
DEVELOPMENT OF DATA PERSISTENT FRAMEWORK
FOR MODELLING ENTITY AND ENTITY

RELATIONSHIP USING DB4O OBJECT DATABASE
WITH JAVA

KEN YAP CHEE KIAN

MASTER OF COMPUTER SCIENCE

FACULTY OF ENGINEERING & SCIENCE
UNIVERSITI TUNKU ABDUL RAHMAN

OCTOBER 2013

1

ABSTRACT

DEVELOPMENT OF DATA PERSISTENT FRAMEWORK FOR
MODELLING ENTITY AND ENTITY RELATIONSHIP USING DB4O

OBJECT-ORIENTED DATABASE WITH JAVA

Ken Yap Chee Kian

Object database is studied with some experiments performed on the DB4O

database and a persistent object framework with data access library is

developed. The structure of persistent object of the framework conceptually

mapped to a relation of relational data model; this allow direct adaptation and

reorganization of existing relational design to OODB. The relationships of

entities in runtime is modeled by two memory references from two respective

persistent objects in Relationships persistent object; which is much similar to

introducing a table for Many-to-Many relationship in relational design. In the

framework, the associated members in a relationship can be retrieved, however

multiple connected relationships retrieving which is similar to Join in RDB is

not supported by the framework. An application level design strategy is

suggested associated with the usage of the framework and instability is found

in using DB4O static method in deletion of persistent object in DB; removal of

collection item instead of deletion is suggested to improve the situation the

problem, i.e. not a satisfactory fix. The specific achievements of the

framework appears to be cut down of design and development effort of

application, and suitable for integration with computer aided design tools for

rapid application development.

2

TABLE OF CONTENTS

Page

ABSTRACT 2
ACKNOWLEDGEMENTS 5
APPROVAL SHEET 6
DECLARATION SHEET 7
LIST OF TABLES 8
LIST OF FIGURES 9
LIST OF ABBREVIATIONS/NOTATION/GLOSSARY OF TERMS 10

CHAPTER

1.0 INTRODUCTION 11
1.1 Problem Statement 16
1.1.1 What Motivates the Existence of the Framework 18
1.2 Project Aim and Objectives 19
1.2.1 Objectives 20

2.0 LITERATURE REVIEW 21
2.1 Preliminary 26
2.2 What Makes a Database Management System 27
2.3 Object-Oriented Concepts 28
2.3.1 Features of Object-Oriented Programming 29
2.4 Object-Oriented Database Management System 31
2.4.1 Features of Object-Oriented Database System 31
2.4.2 Comparison of Object and Relational Database 33
2.5 Existing Object Data Persistent Framework 34
2.5.1 Hibernate Session and Object-Relational Mapping 36
2.6 Working with DB4O 40
2.7 Experiments on DB4O Database 45
2.7.1 Experiment 1 on Deletion of Object 45
2.7.2 Experiment 2 on Schema Change of Database Class 47

3.0 RESEARCH METHODOLOGY 49
3.1 Tools and Resources 50

4.0 THE DESIGNED FRAMEWORK 51
4.1 Generalization of Entity 51
4.1.1 Extension of PO Type 55
4.2 Entity Relationships 56
4.2.1 Extension of Relationship Persistent Object 59
4.3 Data Access Object Utility 63

5.0 IMPLEMENTATION 65
5.1 Demo: Back Office Management of Web Video Site 65
5.2 Data Model 66
5.3 Results 67
5.4 Evaluation 70

3

6.0 DISCUSSION AND CONCLUSION 71
6.1 Comparison of the Framework and Hibernate 71
6.2 Conclusion 73

REFERENCES 74

4

ACKNOWLEDGEMENTS

I would like to thank my supervisor Mr. Sugumaran for his effort and patience

in guiding me in this project. I would like to thank my family for giving me

care so that I can be healthy and be able to complete my Master course while

studying and working.

5

APPROVAL SHEET

This dissertation/thesis entitled “DEVELOPMENT OF DATA PERSISTENT

FRAMEWORK FOR MODELLING ENTITY AND ENTITY

RELATIONSHIP USING DB4O OBJECT-ORIENTED DATABASE WITH

JAVA” was prepared by Ken Yap Chee Kian and submitted as partial

fulfillment of the requirements for the degree of Master of Science in

Computer Science at Universiti Tunku Abdul Rahman.

Approved by:

Mr. Sugumaran
Professor/Supervisor
Department of Computer Science
Faculty of Engineering & Science
Universiti Tunku Abdul Rahman

6

DECLARATION

I hereby declare that the dissertation is based on my original work except for
quotations and citations which have been duly acknowledged. I also declare
that it has not been previously or concurrently submitted for any other degree
at UTAR or other institutions.

7

LIST OF TABLES

Table

1 Comparison of Hibernate and Framework
Developed

Page

41

8

LIST OF FIGURES

1 ER Diagram Pg 25
2 Class Diagram Pg 29
3 Inheritance Relationship of Class Pg 30
4 Hibernate Pg 35
5 Persistent Object Class Diagram Pg 51
6 Persistent Object Interface Diagram Pg 52
7 Differentiation of Persistent Object Pg 55
8 Relationship as Persistent Object Pg 57
9 Relationship Persistent Object Class Pg 57
10 Add Category in Category Listing Pg 67
11 Data Entry for Category Pg 67
12 Category Listing Pg 67
13 Series Listing Pg 68
14 Add Series Pg 69
15 Search Video from Youtube Pg 69
16 Return Results from Youtube Pg 70
17 Series Details Screen Pg 70

9

LIST OF ABBREVIATIONS AND SYMBOLS

OODB Object-Oriented Database

OO Object-Oriented

JCBC Java Database Connectivity

API Application Programming Interface

DB Database

SQL Structured Query Language

CPU Central Processing Unit

DBMS Database Management System

ER Entity Relationship

NoSql Not Only Sql

10

CHAPTER 1

INTRODUCTION

Computational machine and devices are pervasive in our society now,

information in various form is available to the public connected to the internet.

More and more people are using mobile devices in their daily activities, there

is a great need emerged to drive technology in serving this great number of

people, supporting them in their tasks as well as their pleasure in using an

application. The advancement is expected to change the way people work,

play, and social, it definitely change the economy in a very dynamical and

unpredictable way.

This period is also a time to witness the power of distributed

technology, a distributed system is a system, operating system, application that

appear to the user as a single system with the knowledge that in fact there are

many connected parts that are working behind the scene. It increased the

computational powers and gives optimal utilization of its resources such as

disk space and memory. What is worth noting about distributed technology is

what we called the cloud computing in our present day. Virtualization

technology certainly contributed to the success path of cloud computing.

Cloud computing brings the computing of an entreprise or business to a third

party owned cloud infrastructure that highly utilized distributed technology. It

affects businesses in many dimensions, businesses are given the options to

11

ward off many laborous efforts in maintenance, scaling, problem support that

normally required by its owner, and now owner do not have the need to invest

heavily on hardware, software or services. They can now host their system at

cloud provider like Amazon Cloud Computing and put their resources,

concentrations and focus on their core business and application development

and leave the rest to the cloud provider.

When the user uses an information system or an application,

information that is presented to the user is normally come from database.

Database is a “base” for data stored in a persistent physical storage such as a

hard disk, so that data is persisted beyond the time electrical current is cut off

from the machine or device. A front end system can be an interface for the

user who interacts with the data it wrapped behind, it normally do not

presenting the data in “raw” form, it may have altered, transformed, and

formatted the data it get from the database before it is presented to the user so

that information is adapted to the context of the application requirements. For

example, a bank manager at a branch may need to access his client contact

information through the bank internal information system, but at the same

time, the bank business processing unit may also need to look into the client

credit risk exposure in order to make decisions to approve or reject the client

application to the bank financial products. To calculate associated risk, the

bank backend system may have to make request to external sources of

database as well.

