instructions inside the Nios II. This is because we can set the number of 

cycles that the function in custom instruction will require to finish a job before the 

system reads the return result and this will ensure the precision of the returned result. 

Initially, MixColumn algorithm will be written in Verilog file and by using the 

timing analyzing, clock cycle that been require for the process to complete is 

identified and being specific during custom instructions integration in SOPC builder. 

 

3.6.4 Decryption 

 

 

Similar to encryption, the decryption process also consists of 4 functions: 

InvSubBytes, InvShiftRows & InvMixColumns, & AddRoundKey. As explained in 

encryption, InvShiftRow and AddRoundKey will be software implemented and 

InvSubBytes & InvMixColumn will be hardware implemented. 
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3.6.4.1 Software 

 

3.6.4.1.1    AddRoundKey 

 

Function is the same as in encryption, the only difference is that the key being used 

will be in reverse order, the 44
th

 key would be the first key followed by 43
rd

, and so 

on. As the key expansion is done before the encryption or decryption processes, 

timing problems will not appear 

3.6.4.1.2    InvShiftRow 

 

The algorithm for this function is similar to encryption ShiftRow function, except 

that ShiftRow function rotates the data to the left while InvShiftRow rotates the data 

to the right.  

 

Example: 5-bit rotate to right “01101011” 

LSR 5-bit“01101011” 

LSR 3-bit“01101011” 

Bitwise OR above  

 

By using the same example, we can see that by modifying the algorithm, we can 

achieve integer rotate operation. 

 

 

3.6.4.2 Hardware 

 

3.6.4.2.1    InvSubBytes 

 

Due to the same reason that was mentioned in encryption, InvS-Box has been 

designed to match the performance of Nios II 32-bit words. Using the same approach 

by combining 4 InvS-Boxes, higher efficiency can be obtained. 

0 0 0 0 0 0 1 1 

0 1 0 1 1 0 0 0 

0 1 0 1 1 0 1 1 
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3.6.4.2.2    InvMixColumn 

 

Looking at the theory of AES, we see that the only difference between MixColumn 

and InvMixColumn is the multiplier of the matrix. Due to multiplication of the Finite 

Field for higher multiplier requiring more mathematical operations, InvMixColumn 

requires more resources compared to MixColumn. In order to minimize the resources 

used, I have factored out the common factor of the multiplier between MixColumn 

and InvMixColumn so that some resources can be shared. 

 

Figure 3.20: InvMixColumn Multiplier 

 

 

By summing the result from new finite field multiplication and MixColumn, 

InvMixColumn results can be obtained. This provides a better efficiency for the 

resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Result Validation 

 

Validation of the system is done by comparing the results with AES java calculator 

that has been designed by Lawrie Brown from ADFA, Canberra, Australia. Details in 

each cycle are compared to validate the AES system that has been designed here. 

 

Table 4.1: Key Expansion Comparison 

 

Java Calculator Nios II FPGA 
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Table 4.2: Encryption Comparison 

 

Java Calculator  Nios II FPGA 

 

 

 

  

Table 4.3: Decryption Comparison 

   

Java Calculator Nios II FPGA 

  

 

From the comparison above, both systems produce the same values. Hence, we can 

conclude that the designed AES system is verified to be fully functional. 
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4.2 Performance Benchmark 

 

4.2.1 Platform Benchmark 

 

In recent years, softcore is claimed to have higher flexibility and performance 

compared to a microcontroller. Hence, I have chosen an AES system based on a 

microcontroller to be benchmarked with my softcore AES system. Fortunately, there 

is a student in UTAR developing AES on microcontroller for his project. Due to the 

similarity of our algorithms, differences in performance can be observed and 

compared. 

 

Microcontroller 

 

Figure 4.1: Encryption 

 

 

 

Figure 4.2: Decryption 
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Figure 4.3: Key Expansion 

 

 

 

 

Nios II FPGA 

 

Figure 4.4: Nios II Performance Counter Report 

 

 

 

From the comparison above, we can see that the AES in Nios II system is way faster 

than the AES system in microcontroller. There are a few reasons that we can find to 

explain the differences in performance. The advantage of Nios II is that it is a 32-bit 

processor whereas the microcontroller has an 8-bit processor. The most important 

factor that determines the extraordinary performance is that the Nios II system can 

support external custom peripherals & custom instructions which allows for some of 

the functions to be accelerated. Memory in the microcontroller is also limited, and 

this is very critical for AES system as the S-Box required in SubBytes function 

requires quite a bit of memory. The pipelining of instructions and the instruction 

cache that is found in Nios II(f) also help the system to achieve high performance. 
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4.2.2 Implementation Benchmark 

 

An AES system typically can be categoriesd into fully hardware and fully software 

implementation. In this project, traditional method is replaced with co-design where 

both software and hardware are implemented into the same system for high 

efficiency. 

