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ABSTRACT 

 

 

FACTORY FLOOR PLANNING OPTIMIZATION USING 

METAHEURISTICS 

 

 

 SIAH KUOK LIM  

 

 

 

 

 The factory operational performance is largely influenced by the layout 

of manufacturing facilities. Factory layout is the science of arranging 

equipment, space, and activities subject to the manufacturing operational rules 

and policy for optimal line execution. Apart from maximizing the space 

utilization, it is a challenging task to come up a feasible design optimizing all 

other critical areas such as (1) process and work flow, (2) proper allocation of 

space and resources, (3) ease of access to supply and materials, and (4) 

manning ratio feasibility. 

 Generating a feasible layout incorporating all the constraints is a 

classic “NP-Hard problem”. In Intel, the layout industrial engineers manually 

perform “what-if” exercises based on their best judgment to arrive at a better 

solution among all other numerous possibilities. Not only is the method labor 

intensive, it does not necessary guarantee them an optimal solution. In 

addition, even the use of normal automation program to obtain the best 

solution by generating all possible combination is impossible. Therefore, a 

scientific way of finding the optimize solution will prove helpful. This model 

will be able to help suggest a feasible layout or evaluate an existing layout 

based on the fitness value.  

 To search for the optimal solution, this research uses Fast Simulated 

Annealing (FSA), Genetic Algorithm (GA) with conditional crossover and 

Genetic Programming (GP). All three search algorithms are stochastic strategy 

for searching an optimal state instead of exhaustively searching all possible 

combinations. With the inputs and configuration parameters such machines’ 

dimension, quantity etc., the model will iterate until a feasible layout (optimal 

solution) is found. The best layout searched will be kept in memory and will 

be replaced until a better layout is found in later iteration. As more iteration 

had run the confidence level of obtaining a more optimized layout increases.

 This research model was successfully used for “what-if” scenario 

analysis for NCO6 factory, layout design for new catalyst machines. The 

model was used to generate the best layout for catalyst relocation based on 

changes impact to the existing layout design as well as cost for changes. With 

the pros and cons of each layout suggested, the result had help in decision 

making for catalyst re-layout effort. Changes are made as suggested in the 

results analysis. As seen from the promising result from this model, it was 

used to simulate various optimal full factory layout options for Intel Kulim 

Microprocessor and Chipset Organization (KMCO) and the upcoming A9 

factory in Intel Vietnam.  
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CHAPTER 1.0 

 

INTRODUCTION 

 

 

Laying out a factory involves deciding where to put all the facilities, 

machines, equipment and staff in the manufacturing operation. Layout 

determines the way in which materials and other materials flow through the 

operation.  Relatively small changes in the position of a machine in a factory 

can affect the flow of materials considerably.  This in turn can affect the costs 

and effectiveness of the overall manufacturing operation.  Getting it wrong can 

lead to inefficiency, inflexibility, large volumes of inventory and work in 

progress, high costs and inefficient space (Aleisa, 2005).  Changing a layout 

can be expensive and difficult, so it is best to get it right first time. 

The first decision is to determine the type of manufacturing operation 

that must be accommodated.  Intel Assembly and Test Malaysia is a 

semiconductor manufacturing. All products go through the same process flow, 

assembly to testing and packaging. Hence this research, we follow the practice 

of process layout. Process layout arrange similar manufacturing processes 

(assembly, test area and packaging) are located together to improve utilisation.  

It is a big challenge and time consuming for engineer to come out with 

an optimize factory layout. Layout facilities optimization is categorized as NP-

hard problem in complexity theory (H’astad, 2003). As a result, this project 

requires a high degree of difficulties to derive an optimal solution manually. 