To make the system scale to support more users, there are also many

technological breakthrough in database technology. However, this is not the

only factor involved to make advancement in database technology. There are

12

many aspects that the users of the database system expect depending on the

nature of the application. Application chooses database technology that best

suites its needs, one database technology may benefits an application in certain

ways, but may not be suited for another kind of application. In fact, when one

database technology is used in one system, not all criteria may be satisfied, and

there is a trade-off that the decision maker may be aware of when choosing a

particular kind database technology. For example, MongoDB, a so-called

NoSQL database may be good for website like eBay for scaling capability, but

it may not be suitable for some internal business information system that

strongly demand transactional functionality of database that is seen lack in

MongoDB in current state.

Though, in general, there are some features that a database should

possess, at least minimally. Firstly, it should provide persistency because that

is the main function and purpose of database. It must also have the ability to

delete, retrieve, update, and create data in the physical storage and, it should

provide security, so that data is protected from alteration, modification, and

accessed by unauthorized person, system, or program. An example of this kind

of vulnerabilities is SQL injection, where the attacker can add additional SQL

statement to an existing and retrieving the data from the database, and present

it on the attacker browser.

The way that a database satisfied the above written features is totally

depending on the vendor of database technology. Therefore, classification can

be made for how different databases was build. How the data are represented,

the storage file system, how records relationship is represented physically, are

important design factors that led to the advantages of a particular database or

13

the disadvantage as well. If execution time is a concern in a very request

intensive multi-user application, the database organization that increases disk

searching will be on the disadvantage side, as mechanical dynamics of

scanning the circular disk takes relatively longer time than CPU execution

time. One particular database may not have the ability to model a different

kind of data that one industry demands because it cannot represent it

physically. A good database design will shield the user from the need to know

the physical operations details in order to work with the database, thus it

provides the user with the logical view of the data semantics, without

supplying any low-level details in commanding the operations of database. On

one part of modern database development, the physical and logical separating

has been a continuous effort, for example, the emergence of declarative SQL

standard for relational database, which optimization strategy of a query is

auto-selected and circumvent the need to indicate the indexing details in

accessing.

How the data are represented, designed, organized, maintained in the

database is as important as how easy the database is adapted to change. Can

the database support the cost incurred in the growth of the data and the

evolution of data format at the same time maintaining other imposing rules?

Or the case where the database only allowed a fixed format and length of data

that by default not expecting it to be changed? The growth of data and its

evolution have important implications to the overall benefits of having a

database. There are many other respects that we can take a look at database,

performance wise, or utility wise to gauge whether it served the purpose it

meant to be.

14

Apart from performance or utility aspects like whether it has security

implemented, the database has to make it easy for human to work with it. As

database developers or application developers will need to spend efforts, hours

and expert knowledge in using the database to build system. If it is not robust,

not user-friendly, requiring big effort input and time-consuming, it will incur

cost for a business, for example resulting in project delayed, lack of human

resources and its implications. Therefore, the maintenance and development by

human is an important aspect of database itself.

This project is about using an object-oriented database known as

DB4O to develop application data persistent framework in modelling

persistent entity and their relationships, it is NOT an application Model-View-

Controller framework.

Object-oriented database is a new paradigm of database as compared

with relational database. Object-oriented database is entirely fashioned by the

application programming language, there is no need to have a middleware

such as JDBC to talk to the database and the application. Object-oriented

database may or may not have its own query language, as it can be allowed to

use the application language to select data. It is reported that object-oriented

database is superior than relational database in performance wise.

Entity aforementioned in our context are conceptual abstraction used to

represent a real world entity such as person, object or event. The conceptual

abstraction can be used to design a database or application. The relationships

of the entities in the design normally can tell us about business's process

graphically.

15

The framework aforementioned on data persistency is a programming

framework that can be used to generalize a persistent object derived from

conceptual entity, i.e. the data that are meant to be stored in database. This

framework is believed to provide rapid application development, unification

and consistency for the system, and the ability to model complex object and

evolution of its structure, these are among other benefits.

In the development of this project, each important designing decision

point is selectively recorded in this report. This chapter will continue with the

problem statement and research methodology, relevant knowledge of object-

oriented database which also include DB4O is written in the second chapter of

literature review. The technical of how to work with DB4O is also covered in

the second chapter. The framework developed is described in the third chapter.

The forth chapter described implementation of a web application using the

framework. The last chapter gives the conclusion on the project.

1.1 Problem Statement

No discovery of opportunity or no attention given to a discovered

opportunity to build, improve a system should be considered a problem. The

first problem can be dealt with by examining more closely of a system, or

experimenting on the system so that the unknown part can be made known.

The problem that this project aiming belong to the latter, a discovered

opportunity to improve an application that uses database. Therefore, to verify

whether this opportunity is indeed an opportunity that improves a system,

work must be put forward to justify it.

16

Before precisely describing the problem, which is seen as an

improvement opportunity, there are some facts on object-oriented database

DB4O that leads to the discovery of the opportunity.

In DB4O, the data model schema may not need to be introduced to the

database before it is being inserted with a first new data of a class. It is in

program runtime that a new object with its schema can be persisted to the

database that initially, have no knowledge of the structure of the object.

Therefore, we can skip the schema definition design work effort and relay it to

the application programming. The database design becomes the work of

application developers and not touching the database administration system,

this is to say that database design is one with the design of application.

Comparing with relational database, it is true because we are able to identify

that the object correspond to the relational tuple, and the class of an object

corresponds to the schema/metadata of the relation or table. With object-

oriented database, object can now directly persisted to the database without

breaking down to smaller units.

Object-oriented features such as inheritance and encapsulation can be

applied into the database with DB4O database, these features can be used to

build a framework for persistent object, which is object that is not transient

and requires persistency in the context of the application. This framework is

NOT related or tied to any business processes of the application, rather it is a

general data persistence framework that is independent of the business

processes and business process can build on top of this framework.

17

1.1.1 What Motivates the Development of the Framework?

There exist common internal and external operations subjected to all persistent

object

We assume that we have many various persistent objects derived from

different classes. And, we assume that there are some common static

operations for all of such objects, and these common operations are related to

persistency. Giving this scenario, an experience developer would motivate the

design of a static library class to accommodate the static operation that accepts

persistent object as argument. But in a typed system of Java, this operation is

broken into many pieces of method signatures as each object varies in their

classes and are orthogonal to each other, and the signature of the method

changes as it takes in the type of the persistent object as a specification. This

violate the principle of software reuse. Persistent operations exist for persistent

object and it should be common to all persistent object. Therefore, there is a

need to develop a framework for persistent object for DB4O, so that the

principle of software engineering is not violated. Business entity that interacts

in the processing of program, and is deriving from the storage, should be a

subclass of the persistent object class, which endowed the entity with some

behaviors and states that are useful in persistency, accessing and other

conveniences.

Factorization of Entity Relationships

The standard tutorial guide available in the public access on DB4O

currently gives us a picture of how relationships are modelled in object-

18

oriented database. The picture is an object that contains the reference pointing

to the other object or vice-versa, or both pointing to each other (bi-directional).

When the relationship is moved from memory to storage, the references are

swapped with the object identification, which is unique to each object putting

into storage. Vice-versa, when an object is loaded into the memory from

storage, the identification is replaced with object's memory reference. The link

allows one to traverse from one object to the other object or collection of

objects that had some kinds of relationship between. However, this is

somehow restricted in the way data is accessed because one may have to

sequentially or direct access to one object in order to get to the other object if

the latter object has no identity to be searched and is uni-directional in the link.