 

Table 4.4:  Fully Software Performance 

 

 

The benchmark above is obtained from “Performance Evaluation of AES Algorithm 

on Various Development Platforms” (Chirag Parikh, M.S. , Parimal Patel, Ph.D., 

2007). As mentioned in the article, the unit for the readings is millisecond. Looking 

at the FPGA with cache (Nios II(f)) performance, we can see that the performance 

for the fully software implementation is still slower than this project’s system. This 

can be explained by the custom made hardware functions which are used for certain 

hardware acceleration. As mention in the article, the clock speed of the processor in 

the Desktop (Pentium 4) and PDA (UIQ emulator (ARM9)) platform is higher than 

FPGA applied clock speed and is faster than the fully software implementation in 

FPGA. However, my designed of AES system is yet faster than above platforms. 
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Figure 4.5:  Fully Hardware Performance 

 

The performance for full hardware implementation is outstanding and is even faster 

when compared to my AES design. However, hardware implementation consumes a 

lot of resources and will be very costly. Furthermore, fully hardware implementation 

has as its largest drawback its flexibility whereby it requires add-on resources during 

future modifications or improvements. This problem will not affect software 

implementation much as we just need to add in some extra code for extra features. 

By using the combination of hardware and software implementation, minor future 

improvements or modifications that do not require hardware implementation can 

actually be done without adding on any LEs (Logic Element), it would save a lot of 

resources.  

 

 

 

4.3 Overall Discussion 

 

By having 128-bits of key, we would have 2 to the 128th power, or 3.4 x 10 to the 

38th power numbers. Seagate Technology had come out the calculation where if 

presume that: 

 Every person on the planet owns 10 computers 

 There are 7 billion people on the planet. 

 Each of these computers can test 1 billion key combinations per second. 

 On average, you can crack the key after testing 50 percent of the possibilities 
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Table 4.5: Time require for Key Cracking 

 

it will require 77,000,000,000,000,000,000,000,000 years to crack a single key. 

According to NIST (National Institute of Standards and Technology), AES would be 

secure for at least 20-30 years. 

 

Encryption process in fully software implementation is observable in memory, and it 

would give a path for the attacker to reveal the key. By using co-design where 

hardware and software are implemented together, key would be secure during the 

process.  

 

Table 4.6: Overall Comparison Table 

 Nios II 

FPGA (my 

design) 

Microcontroller Fully Software 

Implementation 

Fully Hardware 

Implementation 

Encryption 0.04 ms 19.00 ms 11.2 ms 6.646ns 

Decryption 0.05 ms 60.00 ms 12.86 ms 6.646ns 

Key 0.03 ms 8.00 ms 0.14 ms 6.646ns 

Resources 5,259 LEs - N/A 13,696 slices 

 

As the comparison above shows, the performance of my design is slightly better than 

that of a fully software implementation and is much worse compared to that of a fully 

hardware implementation. This can be explained as the algorithm that has been used 

is optimized for the fully hardware implementation. As for my algorithm, typical 
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AES algorithm is applied which is a disadvantage for my design. It should achieve a 

higher performance if the algorithm is optimized. The performance of my design is 

also slower than my expectation as I thought that it would be faster compared to the 

fully software implementation and only slightly slower than the fully hardware 

implementation. 

 

Typical AES system takes in hexadecimal as its input, this would be very 

troublesome as people would have to find the hexadecimal representation for their 

input. As for my design of AES, the input to the system is character type where 

symbols or characters will be converted into hexadecimal based on their ASCII code. 

This is more convenient compared to a typical AES system. 

 

From the comparison table, my design of AES scores the speed of 3.2Mbps for 

encryption and 2.56Mbps for decryption. Hence it can be applied in devices which 

require moderate performance with limited resources such as VOIP, Radio 

Frequency device, ATM machine, transceiver, video conferencing, etc. With the 

performance that been achieved, typical home-based internet usage or WIFI 

communication can be supported. 

 

There are two major bugs that can be found in my design: spacing input problem, 

overflow input problem. As these two scenarios occur, the process of my system will 

result abnormal. These 2 problems is due to the usage of “scanf(“%s”)” as input 

command where according to Wikipedia, “scanf(“%s”) scan a character string. The 

scan terminates at whitespace. A null character is stored at the end of the string, 

which means that the buffer supplied must be at least one character longer than the 

specified input length.” This means that input shall not contain any spacing in 

between else the scanning will be terminated by the spacing. As declared input 

length for my design to be 16 words (1 byte each), overflow input would cause the 

system to be malfunction. These can be fix by replacing “scanf(“%s”)” with other 

input command such as fgets or fscanf. However further research on the functionality 

and characteristic of the command shall be done before being applied so that similar 

bugs won’t occur. 
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The advantages where further application or function can be built directly on the 

Nios II system without much modification can save a lot of resources and space 

compared to hardware implementation and the performance is faster compared to 

fully software or a microcontroller platform. 