This will further elaborate in the literature review. 
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1.1 Factory Floor Planning Criteria 

 

The major objective, when designing the factory layout is to design a 

physical arrangement that most economically achieves the required output 

quantity and quality. Achieving the required output (Aleisa, 2005), involves 

the improvement of: 

 process and work flow 

 proper allocation of space and resources 

 easier access to supplies and materials 

 plant efficiency increase 

 maximize the use of space 

 

1.1.1 Optimization Goals 

 

In this model, there are two optimization goals. Each goal is an 

evaluation method which returns the fitness of the layout respective to that 

particular goal. The priority of each goal is governed by a constant number as 

the scaling factor. The sum of all the goals multiplied by its own scaling factor 

will be the total fitness of the whole state. The objective function in this case is 

minimizing the total fitness of the state. The optimization goals are stated as 

below: 

 Space Utilization:  

Different machines will have different dimension in term of length and 

width. The height of the machine is ignored because machines cannot 

be stacked on top of each other. Hence, this research’s result is a two 
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dimensions (2D) optimized factory layout of a top down view. An 

optimized layout will need to fit these different machines in the most 

space-utilized way.  

 Material Flow:  

Material transfer from an operation area to another is critical to achieve 

the minimum travelling distance for an operator between two locations. 

This will result in better utilization of resources (operators/trolleys), 

e.g. finished units to the exit. 

 Arrangement to Accommodate Flexible Manning Ratio:  

Arranging machines with their control facing the opposite machine 

control (face-to-face) will ease operator of operating more machines. 

Machines arrangement must have the shortest travelling distance from 

one machine control to another and give a wide view sight of all 

machines control. In a dynamic environment of a factory, manning 

ratio can be increased or decreased depending on the available 

resources and run rate.  Hence, the arrangement of the machines is 

critical in order to accommodate these dynamic changes. 

 Overlapping placement avoidance:  

In a factory environment, there are many existing areas that can’t be 

further rearranged or having overlapping placements. For example, 

existing areas such as meeting rooms, power supply areas, future 

expansion areas or aisle path should not place any machines, work-in-

progress lots or routes.  
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1.1.2 Optimization Constraints 

  

Optimization constraints are the rules of governing the solution which 

never generate a layout that conflict with the constraints. Constraints do not 

have any scaling factor as goal, it is modelled as rules imposing any states 

must follow all the constraints defined. The optimization constraints are stated 

as below: 

 Machine clearance:  

Machine clearance is a predefined distance gap of machines placed 

side by side, front to front, or back to back. The predefined gap is for 

module engineers’ movement during maintenance, wiring and facilities 

installation, safety issue and reduces the heat generated from the 

machines.  

 Implement route in between different operations:  

Routes in between operations are critical for lots movement, machine 

relocation and safety issue for emergency escape. The main route is 

defined as the aisle path located in the middle of the factory which 

allows feasible movement of the whole factory. Unlike machines 

clearance, routes have larger gap and the main purpose is for factory 

movement activities.  

 Same machines group together:  

Same machines are important to get placed together due the fact that it 

demands the same facilities such as poles, ventilation and wirings. 

Splitting same machine into two different areas will create unnecessary 
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facilities changes, infeasible factory material flow and infeasible 

manning ratio layout 

 

1.2 Relevant Research 

 

Related research for facility layout problem (FLP) for factory floor-

planning had been done and tested in the past recent years. There were many 

techniques such as Genetic Algorithm (Lu, 2008)Simulated Annealing 

(Laursen, 1993), Fuzzy Logic, Ant Colony optimization and etc. being 

researched for FLP. However, techniques such as Genetic Algorithm and 

Simulated Annealing are the more common techniques that used by most 

researchers for facilities layout optimization (Aleisa, 2005). A survey on these 

two techniques will be discussed further in literature review section.  

The literature findings regarding related algorithm and techniques 

explored to tackle FLP. Referring to (Chen, 2006) research, the approach of 

using FSA and B*-tree for a NP-hard problem yield a faster and stable 

convergence to desired solutions. B*-tree structure is used in Genetic 

Algorithm (Lu, 2008) and Genetic Programming (Jaime, 1996) studies. 

 

1.3 Rationale 

  

This research aims to derive an optimal solution for factory layout 

design. It is a collaboration effort done with Intel Assembly and Test 

Malaysia, PG6 factory in Penang. All data and requirements are obtained from 

engineers based on Intel safety guidelines for factory design.  The 
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requirements include true machines dimension with clearance space, factory 

design constraints, setup for optimization goals priority and design 

specification.  

B*-tree were used as representation for a layout design (Chang, 2000). 