A tree structured object network will need an amount of work to access

relevant object to the leaf of the tree. Therefore, it is restricted in this sense.

There is an opportunity that we can factor out the relationship to be an

independent persistent object containing two objects as a binary relationship.

By this, the database has an additional entry point of accessing in the sense

that relationships can be first accessed in order to get to the left or right-

handed object.

1.2 Project Aim and Objectives

The need for the framework is certain. The aim of the project is to

design and build a data persistent framework using Java and DB4O object-

oriented database, the framework is a layer between the object database and

the application.

19

1.2.1 Objectives

1. To find out more about the object database by experimenting on it.

2. Find satisfying or optimal decisions in designing a persistent object.

3. The persistent object data structure must be able to model complex

entity.

4. The persistent object must be able to model entity that evolve in their

structure over time.

5. Model relationships as a persistent object.

6. Find out all the “how” to build the framework.

7. Find the drawback/shortcoming of the designed system.

20

CHAPTER 2

LITERATURE REVIEW

Object-oriented databases emerged as the convergence of several re-

search threads. It was induced by many other fields such as software engineer-

ing, artificial intelligence, programming language that applying object-oriented

technology.

Object-oriented is a paradigm of programming language, it is a product

of modern computer development. Programming language has developed from

low-level to high-level language, but it is not to say that the past achievement

is having lower credential. Low-level language like assembly language are not

discarded because it is old, it is still being applied to certain area such as mi-

cro-controller programming. High-level language popularly known as C lan-

guage was designed by Dennis Ritchie in 1973, it is the programming lan-

guage for developing UNIX operating system. Before this there were some

other language like Pascal, Cobol, and SmallTalk. Pascal and C is a structure

programming language, but SmallTalk is already an object-oriented language.

The first object-oriented language is the Simula. Simula started as a project in

1962. The goal was to build a tool to describe discrete event system, or net-

work, and a language to simulating real world. In 1964, Simula 1 had been im-

plemented on Univac 1107. It was used to control administrations, airports,

planning, transport, or social systems. Therefore, we can see that the first ob-

21

ject-oriented programming was born when programing a real world problem,

which does not only compose of set of functions, or structure based al-

gorithms. This language has introduced classes, inheritance and objects that

are instances of classes. Classes allow to link functions (methods) to objects.

The object-oriented version of C came in 1986 as C++. A very prominent ob-

ject-oriented language Java came in the 1994, now it is a proven technology

that is widely used in industry such as banking. And, it is usually a language

that is used in teaching object-oriented programming in universities. Newer

popular programming language like C Sharp or .NET are fashioned in ob-

ject-oriented as well.

The relationship of data use in application written in a particular lan-

guage with the language itself is a rich knowledge. This knowledge is also

gathered over time with the development of programming language and data-

base. It started where there is no database for all the maintaining and adminis-

tration, it started with file system or data directly resided in the programming

file, this is in the beginning state of modern computer development. There is a

strong coupling of data with the application, this is not a good design as we

know it now. The organization details of the data in the file will directly affect

the way programming is written, if data is reorganized, program will have to

be rewritten. So the first effort has been to separate application and data into

application and a well-defined database and organized data in certain ways that

achieve invariant in terms of the coding change with respect to data reorganiz-

ation or data change. However, data independence is not achieved in the begin-

ning within the database system. This is achieved as the operation of data is re-

layed to the database management system. Therefore, this has established data-

22

base management system as another system working together with the applica-

tion.

Database is a collection of data and metadata on how data is organized

that is stored and is used to support application that request data or request for

a change, modification, creation of data, analysis of data from the database

management system (DMBS). A database is not generally portable across dif-

ferent DBMS.

There were two popular data models in the early of database develop-

ment, a network model called CODASYL and a hierarchical model called

IMS. They emerged in the 60s when computers became cost-effective for

private companies. These two models put more emphasis on modelling the

data into the physical organization and direct access, and less emphasis on the

event of change of data organization. In these model, pointers linked various

kind of records together, by following the path of the link, record can be ac-

cessed, it is a navigational approach data model. When data organization is

changed, often the access and modification scheme has to be rewritten. The

user of the database have to supply the knowledge of the physical in order to

work with it, and it makes it difficult and less robust when there is a change in

the physical. Although these models did make impressive progress at that time,

as it provides data application separation by factorized the data management

functionality out from the application, it is still restricted in certain way per-

taining to data independence.

CODASYL Data Definition Language Commitee in its 1978 Journal of

Development increased the degree of data independence by separation of ex-

ternal and internal operations. Data independence is the ability to modify a

23

schema definition in one level without affecting a schema definition in the next

higher level. In 1970, a paper by E.F. Codd [CODD] addresses the data inde-

pendence problem with proposing a relational approach. The relational model

disconnects the physical storage of data from its logical schema. Relational ap-

proach apply elementary relation theory to systems which provide shared ac-

cess to large banks of formatted data. It lays down the theory of relational

database based on relational algebra which has been led to the invention of

SQL query language, which has be widely received and adopted as a standard

in the 80s and ever since the relational database boom in the business market

until now.

With relational database, content based query that directly accessing

any record type is facilitated. Foreign key allow establishing relationships

between records to be retrieved. Primary key field is used for identification of

a record within a relation. As more and more applications are developed in ob-

ject-oriented language with relational database, soon a problem known as im-

pedance mismatch was noticed. Impedance mismatch in database context is

the mismatch between the data manipulation language of the database and the

general-purpose programming language in which the rest of the application is

written [BM]. As it does not match, there are some loss of information occurs

at the interface, for example, object behaviour would be lost, object data mem-

ber name is replaced, object class is lost by transmission of signal to the data-

base. When the signal flow from the database to the application through the

interface, it anticipates some amount of work to reconstruct from a relation to

an object that is interacting in the application. The work is often a cost in de-

velopment, the cost for object- relational mapping which has a lot of configur-

24

ation details. On one hand it increases the development burden of developer

and the other hand it slow down the performance.

In 1976, A new database model called Entity-Relationship, or ER, was

proposed by P. Chen. This model allows designers to focus on data application,

instead of logical table structure. An entity diagram is illustrated in the follow-

ing.

Figure 1. ER Diagram.

In the 1980s, when SQL becomes a standard in relational database, it

was realized that it is not practical to model some data types in physics, multi-

media, CAD and some other domain that has complex data types. Object-ori-

ented database had its presence in 1980s to remove the inconvenience of the

so-called object-relational impedance mismatch. This is along with the rise of

object-oriented programming where data used in the program is considered to

belong to an object. There is also another stream of development to overcome

object relational impedance mismatch offer by object-relational mapping tools

or product of an effort to incorporate object-oriented features in relational

database. The incorporated relational database is called object relational data-

base, it is often the extension of existing relational database. Object relational

mapping provides a mapping between the relational and the object model, so

that the relational details is made transparent to the programmer.

25

Object-oriented programming gain further popularity in 2004 when

easy to use and affordable open source database management system like

DB4O emerged. Other databases in the 2000s are some post-relational data-

base known as NoSQL databases, they are fast and do not require fixed table

schemas, with no join operation and able to scale horizontally. This kind of

database is used to support a large scaled web applications such as facebook.

2.1 Preliminary

Data is a fact, something upon which an inference is based, it is simply value

or sets of values.

Data Item is smallest named unit of data that has meaning in the real world, it

is a single unit of values.

Entity is something that has certain attributes or properties which may be as-

signed values. The value themselves may be either numeric or nonnumerical.

Entity Set is formed by set of entities with similar attributes.

Field is a single elementary unit of information representing an attribute of an

entity.