 

I have tried 3 types of Nios II processor during the implementation and Nios II (f) 

gives the best performance and it can support up to 150Mhz. Despite the 

performance, resources of Nios II(f) is just slightly higher compare to Nios II(e) & 

Nios II(s) . The major disadvantage of this soft core is where it require license from 

Altera Technology for commercial purpose.  



 

CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion 

 

There are few conclusions that we can draw from this project “Implementation of 

Soft Core” and the system for the implementation is AES, Advance Encryption 

Standard. 

 

AES on Nios II system is not as effective as it expected to be. The reason is where 

major flow of the system is still software implemented and the algorithm that been 

applied is a typical AES algorithm where optimizations are not applied. 

 

Efficiency of the system is acceptable where compare to a fully hardware 

implementation system (with optimization) where it require more than 10000 slices 

of resources, my design only require approximately 5000 slices of resources in the 

FPGA. 

 

Soft core have a significant advantages in performance and resources compare to a 

microcontroller. From the result, soft core system performs at least 3 times faster 

than the microcontroller system. However, it is known that FPGA is more expensive 

compare to a microcontroller. Hence, only system which requires higher 

performance spec is recommend to design on soft core, FPGA system. 

 

Designed AES system has been validated on its functionality with comparison with 

with AES java calculator that has been designed by Lawrie Brown from ADFA, 

Canberra, Australia. The result is positive and is conclude to be fully functional 
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There are still some bugs in the software where spacing in the sentence and overflow 

of the input are not allowed for the system. As explained in discussion, these bugs 

can be fixed by replacing scanf with other command. 

 

Nios II(f) is found to be most suitable soft core for the system and having the highest 

specification among the Nios II family provides us with higher flexibility in future 

improvement. Any software application or design can develop directly on the Nios II 

system without any extra resources. 

 

My design of AES system score 3.2Mbps in encryption and 2.56Mbps in decryption 

whereby normal audio or video communication can be secure with real time 

operation.  

 

5.2 Recommendation 

 

Future improvement has to implement for the system commercialization. There are 

few recommendations that I think would help in system improvement. 

 

Research on AES algorithm shall be done for finding the optimize algorithm for the 

software/hardware codesign platform. By implementing the optimized algorithm, it is 

believe that the performance can dramatically improve.  

 

Current design of the system is using standard input (keyboard) as the input interface. 

In future, other transmission interface can be used for replacement. This would allow 

the user to transfer their file to the FPGA for encryption/decryption, which would be 

more convenient. Serial port interface would be recommended as the DE1 is supplied 

with RS232 port. PCI Express interface can be used if require high speed 

transmission. However, PCI Express interface would be more difficult to program 

and use compare to RS232 port.  

 

As mention earlier, audio or video transmission application can be applied to the 

system. DE1 development board contain DSP (Digital Signal Processing) core and it 

can be integrated to the system if necessary. Integrating a DSP core, audio or video 

processing can be done through the FPGA. 
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APPENDICES 

 

 

APPENDIX A: Verilog File (S-BOX) 

 

/* This module is designed to combine four 256-bytes ROM so that the system can 

perform 32-bit substitution*/ 

 

module s_box_32 

(clk,data,output_data); 

input clk; 

input [31:0] data; 

output[31:0] output_data; 

 

lpm_rom0 s_box1( //lpm_rom0 is a 256-byte ROM with initialization 

 .address(data[7:0]), 

 .clock(clk), 

 .q(output_data[7:0])); 

 

lpm_rom0 s_box2( 

 .address(data[15:8]), 

 .clock(clk), 

 .q(output_data[15:8])); 

 

lpm_rom0 s_box3( 

 .address(data[23:16]), 

 .clock(clk), 

 .q(output_data[23:16])); 

  

lpm_rom0 s_box4( 

 .address(data[31:24]), 

 .clock(clk), 

 .q(output_data[31:24])); 

endmodule 
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APPENDIX B: Verilog File (Inverse S-Box) 

 

/* This module is designed to combine four 256-bytes ROM so that the system can 

perform 32-bit substitution*/ 

 

module invS_box 

(clk,address,result_out); 

 

input clk; 

input [31:0] address; 

output [31:0] result_out; 

 

lpm_rom2 invsbox1 //lpm_rom2 is a 256-byte ROM with initialization 

(.clock(clk), 

.address(address[31:24]), 

.q(result_out[31:24])); 

 

lpm_rom2 invsbox2 

(.clock(clk), 

.address(address[23:16]), 

.q(result_out[23:16])); 

 

lpm_rom2 invsbox3 

(.clock(clk), 

.address(address[15:8]), 

.q(result_out[15:8])); 

 

lpm_rom2 invsbox4 

(.clock(clk), 

.address(address[7:0]), 

.q(result_out[7:0])); 

 