Different representation methods were use due the different search algorithms 

studied in this research. Three models were developed using Fast Simulated 

Annealing, Genetic Algorithm and Genetic Programming search. All these 

search algorithms developed using VB.NET.  

Experiments are conducted using Intel Manufacturing Factory in 

NCO6, Penang NetComm and Chipset layout design (encrypted data). Data 

are real machines dimension for assembly and test manufacturing. Solutions 

derived from the models are verified by layout engineers. All iterations ran 

converging to these solutions are used as benchmark data points against three 

search algorithms. 

 

1.4 Objectives 

 

There are two main objectives for this research collaboration with Intel 

Manufacturing. These objectives are as below: 

1. Provides a clear way to scientifically measure the quality of a layout 

solution for Intel Manufacturing. 

2. Observe and benchmark against different search algorithms, FSA, GA 

and GP for layout optimization. 
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1.5 Thesis Outline 

 

This thesis structure will be separated as follows: 

Literature review: We discuss on the nature of facilities layout problem 

and the considerations of an optimal factory layout. It also surveys studies on 

simulated annealing, fast simulated annealing, genetic algorithm and genetic 

programming algorithms that were used for solving this problem.  

Approach & Algorithm: In this chapter we shall discuss in depth of the 

model design. This includes the optimization goals and constraints in general 

for all three algorithms. Three algorithms design being introduced in our 

model are FSA, GA and GP. Each algorithm has its respective layout 

representation method. 

Data preparation: This chapter serves as the introduction of the data 

used for our experiments. The structure of our experiments being carried out is 

defined in details in this chapter. There will be case study 1 using mock-up 

data and case study 2 using real industrial data and problem statement. 

Experiments & Results: Results of our experiments carried out are 

shown here. Results from case study 1 serve as model validation and 

observation purposes while case study 2 for industrial solution and algorithms 

benchmarking.  

Conclusions and Future Works: Conclusion from our analysis results 

of this research based on the experiments’ results. To make the model 

comprehensive, we will discuss on the extension works for this research. This 

touches the area where the model still lacking and algorithm performance 

issue to be tackle. 
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CHAPTER 2.0 

 

LITERATURE REVIEW 

 

 

2.1 Overview of Facility Layout Problem (FLP) 

 

Facility Layout Problem (FLP) is a study of combinatorial 

optimization problem which arises in a variety of problems such as layout 

design of factory, hospitals, schools, and airports; printed circuit board design, 

backboard wiring problems, typewriters, warehouses, hydraulic turbine 

design, etc. (Singh, 2006). FLP has been generally formulated as a Quadratic 

Assignment Problem (QAP) introduced by (Koopmans, 1957) which is NP-

hard (Garey, 1979), (Kusiak, 1987) 

In complexity theory (Laursen, 1993), NP-hard problems are the most 

difficult problems in NP (non-deterministic polynomial time) in the sense that 

they are the smallest subclass of NP that could conceivably remain outside of 

P, the class of deterministic polynomial-time problems. The reason is that a 

deterministic, polynomial-time solution to any NP-hard problem would also be 

a solution to every other problem in NP. A powerful computer cannot handle a 

large instance of the problem. Hence, it is a big challenge and time consuming 

for engineer to come out with an optimize factory layout. 

The effectiveness and efficiency of factory performance is largely 

influenced by the layout of its’ manufacturing facilities. Factory layout is the 

arrangement of activities (operation, process and etc.), features and spaces in 



 

 

9 

 

consideration of the relationship that exists between them (H’astad, 2003). 

Issues such as costs, work in process inventory, lead-times, productivity, 

resource utilization (space, operates and etc.) and delivery performance are 

significantly caused by layout of facilities. 30-75% of total manufacturing 

costs are partly attributed by materials handling and layout (Mecklenburgh, 

1985).  

Factor layout planning constraints, includes global issues such as plant 

location, building design, material handling, etc. In general, factory layout 

analysis includes a study of the production line process flow charts, material 

flow diagrams, product routings, processing times, development of from-to 

charts(table containing. flow values from one department to another in a 

form), relationship diagrams between different departments in the facility and 

the cost of material movement  (H’astad, 2003). 