Record is group of related data items treated as a unit by an application pro-

gram. It is a collection of field values of a given entity.

File is the collection of records of the entities in a given entity set.

Information is used for data with given attributes, or in other words, meaning-

ful or processed data.

Database is an organized body of related information.

26

Database Management System is a software system that facilitates the cre-

ation and maintenance and use of an electronic database.

Persistent Data refer to data that exist from session to session, persistent data

are usually stored in a database on disk or tape.

Database Server is a collection of programs that enable users to create and

maintain a database.

2.2 What Makes A Database Management System

This section outlines some features of a database management system.

1. Persistence

Pertaining to the storage of data.

2. Concurrency

Ensures correctness of competing multiple access to the same data, the access

are treated in a coherent and reliable way summed up commonly as a acronym

of ACID

ACID:

(a) Atomicity

Transactions execute entirely or not at all, if one of the operations is going to

fail, the whole transaction is totally disregarded.

(b) Consistency

Transactions move the database from one consistent state to the next consistent

state, if consistency is violated, the whole transaction is rolled back to the con-

sistent state before the execution.

27

(c) Isolation

No partial effects of incomplete transactions are visible.

(d) Durability

Successfully-completed transactions are permanent, cannot be undone.

3. Integrity

The accuracy and consistency of data.

4. Security

Restricted access of the data.

5. Data Independence

Delarative queries and update that not affected by changes in the storage struc-

ture and access methods.

6. Backup and Recovery

2.3 Object-Oriented Concept

Class

A class represents a concept, and an object on the other hand represents

the embodiment of a class, it is a blueprint for an object, the data type of an

object.

Object

Object is data structures consisting of data fields and methods, it is a

specific instance of a class. It can refer to a physical object, such as computer,

vehicle, or person. It is a data abstraction that is defined by an object name as a

28

unique identifier, valued attributes (instance variables) that give a state to an

object, and methods or routines that access the state of the object. The state of

the object is actually a set of values of its attributes. The specified methods are

the only operations that are allowed to carried out on the attributes in the ob-

ject. An object is usually drawn as a rectangle having an object name and its

properties as shown below

Figure 2. Class Diagram

Object-Oriented Programming

It is a programming paradigm that use objects and their interactions to

design applications and computer programs. It is a methodology that focuses

on data rather than processes, with programs composed of self-sufficient mod-

ules called objects, each having the ability to manipulate its own data struc-

ture. This is as opposed to the conventional model, in which program is seen as

a list of tasks or subroutines to perform.

2.3.1 Features of Object-Oriented Programming

(a) Inheritance

Inheritance is generally known as a generalization or specialization re-

lationship, in which the definition of a class can be based on other existing

class. A child (subclass) class can be created from existing ones, and inherits

29

its properties from its parents class (superclass). It is illustrated in the follow-

ing diagram

Figure 3. Inheritance Relationship of Class

In above diagram, employee class and manager are the subclass of person, per-

son can be considered a generalization of employee and manager, and they are

considered specialization of the person.

(b) Polymorphism

The ability of objects to respond differently to the same message or

function call.

(c) Encapsulation

It is the principle of separating the implementation of a class from its

interface and hiding the implementation from its clients and only providing ex-

ternal interfaces for manipulation of the data, it is the process of binding data

and methods together.

30

2.4 Object-Oriented Database Management System

Object database management system is a database management system

and it is also an object-oriented system as well, it combines the features of an

object-oriented language and a database management system.

Object Database store object directly without having to break the ob-

ject into data level and store it in relational manner. Therefore, the persisted

data matches the object more closely, it is stored similar as serialization of ob-

ject except that it provides additional database features. Serialization turns an

object into stream of data thatcan be read from and written to a file, but it has

some limitations and does not support remote access over a network.

Object Database can model well the relationships between objects,

which are inheritance, association and aggregation, and these relationships are

associated with constraints.

2.4.1 Features of Object-Oriented Database System

Object Identifier

Object identifier is discussed by Khoshafian and Copeland [KC] relat-

ing to fundamental differences between relational database and object-oriented

database. Object Identifier is used by the system uniquely identify objects in

database, when the object is no longer in memory, the memory reference is no

longer can be used to express the associations of objects. Therefore object

identifier is needed whenever object is persisted beyond program execution.

However, this identifier is transparent to the programmer, and it is not access-

31

ible or used across the application. It is different from primary key, primary

key is visible and can be altered.

Computational Complete

The operation on the database is restricted by the sql query, object data-

base however is not restricted in the way it interact with the data, as it is

modeled in the programming language that is able to formulate any expres-

sions in the query.

Support All Features of Object-Oriented Programming:

It supports encapsulation, inheritance, overriding, late-binding.

Persistence Mechanism

(a) Persistence by Class

Declare all objects of a class to be persistence.

(b) Persistence by Creation

Extend the syntax for creating objects to specify that an object is to be a per-

sistent.

(c) Persistence by Marking

An object that is persist beyond program execution is marked as persistent be-

fore program termination.

(d) Persistence by Reachability

Object becomes persistent if they are referred to from a declared object.

32

2.4.2 Comparison of Object and Relational Database

The relational model so far has been the most widely used and success-

ful in model data, it represents data entities as tabular form known as relations

or tables, the relationships between relations are defined by primary keys and

foreign keys. The final persistence representation is a normalization that re-

moved redundancy in improving storage efficiency, data integrity, etc.

Object-oriented programming has become a paradigm that most de-

velopers will not consider to code in procedural language nowadays, as the

major programming platform like .NET from Microsoft and Java platform are

all object-oriented based.

The mismatch between relational data model and object-oriented ap-

plication model becomes evident and it creates additional burdens for de-

velopers. The impedance mismatch is a results of the need to convert the rela-

tional data model to assemble object in their application. The conversion is

needed as the semantics of the application is lost when it is persisted. Data ac-

cess of relational database is using SQL query, sql query has its good as a de-

clarative language that is easy to manipulate, and it can be used to retrieve re-

lationships by joining table. It has a strong mathematical foundation behind

and it is a standard that conformed by various vendor, this making it popular in

the market.

Yet, in object-oriented database there is no data access standard or pro-

tocol, as opposed to SQL language of relational database. However in terms of

performance, object-oriented is superior as it does not suffer from the slow-

down from joining tables, this is because the relationships in objects retrieved

33

from object database is navigational, it provides a direct reference to the next

object in a particular relationships, unlike relational where it needs to recon-

struct the relationships by join operation.

Another factor put object-oriented database in a favorable position is

that it can more suited to represent semi-structure data, multiple-valued data

and even more complex data model, where it is being apply in some applica-

tions like CAD application, engineering design. It offers flexibility in model-

ing data.

Object-oriented database also promised to improve software quality

and efficiency. One in such enticing benefits is reusability. Object classes can

be stored and used across all projects, this can reduce the effort in development

cost and more effort can be devoted to improve other areas such as correctness

and robustness.

Object oriented database is developing into maturity in future that may

overtake relational database, which is fully developed.

2.5 Existing Object Data Persistent Framework

Hibernate (http://www.hibernate.org) and iBatis

(http://ibatis.apache.org) are two data persistent framework available in the

market. Hibernate is picked here for illustrations of a data persistent frame-

work.

Hibernate is a data persistent framework integrated with the ob-

ject-relational mapping. The data persistency is realized in the logical model

34

http://www.hibernate.org/
http://ibatis.apac/

of the application. The following diagram shows its position in a developed

system.

Figure 4. Hibernate.

In the above, persistent objects is both shared by application and the

framework, Hibernate keeps these objects as cache and keep track of any

changes that are made to the persistent object, transient object can be in the

memory of application, but have no references in the hibernate system.