Endmodule 
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APPENDIX C: Verilog File (256-byte ROM) 

 

/*This function is generated using Altera Mega Function. This is S-box ROM 

module. Inverse S-Box ROM module is similar with S-box ROM module. The only 

different is the initialization file name and the module name*/ 

 

`timescale 1 ps / 1 ps 

module lpm_rom0 ( 

 address, 

 clock, 

 q); 

 

 input [7:0]  address; 

 input   clock; 

 output [7:0]  q; 

 

 wire [7:0] sub_wire0; 

 wire [7:0] q = sub_wire0[7:0]; 

 

 altsyncram altsyncram_component ( 

    .clock0 (clock), 

    .address_a (address), 

    .q_a (sub_wire0), 

    .aclr0 (1'b0), 

    .aclr1 (1'b0), 

    .address_b (1'b1), 

    .addressstall_a (1'b0), 

    .addressstall_b (1'b0), 

    .byteena_a (1'b1), 

    .byteena_b (1'b1), 

    .clock1 (1'b1), 

    .clocken0 (1'b1), 

    .clocken1 (1'b1), 
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    .clocken2 (1'b1), 

    .clocken3 (1'b1), 

    .data_a ({8{1'b1}}), 

    .data_b (1'b1), 

    .eccstatus (), 

    .q_b (), 

    .rden_a (1'b1), 

    .rden_b (1'b1), 

    .wren_a (1'b0), 

    .wren_b (1'b0)); 

 defparam 

  altsyncram_component.clock_enable_input_a = "BYPASS", 

  altsyncram_component.clock_enable_output_a = "BYPASS", 

`ifdef NO_PLI 

  altsyncram_component.init_file = "S_BOX.rif" //initialization file 

`else 

  altsyncram_component.init_file = "S_BOX.hex"//initialization file 

`endif 

, 

  altsyncram_component.intended_device_family = "Cyclone II", 

  altsyncram_component.lpm_hint = 

"ENABLE_RUNTIME_MOD=NO", 

  altsyncram_component.lpm_type = "altsyncram", 

  altsyncram_component.numwords_a = 256, 

  altsyncram_component.operation_mode = "ROM", 

  altsyncram_component.outdata_aclr_a = "NONE", 

  altsyncram_component.outdata_reg_a = "CLOCK0", 

  altsyncram_component.widthad_a = 8, 

  altsyncram_component.width_a = 8, 

  altsyncram_component.width_byteena_a = 1; 

 

 

endmodule 
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APPENDIX D: Verilog File (MixColumn) 

 

module mixcolum_en_32 

 

(data_in,clk,result_out); 

 

input clk; 

input [31:0] data_in; 

output[31:0] result_out; 

wire [7:0] 

result_2i,result_3i,result_2ii,result_3ii,result_2iii,result_3iii,result_2iv,result_3iv; 

 

GF_2x mix2i 

(.data(data_in[31:24]), 

.clk(clk), 

.result(result_2i)); 

 

GF_3x mix3i 

(.data(data_in[23:16]), 

.clk(clk), 

.result(result_3i)); 

 

assign result_out[31:24] = result_2i ^ result_3i ^ data_in[15:8] ^ data_in[7:0]; 

 

GF_2x mix2ii 

(.data(data_in[23:16]), 

.clk(clk), 

.result(result_2ii)); 

 

GF_3x mix3ii 

(.data(data_in[15:8]), 

.clk(clk), 

.result(result_3ii)); 
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assign result_out[23:16] = result_2ii ^ result_3ii ^ data_in[31:24] ^ data_in[7:0]; 

 

GF_2x mix2iii 

(.data(data_in[15:8]), 

.clk(clk), 

.result(result_2iii)); 

 

GF_3x mix3iii 

(.data(data_in[7:0]), 

.clk(clk), 

.result(result_3iii)); 

 

assign result_out[15:8] = result_2iii ^ result_3iii ^ data_in[31:24] ^ data_in[23:16]; 

 

GF_2x mix2iv 

(.data(data_in[7:0]), 

.clk(clk), 

.result(result_2iv)); 

 

GF_3x mix3iv 

(.data(data_in[31:24]), 

.clk(clk), 

.result(result_3iv)); 

 

assign result_out[7:0] = result_2iv ^ result_3iv ^ data_in[23:16] ^ data_in[15:8]; 

endmodule 

 

 

module GF_2x 

(data,clk,result); 

 

input clk; 

input [7:0] data; 

output reg [7:0] result; 
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always @(posedge clk) 

begin 

result = data<<1; 

if(data[7] == 1) 

result=result ^ 8'b00011011;  

end 

endmodule 

 

module GF_3x 

(data,clk,result); 

 

input clk; 

input [7:0] data; 

output reg [7:0] result; 

 

always @(posedge clk) 

begin 

result = data<<1; 

if(data[7] == 1) 

result=result ^ 8'b00011011;  

result = result ^ data; 

end 

endmodule 
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APPENDIX E: Verilog File (InvMixCoulumn Factor) 

 

 

module invmixcolumn 

(clk,data_in,mix_data,result); 

 

input clk; 

input [31:0] data_in,mix_data; 

wire [15:0] result_12_8x; 

output [31:0] result; 

 

invmixcolumn_12x_8x invmix 

(.clk(clk), 

.data_in(data_in), 

.result(result_12_8x)); 

 

assign result[31:24] = mix_data[31:24] ^ result_12_8x[15:8]; 

assign result[23:16] = mix_data[23:16] ^ result_12_8x[7:0]; 

assign result[15:8] = mix_data[15:8] ^ result_12_8x[15:8]; 

assign result[7:0] = mix_data[7:0] ^ result_12_8x[7:0]; 

 

endmodule 

 

module invmixcolumn_12x_8x 

(data_in,clk,result); 

 

input [31:0] data_in; 

input clk; 

output [15:0] result; 

wire [7:0] 

result_12i,result_8i,result_8ii,result_12ii,result_8iii,result_12iii,result_12iv,result_8i

v; 

 



65 

GF_12x invmix12i 

(.clk(clk), 

.data(data_in[31:24]), 

.result(result_12i)); 

 

GF_8x invmix8i 

(.clk(clk), 

.data(data_in[23:16]), 

.result(result_8i)); 

 

GF_12x invmix12ii 

(.clk(clk), 

.data(data_in[15:8]), 

.result(result_12ii)); 

 

GF_8x invmix8ii 

(.clk(clk), 

.data(data_in[7:0]), 

.result(result_8ii)); 

 

assign result[15:8] = result_12i ^ result_8i ^ result_12ii ^ result_8ii; 

 

GF_8x invmix8iii 

(.clk(clk), 

.data(data_in[31:24]), 

.result(result_8iii)); 

 

GF_12x invmix12iii 

(.clk(clk), 

.data(data_in[23:16]), 

.result(result_12iii)); 

 

GF_8x invmix8iv 

(.clk(clk), 
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.data(data_in[15:8]), 

.result(result_8iv)); 

 

GF_12x invmix12iv 

(.clk(clk), 

.data(data_in[7:0]), 

.result(result_12iv)); 

 

assign result[7:0] = result_12iii ^ result_8iii ^ result_12iv ^ result_8iv; 

 

endmodule 

 

module GF_8x 

(data,clk,result); 

 

input [7:0] data; 

input clk; 

output [7:0] result; 

wire [7:0] result_temp1,result_temp2; 

 

GF_2x gf2 

(.clk(clk), 

.data(data), 

.result(result_temp1)); 

 

GF_2x gf4 

(.clk(clk), 

.data(result_temp1), 

.result(result_temp2)); 

 

GF_2x gf8 

(.clk(clk), 

.data(result_temp2), 

.result(result)); 
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Endmodule 

module GF_12x 

(data,clk,result); 

 

input [7:0] data; 

input clk; 

output [7:0] result; 

wire [7:0] result_temp1,result_temp2; 

 

GF_2x gf2 

(.clk(clk), 

.data(data), 

.result(result_temp1)); 

 

GF_2x gf4 

(.clk(clk), 

.data(result_temp1), 

.result(result_temp2)); 

 

GF_3x gf12 

(.clk(clk), 

.data(result_temp2), 

.result(result)); 

 

endmodule 
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APPENDIX F: AES system C Code 

 

/* 

Copyright (C) 2010-2011 Woo Chi Liang 

This is an AES system that been develop using soft-core with 

hardware acceleration. 

Please email woochiliang@msn.com for details 

 * 

 */ 

 

#include <stdio.h> 

#include <system.h> 

#include <stdlib.h> 

#include <altera_avalon_pio_regs.h> 

#include <string.h> 

#include <io.h> 

#include<altera_avalon_performance_counter.h> 

 

 

 

///FUNCTION 

INITIALIZATION//////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////

//////// 

void character_handler (char* char_store); 

void Key_Scheduler(unsigned int KEY_IN[4]); 

void encryption(unsigned int TEXT_IN[4]); 

unsigned int rotate_left(unsigned int data,int shift); 

void character_handler2(char* char_store); 

void column2row(unsigned int input[4]); 

void decryption(unsigned int CYPHER_IN[4]); 

////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////// 

 

///GLOBAL VARIABLE 

DECLARATION/////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////

//////// 

char char_swap[4][4],char_swap2[4][4]; 