By using Hibernate,

• Many database operations that are frequently written such as opening

and closing database can be omitted, as it is all managed by Hibernate.

Therefore it reduced the code lines for programmer.

• Programmer do not have to concern with the data type of the underly-

ing database, programmer only concern with the attribute of the persist-

ent object.

• Increase performance by providing cache of objects.

35

• By simple parameter modification, database can be migrated to another

easily.

2.5.1 Hibernate Session and Object Relational Mapping

Hibernate provide an object by class named Session, it takes care of the

connection to any relational database. Some of the methods it provides are

• load/get

• save/persist

• update/merge

• delete

These method directly deals with persistent object, for example

 public void updateBranch() {

 Configuration config = new Configuration().config

ure();

SessionFactory sessionFactory = config.buildSes

sionFactory();

Session session = sessionFactory.openSession();

Transaction trans = session.beginTransaction();

try {

EmpBranch branch = new EmpBranch();

branch.setBranchName("branch_0005");

session.persist(branch);

trans.commit();

} catch (Exception e) {

36

trans.rollback();

e.printStackTrace();

} finally{

if(session.isOpen())

session.close();

}

 }

In above the EmpBranch object class is defined as

public class EmpBranch implements java.io.Serializable{

private Long branchId;

private String branchName;

public EmpBranch(){

}

public Long getBranchId(){

return this.branchId;

}

public void setBranchId(Long branchId){

this.branchId = branchId;

}

public String getBranchName(){

return this.branchName;

}

public void setBranchName(String branchName){

this.branchName = branchName;

37

}

}

The table that corresponds to the EmpBranch persistent object is

create table EMP_BRANCH

(

BRANCH_ID NUMBER not null primary key,

BRANCH_NAME VARCHAR2(50),

TIMESTAMP DATE

)

In order to map the class that the persistent object is derived to the table, there

is a mapping configuration in the form of xml. Following the same example, it

is given as

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hi

bernate Map ping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate- map

ping-3.0.dtd">

<hibernate-mapping>

<class name="com.hibernate.vo.EmpBranch"

table="EMP_BRANCH"

lazy="true"

dynamic-insert="true"

optimistic-lock="version"

batch-size="5">

<id name="branchId" type="java.lang.Long">

38

http://hibernate.sourceforge.net/hibernate-

<column name="BRANCH_ID" precision="22" scale="0"

/>

<generator class="sequence">

<param name="sequence">seq_sales</param>

</generator>

</id>

<property name="branchName"

type="java.lang.String">

<column name="BRANCH_NAME" length="50"/>

</property>

<set name="empDepartments" inverse="true"

lazy="true" cas cade="save-update">

<key>

<column name="BRANCH_ID_EMP" precision="22"

scale="0" not- null="true"/>

</key>

<one-to-many class="com.hibernate.vo.EmpDepart

ment"/>

</set>

<version name="timestamp" column="timestamp"

type="java.util.D ate"></version>

</class>

</hibernate-mapping>

39

In the xml document above, the property tag refers to the object data

member and the column tag refers to the table column, therefore the branch-

Name from the object is mapped to the table column BRANCH_NAME.

2.6 Working with DB4O

In this section, we introduce how to work with the DB4O database, it

also includes the experiments performed on the database. With various persist-

ency mapping like Hibernate, DB4O provides a better transparent persistency

that is more efficient. DB4O is designed to require no database administration.

It requires less effort and offer rapid development for engineering an applica-

tion as the need to construct object schema, object mapping can be eliminated

in DB4O. The database can be open and operate as an embedded server or a

network server to support various kind of applications.

Open Database

DB4O database is a single file, the database can be open by calling a

static method, specified the path to the file as an argument, if the file does not

exist on the path, then it will create a new file on the path. Example:

ObjectSet db = Db4o.openFile(“/home/user1/db.yap”);

Persist Object

Unlike relational manner, there is no mention of any table name and

columns name in db4o object database. And, there is no need tointroduce

schema or work out object relational mappings. In db4o, Object Definition

Language is not necessary to introduce

40

object schema into the database, as the schema is just simply the object class

definition itself. We may or may not have to manually assign an object prop-

erty to be the identifier of the object. Example given as follow,

Person person = new Person();

person.setName(“Peter”);

person.setAge(“24”);

db.store(person);

Retrieving Object

DB4O offers a few ways of retrieving objects. It is given as

(a) By Example

By passing a new object of a subclass with or without setting the properties of

the object, matching objects stored in the database can be retrieved. For ex-

ample,

Query query = db.queryByExample(new

Person(“Peter”));

ObjectSet result = query.execute();

(b) By SODA Query

SODA Stands for Simple Object Data Access, it provides APIs for performing

complex queries on the database. For example,

Query query = db.query();

query.constrain(X_Person.class);

query.descend(“Name”).constrain(“Peter”);

ObjectSet result = query.execute();

41

(c) By Native Query

A native query is written in the language of application, it is not text based that

needed interpretation by the persistent engine. By passing in the predicate ob-

ject with the matching expression, it returns the matching objects. For ex-

ample,

List persons = db.query(new Predicate(){

public boolean match(X_Person person){

return person.getAge() > 21;

}

}

Update Object

In order to update, the object must be retrieved from the database while

keeping the database open, if the object is allocated in the memory before

database open, the object will be treated as a new object and not as updating.

The object is considered a new object because the database does not keep

track of its object ID and its memory reference anymore. Unlike relational

database, there is no need to explicitly specify which member data to be up-

dated, it reduces the possible errors of writing sql statement. For example,

ObjectSet result = (ObjectSet) db.get(new

Person(“Peter”);

if(result.hasNext())

Person peter = (Person) result.next();

peter.setAge("25");

db.store(peter);

42

Delete Object

In order to delete, we select the object out from the database into

memory, similar to updating, for example,

ObjectSet result = (ObjectSet) db.get(new

Person("Peter"));

if(result.hasNext())

Person peter = (Person) result.next();

db.delete(p);

DB4O Client Server Access

DB4O can be started as a service that listens for and accept connec-

tions, operation such as data retrieval, updates, deletions can be requested by

the client connected to the service. Networking mode and embedded mode are

supported by DB4O database.

(a) Embedded Mode

In embedded mode, the database and application are in the same virtual ma-

chine, there is no need to specify the IP Address and port number.

(b) Networking Mode

It puts DB4O database service in a distributed environment that can be ac-

cessed from computers, PDAs, handheld devices or cell phones. Example be-

low shows how DB4O can be wrapped as a server.

public class RunServer implements Runnable{

private boolean stop = false;

public void run(){

synchronized(this){

ObjectServer server =

43

DB4O.openServer("/home/user1/db.yap",

"8123"); //port number 8123

server.grantAccess("user1", "password");

try {

while(!stop){

System.out.print("Server running...");

this.wait(60000);

}

} catch(Exception e){

e.printStackTrace();

}finally{

server.close();

}

}

}

}

To connect to the database, the client can call method in the following manner.

private ObjectContainer client;

client = DB4O.openClient(IPAddress, 8123, "user1",

"password");

44

2.7 Experiments On DB4O Database

2.7.1 Experiment 1 on Deletion of Object

This experiment is to obtain findings on the deletion of objects and its

side-effects if existed. An object may be referenced by multiple objects that are

stored in the database, what is the outcome when the object is deleted?