 

char input_key [][4]= 

{{0x2b,0x28,0xab,0x09},{0x7e,0xae,0xf7,0xcf},{0x15,0xd2,0x15,0x4f},{

0x16,0xa6,0x88,0x3c}}; 

char input_text [][4] = 

{{0x32,0x88,0x31,0xe0},{0x43,0x5a,0x31,0x37},{0xf6,0x30,0x98,0x07},{

0xa8,0x8d,0xa2,0x34}}; 

char input_cypher[][4] = 

{{0x39,0x02,0xdc,0x19},{0x25,0xdc,0x11,0x6a},{0x84,0x09,0x85,0x0b},{

0x1d,0xfb,0x97,0x32}}; 

unsigned int cypherkey[44]; 

unsigned int process_data[4]; 

unsigned int 

RCON[]={0x01000000,0x02000000,0x04000000,0x08000000,0x10000000,0x200

00000,0x40000000,0x80000000,0x1B000000,0x36000000}; 

unsigned int process_data_int[4]; 

 

////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////// 

int main() 

{ 
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 char key [4][4],text[4][4]; 

 char* char_pointer; 

 unsigned int test_cypher[4]; 

 int select; 

 //char key_swap [4][4]; 

 //unsigned int char_int[4]; 

 //unsigned int KEY_IN[4],i,j; 

  PERF_RESET(PERFORMANCE_COUNTER_0_BASE); 

 while(1) 

 { 

 printf("\nEnter your key\n"); 

 fflush(stdin); 

 char_pointer = &key[0][0]; 

 scanf("%s",char_pointer); 

 character_handler(&key); 

 Key_Scheduler(char_swap); 

 

 printf("\n 1:Encryption \n 2:Decryption"); 

 scanf("%d",&select); 

 if(select == 1) 

 { 

   printf("Enter your text             "); 

   fflush(stdin); 

   scanf("%s",&text); 

   character_handler2(&text); 

   encryption(char_swap2); 

   //character_handler2(&process_data[0]); 

   printf("\nYOUR 

CYPHERTEXT:\n%x %x %x %x\n",process_data[0],process_data[1],process_

data[2],process_data[3]); 

 } 

 

 else if (select == 2) 

 { 

  printf("Enter your text                 ");/* 

  fflush(stdin); 

  scanf("%x",&test_cypher[0]); 

  fflush(stdin); 

  scanf("%x",&test_cypher[1]); 

  fflush(stdin); 

  scanf("%x",&test_cypher[2]); 

  fflush(stdin); 

  scanf("%x",&test_cypher[3]);*/ 

 

 scanf("%x %x %x %x",&test_cypher[0],&test_cypher[1],&test_cyph

er[2],&test_cypher[3]); 

  //character_handler2(&text); 

  decryption(test_cypher); 

  //character_handler2(process_data); 

 

  character_handler2(&process_data[0]); 

  /* 

  process_data[0] = rotate_left(process_data[0],3); 

  process_data[1] = rotate_left(process_data[1],3); 

  process_data[2] = rotate_left(process_data[2],3); 

  process_data[3] = rotate_left(process_data[3],3); 

*/ 

 

  printf("\nYOUR TEXT:\n%s\n",char_swap2); 



70 

  perf_print_formatted_report( 

  (void *)PERFORMANCE_COUNTER_0_BASE, // Peripheral's HW 

base address 

  alt_get_cpu_freq(), // defined in "system.h" 

  3, // How many sections to print 

  "Encryption", // Display-names of sections 

  "Decryption", 

  "Key Generator"); 

  } 

 } 

 

 /* 

 for(i=0;i<=3;i++) 

 { 

  for(j=0;j<=3;j++) 

  { 

   key_swap[j][3-i]=key[i][j]; 

  } 

 } 

 for(i=0;i<=3;i++) 

 printf("%x%x%x%x\n",key_swap[i][0],key_swap[i][1],key_swap[i][

2],key_swap[i][3]); 

 */ 

/* 

 character_handler(input_key); 

 Key_Scheduler(char_swap); 

 //character_handler2(input_text); 

 //encryption(char_swap2); 

 character_handler2(input_cypher); 

 decryption(char_swap2); 

*/ 

 

  return 0; 

} 

 

void Key_Scheduler(unsigned int KEY_IN[4]) 

{ 

 

   PERF_START_MEASURING(PERFORMANCE_COUNTER_0_BASE); 

 

 unsigned int j,y,x,KEY_TEMP,i; 

 unsigned int KEY_OUT[10][4]; 

 

 PERF_BEGIN(PERFORMANCE_COUNTER_0_BASE,3); 

 cypherkey[0]=KEY_IN[0]; 

 cypherkey[1]=KEY_IN[1]; 

 cypherkey[2]=KEY_IN[2]; 

 cypherkey[3]=KEY_IN[3]; 

 //printf("\nR0 : %x%x%x%x\n",cypherkey[0],cypherkey[1],cypherk

ey[2],cypherkey[3]); 

 for(j=1;j<=10;j++) 

 { 

  KEY_TEMP = KEY_IN[0]; 

  IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, KEY_IN[3]); 

  KEY_IN[0] = IORD_ALTERA_AVALON_PIO_DATA(PIO_0_BASE); 