Experiment 1 Steps:

1. An object class is designed given below.

public X_Object{

List<X_Object> objectList = new ArrayList<X_Ob

ject>();

X_Object obj;

}

2. Two objects are created in the program.

X_Object obj1 = new X_Object();

X_Object obj2 = new X_Object();

3. The second object reference is added to the first object List collection type.

obj1.objectList.add(obj2);

4. The reference of second object is assigned to the first object instance vari-

able named obj.

obj1.obj = obj2;

5. Save/store both objects.

db.store(obj1);

db.store(obj2);

45

6. Delete the second object

db.delete(obj2);

Outcome and Validation for Experiment 1

The second object cannot be retrieved, it returned null that is true as it

is deleted. The first object can be retrieved, and the reference to the second ob-

ject “Obj1.obj” is null, which is also correct and acceptable as second object is

removed. Similarly the first object instance variable “objectList” should had

zero size, as the second object reference is no longer existed. But it was not so,

the size of 1 remained and when we iterate over the list collection that is

“obj1.objectList”, it ran into exception. This can be understand as the refer-

ence is made null, but the size of the collection is not corrected by the data-

base. Therefore, the data are not cleanse and there is side-effect in directly us-

ing “db.delete(obj2)” for removing reference item in a collection. We saw the

side-effects of deletion on collection type. This problem can be mitigated by

enforcing a protocol in programming, which every deletion of object in a col-

lection has to make a removal of that item in the collection before doing the

deletion, for example

obj1.objList.remove(obj2);

db.delete(obj2);

db.store(obj1);

46

2.7.2 Experiment 2 on Schema Change of Database Class

Experiment 2 Steps

1. An object class is designed.

public class X_Object{

private String property = “PROP_VALUE”;

public String getProperty(){

return property;

}

}

2. An object is created in the program and saved.

X_Object object = new X_Object();

db.store(object);

db.close();

3. The program and database are terminated and the class is altered into as fol-

lows.

public class X_Object{

private String property = “PROP_VALUE”;

private String property2 = “PROP_VALUE2”;

public String getProperty(){

return property2;

}

public void setProperty2(String property){

this.property2 = property2;

}

47

}

4. Start the program and database with fresh class loaded and retrieving the ob-

ject.

Outcome and Validation for Experiment 2

The object stored can be retrieved, the changed method can be used

and “property2” is accessed and return null. Null value returned is acceptable

because the first object did not store this property when it was first created. If

we try set the value to the second property within the scope by

obj.property2 = “ANOTHER_VALUE”;

or using

obj.setProperty2(“ANOTHER_VALUE”);

It is found that it cannot be stored and it is always be null thoughout the pro-

gram for that particular object. For the objects that are created and persistent

after the schema change, the instance variable is having presence in the created

persistent objects.

48

CHAPTER 3

RESEARCH METHODOLOGY

The project research methodology involved gathering knowledge on

database and object-oriented programming. I am collecting information on the

development trail of database, and information on the development trail of

programming. I put these time-variant developments of the two together and

observe if there is any part of the two that convergence into each other. This

information allow me to see the connection between database and application

programming language. I am looking into specifically object-oriented database

and comparing it with partnership of relational database with an application

development in object-oriented language, it is noticed that the gap has been the

so-called impedance mismatch, some questions to ask in the research are how

to minimize the loss of information as a results of impedance, and where

object-oriented database is different from relational in partnership with object-

oriented application. Experiments to be conducted on DB4O database to verify

some of its behaviors, questions that this project is interested to obtain from

the experiments are

• Findings on the deletion of objects and its side effects if existed.

• Findings of database on changes on the class of object, either the

changes comes from method signatures, method implementation

method or the form of class from adding or removing instance data.

49

Question like whether the object can still be retrieved on class

changed? What happen to the old persisted object if it can be retrieved?

The comparison of Hibernate data persistent framework with the

framework to be developed is important part of this project.

3.1 Tools and Resources

1. Programming Language: Java 1.6

2. Server: Glassfish Server (optional)

3. Hibernate version 4

4. Object Database: DB4O 8.0

5. Operating System: Linux Fedora

50

CHAPTER 4

THE DESIGNED FRAMEWORK

4.1 Generalization of Entity

An entity in the real world is represented by an object in object-

oriented application. A general class to model an object belong to any entities

is defined. Naming of PO is used to represent persistent object. The following

diagram shows the implementation class of persistent object.

Figure 5. Persistent Object Class.

51

The persistent object implements the interface of persistent object given below

Figure 6. Persistent Object Interface.

With respect to the persistent object class presented above, some of the its

details are outlined in the following.

The “ i d” instance variable

The id is ID is used for identification of the persistent object, it is optional, but

it is strongly advised to reserve it as it can be used for retrieving purpose

similar to primary key in relational database. The auto generation of the id is

not provided by the database, as opposed to the fact that in relational database

id is allowed to auto generate or auto increment, therefore, the application

designer can provide the function to generate id for the persistent object. This

role is given to the application designer, whether the id is unique throughout

all objects, or it can be unique to just within objects of the same class.

The “data” instance variable

Instance variable named data is used to store value of data of any type, as

java.util.Object is the parent class of all primitive and user defined object. The

52

String type in the Hashtable is for labeling of the data similar to the column

name in relational table, it labels the data value and becomes part of data that

saved into database. The instance variable data concept in this project

embodied a row in the relational table, except that the data label is saved along

with the data value. Collection type Hashtable is used instead of HashMap,

this is because Hashtable provides synchronization that allows multiple write

access to be executed in orderly manner without causing corruption of data,

and only acceptable state of data is visible to the subsequent accessing thread.

The “relation s hip” instance variable

Instance data member named relationship is used to store the relationships

between different persistent objects, note that there is no foreign key involved

in this technique. It can store relationships of persistent object belonging to the

same class or different classes as long as it belongs to the subclass of the

persistent object class named RelationImpl.

Method “getData”

Method named getData return the data in Object form, the programmer needs

to be aware of its type before it can be cast and subject to its permissible

operations according to its type. Because of this overhead of type knowledge

required in advance before writing the code, it is encouraged here to adopt a

design strategy that all data processing to be done in business application layer

to use this method to access the data. In this strategy, if possible all necessary

computations are encouraged to perform before it is persisted in the database,

by this, we assume that all data that are persisted is a final processed product

and always ready to be retrieved. So that in retrieving in presentation layer of

53

application we can always use getDataAsString which require no knowledge

of the type of the data.

Method “getDataAs S tring”

Method named getDataAsString allows all types of data to be cast to String

that is generally for retrieving purpose, it can be written as following.

public String getDataAsString(String label) throws

Exception{

if(data == null)

return null;

Object obj = record.get(label);

if(obj == null)

return null;

if(obj instanceof String)

return (String) obj;

else if(obj instanceof Integer || obj instanceof

 Double || obj intanceof Boolean)

return obj + “”;

else

return obj.toString();

}

For data belonging to user defined class, a “toString” method or an overriding

version of “toString” method can provide the String representation of the

object. Method named getData return the data in Object form, the programmer

needs to be aware of its type before it can be cast and subject to its permissible

operations according to its type.

54

Method “load”

The method loads the data into the persistent object from the database.

Method “save”

The method save is used to persist the object by passing the DB4O object

container as argument. It is written in the following.

public void save(ObjectContainer db){

X_DBUtil.save(this, db);

}

The save method implementation is provided by the database utility class that

accept the current persistent object and the passed in object container as

arguments. The save method is common to both update and saving of a new

object operations. The saving of persistent object is simply by calling the save

method as follows

obj.save(db);

4.1.1 Extension of PO Type

All persistent object modelling a real world business entity in the

framework is a subclass of the persistent object class named POImpl depicted

below.

55

Figure 7. Differentiation of Persistent Object.