  KEY_IN[0] = rotate_left(KEY_IN[0],1); 

  KEY_IN[0] = KEY_IN[0] ^ RCON[j-1] ^ KEY_TEMP; 

  for(i=1;i<=3;i++) 

   KEY_IN[i] = KEY_IN[i-1] ^ KEY_IN[i]; 

  cypherkey[j*4]=KEY_IN[0]; 

  cypherkey[(j*4)+1]=KEY_IN[1]; 
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  cypherkey[(j*4)+2]=KEY_IN[2]; 

  cypherkey[(j*4)+3]=KEY_IN[3]; 

 

 //printf("R%d : %x%x%x%x\n",j,cypherkey[(j*4)+0],cypherkey[(j*

4)+1],cypherkey[(j*4)+2],cypherkey[(j*4)+3]); 

 } 

 PERF_END(PERFORMANCE_COUNTER_0_BASE,3); 

} 

 

unsigned int rotate_left(unsigned int data,int shift) 

{ 

 unsigned int result; 

 result = (data << (shift*8) | (data >> (32 - (shift*8)))); 

 

 return result; 

} 

 

unsigned int rotate_right(unsigned int data,int shift) 

{ 

 unsigned int result; 

 result = (data >> (shift*8) | (data << (32 - (shift*8)))); 

 

 return result; 

} 

 

void character_handler(char* char_store) 

{ 

 

 int i,j; 

 for(i=0;i<=3;i++) 

  { 

   for(j=0;j<=3;j++) 

   { 

    char_swap[j][3-i]=*((char_store+j)+(i*4)); 

   } 

  } 

 

} 

 

void character_handler2(char* char_store) 

{ 

 int i,j; 

 for(i=0;i<=3;i++) 

   { 

    for(j=0;j<=3;j++) 

    { 

     char_swap2[i][3-j]= 

*((char_store+j)+(i*4)); 

    } 

   } 

} 

 

void encryption(unsigned int TEXT_IN[4]) 

{ 

 int round; 

 

 PERF_BEGIN(PERFORMANCE_COUNTER_0_BASE,1); 

 //printf("\n\n%x\n%x\n%x\n%x\n",TEXT_IN[0],TEXT_IN[1],TEXT_IN[

2],TEXT_IN[3]); 

 

 column2row(TEXT_IN); 
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 //printf("\n\nInput 

ASCII : %x%x%x%x",process_data[0],process_data[1],process_data[2],pr

ocess_data[3]); 

 process_data[0]^=cypherkey[0]; 

 process_data[1]^=cypherkey[1]; 

 process_data[2]^=cypherkey[2]; 

 process_data[3]^=cypherkey[3]; 

 

 //a[0]=rotate_left(TEXT_IN[0],0); 

 //printf("\n\nRound 0 

Cypher : %x%x%x%x",process_data[0],process_data[1],process_data[2],p

rocess_data[3]); 

 column2row(process_data); 

 //printf("\n\n%x\n%x\n%x\n%x",process_data[0],process_data[1],

process_data[2],process_data[3]); 

 

 

 for(round=1;round<=10;round++) 

 { 

 

  IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, process_data[0]); 

  process_data[0]=IORD_ALTERA_AVALON_PIO_DATA(PIO_0_BASE); 

  IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, process_data[1]); 

  process_data[1]=IORD_ALTERA_AVALON_PIO_DATA(PIO_0_BASE); 

  IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, process_data[2]); 

  process_data[2]=IORD_ALTERA_AVALON_PIO_DATA(PIO_0_BASE); 

  IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, process_data[3]); 

  process_data[3]=IORD_ALTERA_AVALON_PIO_DATA(PIO_0_BASE); 

  //printf("\n\nSUB-

BYTE\n\n%x\n%x\n%x\n%x",process_data[0],process_data[1],process_data

[2],process_data[3]); 

  process_data[1]=rotate_left(process_data[1],1); 

  process_data[2]=rotate_left(process_data[2],2); 

  process_data[3]=rotate_left(process_data[3],3); 

 

 //printf("\n\nSHIFT\n\n%x\n%x\n%x\n%x",process_data[0],process

_data[1],process_data[2],process_data[3]); 

 

  column2row(process_data); 

  if(round!=10) 

  { 

 

 process_data[0]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[0]); 

 

 process_data[1]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[1]); 

 

 process_data[2]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[2]); 

 

 process_data[3]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[3]); 

  } 

 

 //printf("\n\nMIX\n\n%x\n%x\n%x\n%x",process_data[0],process_d

ata[1],process_data[2],process_data[3]); 

  process_data[0]^=cypherkey[0+(round*4)]; 

  process_data[1]^=cypherkey[1+(round*4)]; 

  process_data[2]^=cypherkey[2+(round*4)]; 

  process_data[3]^=cypherkey[3+(round*4)]; 
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  //printf("\nRound %d 