All persistent object subclass can be either manually written as simple

as the following.

public X_POSubClass extends POImpl{

//declaration of some other data member or

methods specific to the subclass

}

// if having interface of subclass then

public X_POSubClassImpl extends POImpl implements

SubClass{

//declaration of some other data member or

methods specific to the subclass implementation

}

The above code can also be auto-generated by programming aided

design tools and group it under the same packages directory. For using

programming aided design tool, in simple case, the name the subclass say as

above “X_POSubClass” is a parameter provided to the tool.

4.2 Entity Relationships

The Relationship object is an extension of persistent object class

POImpl such that it is treated the same way as a persistent object depicted

below.

56

Figure 8. Relationship as Persistent Object.

This allows data concerning the relationships can be stored in the instance

variable named data in the persistent object. The class for relationships of

persistent objects is illustrated below.

Figure 9. Relationship Persistent Object Class.

The relationship object binds only two objects having some relationship

together, given two reference storage variable for the two objects, the

framework introduced an order to indicate vector in the relationship rather than

having less information to differentiate the two objects. The order is given by

naming the two object reference variables into “Source” and “Target”. For

57

example, a borrow record in a library, the borrow relationship can put student

and book objects together as follows

public static void borrow throws q

Exception(ObjectContainer db, X_Student student,

X_Bio book)

{

X_StudentBio_Borrow_Relationship

borrowRel = new

X_StudentBio_Borrow_Relationship();

borrowRel.setSource(student);

student.addRelation(borrowRel);

borrowRel.setTarget(book);

book.addRelation(borrowRel);

borrowRel.setBorrowDate(new Date());

...

borrowRel.save(db);

}

Data concerning the relationship of borrow such as borrow date can be

stored as data on this relationship persistent object. In the framework, the

student in the example can be named as a “source” while book as a “target”,

source can be used to represent an object that initiated an action say borrow

applying on the target such as book. This provides a mindset that makes it easy

in designing the system based on the framework.

With respect to the persistent object class presented above, some of the

its details are outlined in the following.

58

Source and target

The source and target instance data member are to hold a persistent object that

is taking part in a relationship.

sourceClass and targetClass

The instance variable named sourceClass and targetClass are used to store the

class of the source and target persistent object. It can be used to validate the

object with the correct type before it is to be stored into the relationship

persistent object demonstrated as follows

public void setSource(F_PO source) {

if(sourceClass.isInstance(source))

this.source = source;

}

Method “setSourceclass” and “setTargetclass”

The two methods are used to store the source class and target class, it should

be fixed in design time and not be able to change externally, therefore private

access modifier is used.

4.2.1 Extension of Relationship Persistent Object

Similar to the persistent object class, any other relationships of

persistent object can be modelled by extending the relationship persistent

object class. Name of the relationship class is encouraged to convey the two

entities involved in the relationships, a rule is suggested below in naming a

relationship class

59

System Differentiation Symbol+“_”+First Entity Name+Second

Entity Name+“_”+Relationship

A model of student advisor supervises a student, for example will have

a class of “X_AdvisorStudentRelationship” extending the “RelationshipImpl”.

The class is implemented as below

public class X_AdvisorStudent_Relationship extends

RelationshipImpl

{

private X_AdvisorStudent_Relationship(){}

public static X_AdvisorStudent_Relationship get(){

X_AdvisorStudent_Relationship rel = new

X_AdvisorStudent_Relationship();

rel.setSourceClass(X_Advisor.class);

rel.setTargetClass(X_Student.class);

return rel;

}

}

The constructor is delared as private so that the object cannot be

instantiated without going through the static method named “get” that

endowed the object with the correct source and target class before it can be

used in the program. The get() method is to be called to instantiate the

relationship persistent object because any persistent object must check against

the type before it can be set into the relationship, by setting the source and

target class, checking can be done when needed. The above class can be auto-

generated by computer aided design tools accepting only two String valued

60

persistent object class name, as the relationship name can be derived from two

object class name.

Steps to store the relationship is given below.

1. Create or retrieve two persistent object from the database.

X_Advisor advisor = DBUtil.get(advisorId,

X_Advisor.class, db);

X_Student student = DBUtil.get(studentId,

X_Student.class, db);

2. Create the relationship persistent object.

X_AdvisorStudentRelationship rel =

X_AdvisorStudentRelationship.get();

3. Put the two persistent object into the relationship respectively.

rel.setSource(advisor);

rel.setTarget(student);

4. Put the relationship persistent object into the advisor and student persistent

object.

student.addRelationship(rel);

advisor.addRelationship(rel);

5. Save the relationship persistent object.

rel.save(db);

With the data structure of relationship persistent object, one-to-one,

many-to-one, and many-to-many relationships can be expressed and treated

the same. This is contrary to relational where one-to-one, many-to-one

relationship is modeled by foreign key and many-to-many relationship is

61

modeled by introduction of an additional table. It is a single treatment for all

relationships.

Ways to retrieve the relationship is given as

1. Navigational

First retrieved the “source” or “target” persistent object, and get relationship

persistent reference from the object retrieved, this is a navigational approach.

2. Relationship class with object value

Get the relationship persistent object by giving the class of the relationship

persistent object subclass and specific value in the properties for identification.

3. Relationship class with source or target object reference

Get the relationship persistent object by giving the class of the relationship

persistent object and the source or target object reference as property to

retrieve corresponding results.

4. Relationship class with ID

Use an ID instance variable to uniquely determine a relationship persistent

object.

5. ID

Without providing any class, using an ID that is unique across all persistent

object for retrieving.

By method of 2,3,4 and 5, it can be seen that relationships can be

factored out from the database by the framework, so that not only the

framework can support navigational in retrieving relationship object via

method 1, it can have another entry point to the object database.

62

4.3 Data Access Object Utility

A common utility methods is written for accessing and storing of data

in object-oriented database. Some of the utility methods is given below.

1. Message: getPO(String id, Class<PO> class, ObjectContainer db)

Return: a unique persistent object by the ID provided.

2. Message: getPO(Class<PO> class, ObjectContainer db)

Return: ObjectSet<PO>

By providing a persistent object class or its subclass, it returns a collection of

persistent objects of that particular class. The class resembles the table name of

a relational sql statement.

3. Message: getPO(HashMap<String, Object> constrains, Class<X_PO>

class, ObjectContainer db)

Return: ObjectSet<PO>

The first method searches the object based on ID attribute, this method

searches the objects based on any other properties given in the HashMap

where the key is the label of the data, value by type Object is the matched

value for the results. However this method is restricted by only matching

equality of the object attributes.

4. Message: getPOByExample(PO po, ObjectContainer db)

Return: ObjectSet<PO>

By providing an object as argument with or without setting the properties,

matching objects can be retrieved from the database.

5. Message: getPOByNativeQuery(Predicate pred, ObjectContainer db)

63

Return: ObjectSet<PO>

This method allows a predicate that formulate the matching criteria in the

programming language. Therefore, it is not restricted to only equality

matching and making the query computational complete.

64

CHAPTER 5

Implementation, Applying the Framework

5.1 Demo: Back Office Management of Web Video Site

A simple web application is developed to demonstate the framework.

The web application chosen is used for online video site to manage their

collection of videos. The video site does not store or allow users to upload any

video, it is not a sharing site, the video that is provided to the users is a link to

some other video sharing sites such as Youtube. The video site pull video feed

from Youtube and save the video ID to its own database and some other

metadata of the video. It is not intended to be a giant database, as it only store

minimal information of the video. The data that is stored can be used to

retrieve the video from Youtube and relay it to the user. It is not liable for any

legal implications of video sharing as it only provide link to the video source

site. The video data that are stored are organized, processed so that video to be

shown can have categories and make it easy for users to select video for

watching pleasure.

65

5.2 Data Model

There are three entities in this demonstration, which are video

category, series, and series video. Series, for example is a popular tv series.

Series video for example, is the episode of the tv series. The video category

categorized the tv series. Category and series is many-to-many relationship,

and series contains one to many series video.

Three class files correspond to the three persistent object is introduced, one of

it is given as below.

public class F_Category extends F_POImpl {

}

Two relationship class files are needed, they are given as below.

public class F_CategorySeries_Relationship extends

F_RelationshipImpl{

public F_CategorySeries_Relationship(){

setSourceClass(F_Category.class);

setTargetClass(F_Series.class);

}

}

public class F_SeriesSeriesVideo_Relationship extends

F_RelationshipImpl{

public F_SeriesSeriesVideo_Relationship(){

setSourceClass(F_Series.class);

setTargetClass(F_SeriesVideo.class);

66

}

}

5.3 Results

Create Category Persistent Object

1. “Add Category” is clicked in the screen shown below.

Figure 10. Add Category in Category Listing

2. Data entry page for category appeared, “English Series” is typed as

category, and submit.

Figure 11. Data Entry for Category

3. Category is created and listed as shown below.

Figure 12. Category Listing

The code for saving the category persistent object is given below.

String categoryName =

req.getParameter("categoryName");

if(categoryName == null)

return;

67

F_Category cat = new F_Category();

cat.putData("Name", categoryName);

ObjectContainer db = F_DBUtil.getDB();

cat.save(db, true);

db.close();

In above, setting true to the method save generates a new identity for persistent

object.

Series Listing

1. Series named “CSI Miami Season 10” is created and listed, and it is

assigned to the category “English Series” previously saved.

Figure 13. Series Listing

2. The code for saving the relationship of “Series” and “Category” is given

below.

F_PO series = F_DBUtil.getPO(db, seriesId,

F_Series.class);

F_PO category = F_DBUtil.getPO(db, categoryId,

F_Category.class);

if(category == null || series == null)

return;

F_CategorySeries_Relationship catSeriesRel = new

F_CategorySeries_Relationship();

catSeriesRel.setSource((F_POImpl)category);

catSeriesRel.setTarget((F_POImpl)series);

68

catSeriesRel.save(db, true);

series.addRelationship(catSeriesRel);

category.addRelationship(catSeriesRel);

series.save(db);

category.save(db);

db.close();

Pull data from Youtube and Add Video to Series

1. “Add Video” in the “Operation” column is clicked as shown in the below

screen.

Figure 14. Add Series

2. “Import Video” screen appeared, and type in “CSI Miami Season 10” and

click search.

Figure 15. Search Video from Youtube

3. It query the Youtube, returned results are processed for display as following.

69

Figure 16. Return Results from Youtube

Relevant videos can be imported into the the database, it will create a series

video persistent object for the selected video and create a relationship

persistent object for binding itself with the series of “CSI Miami Season 10”.

Both persistent object will be saved.

5. The details of series “CSI Miami Season 10” as shown below. It contained a

video by the title “CSI Miami Season 10 Episode 10 – Long Gone” that is just

added into.

Figure 17. Series Details Screen

5.4 Evaluation

The simple system demonstrated is developed in less than a week, and

it is fairly easy building system using the framework. It can cope with changes,

as from time to time the system might decided to save some other attributes or

metadata of video returned from Youtube, and it might need also the flexibility

to integrate from various stream of feeds coming from different video sources

with various format consolidated into a single persistent object type.

70

CHAPTER 6

DISCUSSIONS AND CONCLUSION

.1 Comparison of the Framework and Hibernate

Database design work

In the framework, there is no design work such as introducing table

structure into the database, or design details pertaining to foreign key

placement in certain table. Whereas in Hibernate, not only the works needed as

a tradition of a relational database designing, it also needed to do a lot of

configurations and setup. Given the framework in place, more attentions can

be focused on the application, which is a good thing.

Data modeling

The framework can model any data as long as it can be reduced to a

programming class. Both Hibernate and the framework can represent object,

but Hibernate is restricted in the sense that some object representation cannot

be mapped into the underlying relational representation in full or it is difficult

to do so.

Generalization of Persistent Object

All persistent object are having similar structure by extending the

persistent object class in the framework, they share same method such as

getData(String label), it also allows specialization by adding data or method

71

into the class for each subclass of persistent object. In Hibernate, persistent

object is not generalized.

Identification

The framework allow each object to have uniqueness, uniqueness can

be across all persistent object, across the same persistent object class, or across

those belong to the same parent class, it is all decided by the designer. This is

not the case with Hibernate as it follows relational manner where uniqueness is

only across the same table.

Factorization of relationships

Any relationships existed in the framework can be factorized, as the

user can retrieve the relationships by giving the relationship class to the

framework respective method, whereas in Hibernate, is following the

relational manner, relationships cannot be fully factorized out.

The Framework Hibernate

Database Design
Work

No actual work, only
conceptual understanding

Large amount

Need Names,
Types for
Columns and etc...

No Yes, need to provides
specifications such as
length/size of data as well

Object-Relational
Mapping

No Work needed

Data Modeling Represent Object in fullness Restricted

Generalization of
Persistent Object

Yes No

Identification More choices offer to designer Key based

Relationship
Modelling

Yes Yes

Factorization of
Relationship

Yes No

Joining Multiple
Relationships

Not implemented, may be
difficult

Fully enabled but associated
with cost

Record Column Variable length and flexible to Fixed as table columns are fixed

72

Size add or remove anytime needed

Provides Common
Persistent
Operations

Yes Yes

Support
Integration with
Rapid
Development
Tools

Because of its simplicity, it can
easily support the tool

Difficult

Performance Not tested, but believed to be
better as it has less
computation

Not tested

Table 1. Comparisons of Hibernate with the Framework.

6.2 Conclusion

The object database of DB4O is studied. Anomaly is found in the

experiments where deletion of object leaves side-effects on the collection type

object's data. The framework is developed. A design strategy is suggested to

lower burden of the type knowledge in advance in using the framework. The

framework does not yet support multiple relationship retrieving similar to

JOIN in relational database. More future work is expected to make the

framework better in many areas.

73

REFERENCES

1. [KC] S. Khoshafian and G.P. Copeland (September 1986). Object Identity. Proceed-

ings of the ACM Conference on Object-Oriented Programming Systems, Languages,

and Applications, Portland.

2. [BM] F. Bancilhon and D. Maier (1988). Multilanguage Object-Oriented Systems:

New Answer to Old Database Problems? Future Generation Computer II. K. Fuchi

and L. Kott eds. North Holland, Amsterdam.

3. A.Snyder (September 1986). Encapsulation and Inheritance in Object-Oriented Pro-

gramming Languuages. Proceedings of the ACM Conference on Object-Oriented

Programming Systems, Languages, and Applications, Portland.

4. T.M. Atwood (1985). An Object-Oriented DBMS for Design Support Applications.

Proceedings IEEE CoMPPINT 85.

5. [CODD] E. F. Codd (June 1970). A Relational Model Of Data For Large Shared Data

Banks, Communications of the ACM, Vol. 13, No. 6.

6. E.F. Codd (December 1979). Extending the Database Relational Model To Capture

More Meaning, Transactions On Database Systems, ACM, Vol. 4, No.

7. M.M. Zloof (May 1975). Query By Example. Proceedings of the NCC, AFIPS Press,

Montvale, N.J.

8. D. H. Fishman, et al. IRIS, 1987. An Object-Oriented Database Management System.

ACM Transactions on Office Information Systems, 5(1).

9. Ambler, S. W. (1997). Mapping objects to relational databases, in building object ap-

plications that work. SIGS Books.

74

	CHAPTER 1
	CHAPTER 2
	LITERATURE REVIEW