Cypher : %x%x%x%x",round,process_data[0],process_data[1],process_dat

a[2],process_data[3]); 

  column2row(process_data); 

 } 

 //printf("\n\CYPHER 

TEXT:\n\n%x\n%x\n%x\n%x",process_data[0],process_data[1],process_dat

a[2],process_data[3]); 

 

 PERF_END(PERFORMANCE_COUNTER_0_BASE,1); 

 

 

 //printf("\nCYPHER 

TEXT:\n\n%x\n%x\n%x\n%x",process_data[0],process_data[1],process_dat

a[2],process_data[3]); 

} 

 

void decryption(unsigned int CYPHER_IN[4]) 

{ 

 int round; 

 unsigned int temp[4]; 

 PERF_BEGIN(PERFORMANCE_COUNTER_0_BASE,2); 

 column2row(CYPHER_IN); 

 //printf("\n\nINPUT:%x%x%x%x",process_data[0],process_data[1],

process_data[2],process_data[3]); 

 process_data[0]^=cypherkey[40]; 

 process_data[1]^=cypherkey[41]; 

 process_data[2]^=cypherkey[42]; 

 process_data[3]^=cypherkey[43]; 

 //printf("\n\nOUTPUT 

0 : %x%x%x%x",process_data[0],process_data[1],process_data[2],proces

s_data[3]); 

 column2row(process_data); 

 for(round=9;round>=0;round--) 

  { 

   process_data[1] = rotate_right(process_data[1],1); 

   process_data[2] = rotate_right(process_data[2],2); 

   process_data[3] = rotate_right(process_data[3],3); 

   IOWR_ALTERA_AVALON_PIO_DATA(PIO_1_BASE, 

process_data[0]); 

  

 process_data[0]=IORD_ALTERA_AVALON_PIO_DATA(PIO_1_BASE); 

   IOWR_ALTERA_AVALON_PIO_DATA(PIO_1_BASE, 

process_data[1]); 

  

 process_data[1]=IORD_ALTERA_AVALON_PIO_DATA(PIO_1_BASE); 

   IOWR_ALTERA_AVALON_PIO_DATA(PIO_1_BASE, 

process_data[2]); 

  

 process_data[2]=IORD_ALTERA_AVALON_PIO_DATA(PIO_1_BASE); 

   IOWR_ALTERA_AVALON_PIO_DATA(PIO_1_BASE, 

process_data[3]); 

  

 process_data[3]=IORD_ALTERA_AVALON_PIO_DATA(PIO_1_BASE); 

   column2row(process_data); 

   process_data[0]^=cypherkey[0+(round*4)]; 

   process_data[1]^=cypherkey[1+(round*4)]; 

   process_data[2]^=cypherkey[2+(round*4)]; 

   process_data[3]^=cypherkey[3+(round*4)]; 

   if(round!=0) 

   { 
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 temp[0]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[0]); 

   

 temp[1]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[1]); 

   

 temp[2]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[2]); 

   

 temp[3]=ALT_CI_MIXCOLUMN_EN_32_INST(process_data[3]); 

    process_data[0] = 

ALT_CI_INVMIX_32_NEW_INST(process_data[0],temp[0]); 

    process_data[1] = 

ALT_CI_INVMIX_32_NEW_INST(process_data[1],temp[1]); 

    process_data[2] = 

ALT_CI_INVMIX_32_NEW_INST(process_data[2],temp[2]); 

    process_data[3] = 

ALT_CI_INVMIX_32_NEW_INST(process_data[3],temp[3]); 

 

   } 

   //printf("\nOUTPUT %d : %x%x%x%x",((round-9)*-

1)+1,process_data[0],process_data[1],process_data[2],process_data[3]

); 

   column2row(process_data); 

  } 

 PERF_END(PERFORMANCE_COUNTER_0_BASE,2); 

} 

 

void column2row(unsigned int input[4]) 

{ 

 IOWR_ALTERA_AVALON_PIO_DATA(COLUMN1_BASE, input[0]); 

    IOWR_ALTERA_AVALON_PIO_DATA(COLUMN2_BASE, 

input[1]); 

    IOWR_ALTERA_AVALON_PIO_DATA(COLUMN3_BASE, 

input[2]); 

   

 IOWR_ALTERA_AVALON_PIO_DATA(COLUMN4_BASE,input[3]); 

   

 process_data[0]=IORD_ALTERA_AVALON_PIO_DATA(COLUMN1_BASE); 

   

 process_data[1]=IORD_ALTERA_AVALON_PIO_DATA(COLUMN2_BASE); 

   

 process_data[2]=IORD_ALTERA_AVALON_PIO_DATA(COLUMN3_BASE); 

   

 process_data[3]=IORD_ALTERA_AVALON_PIO_DATA(COLUMN4_BASE); 

} 

 

 

 