The major objective when designing the factor layout is to design a 

physical arrangement that most economically achieves the required output 

quantity and quality. Achieving the required output (Chen, 2006), involves the 

improvement of: 

 process and work flow 

 proper allocation of space and resources 

 easier access to supplies and materials 

 plant efficiency increase 

 maximize the use of space 

 safety improvement  

 cost savings 
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Others research such as Mecklenburgh (Chen, 2006) and Francis et al.  

(Chang, 2000), minimizing the material handling cost is the most considered. 

Reduced material movement (Holland, 1992) lowers work-in-process levels 

and throughput times, less product damage, simplified material control and 

scheduling, and less overall congestion. Hence, when minimizing material 

handling cost, other objectives are achieved simultaneously (Yong, 1992). 

 

2.2 Metaheuristics Approach to FLP 

 

Metaheuristics are generally applied to problems for which there is no 

satisfactory problem-specific algorithm, heuristic or when it is not practical to 

implement both methods. Most commonly used Metaheuristics are targeted to 

combinatorial optimization problems such as FLP. Various Metaheuristics such 

as Simulated Annealing (SA) and Genetic Algorithm (GA) are currently used 

to approximate the solution of the FLP large search space (Singh, 2006). 

 

2.2.1 FLP Approach Based on Simulated Annealing (SA) 

 

SA is a stochastic strategy for searching the ground state. The SA 

algorithm derives its name from the fact that its behavior is controlled 

principally by the temperature T as in the thermal annealing process. It is an 

optimization scheme with non-zero probability for accepting inferior (uphill) 

solutions. The probability depends on the difference of the solution quality and 

the temperature. The probability is typically defined by 𝑚𝑖𝑛 {1, 𝑒−
Δ𝐶

T } where 

∆𝐶 is the difference of the cost of the neighboring state and that of the current 
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state, and T is the current temperature as stated in (Chen, 2006). 

However, the excessive running time is a significant drawback of the 

classical SA process. To reduce the running time of SA for searching for 

desired solutions more efficiently, several annealing schemes of controlling 

the temperature changes during the annealing process have been proposed. For 

instance, Fast Simulated Annealing (FSA) is a semi-local search and consists 

of occasional long jumps (Chen, 2006). The cooling schedule of the FSA 

algorithm is inversely linear in time which is fast compared with the classical 

simulated annealing (CSA) which is strictly a local search and requires the 

cooling schedule to be inversely proportional to the logarithmic function of 

time. 

A solution was proposed by (Chen, 2006) using a Fast Simulated 

Annealing (Fast-SA) process to integrate the random search with hill climbing 

more efficiently. The annealing process consists of three stages:  

1) High-temperature random search stage 

2) Pseudo greedy local search stage 

3) Hill-climbing search stage 

In the first stage, the T is set to infinity, so that the probability of accepting an 

inferior solution approaches 1. The process is like a random search to find the 

best solution. In the second stage, T is set to 0. Since the temperature is very 

low, it can only accept a very small number of inferior solutions, which is like 

a greedy local search. This process is called the pseudo-greedy local search 

stage. The third stage is the hill climbing search stage. The temperature is 

raises again to facilitate the hill climbing search stage. Thus, it can escape 

from the local minimum and search for better solutions. The temperature 
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reduces gradually, and very likely it finally converges to a globally optimal 

solution as mentioned in (Chen, 2006). 

Since the new simulated annealing scheme save a lot of iterations to 

explore the solution space, it could devote more time to finding better 

solutions in the hill climbing stage. This makes the annealing much more 

efficient and effective. From the experimental results, the new Fast-SA scheme 

and the B*-tree representation have shown that it leads to faster and more 

stable convergence to desired floor plan solutions. As claimed in the research 

(Chen, 2006), Fast-SA is the best choice for the floor planning problem 

addressed here (it achieved 13.9X speedup over classical SA for finding a 

floor plan solution of less than 5% dead space for this case). 

 

2.2.2 FLP Approach Based on Genetic Algorithm (GA) 

 

In optimization problem, GA was normally used due to their well-

known strength of their robustness. GA robustness is mainly caused by the fact 

that they deal with sample of candidate solutions to an optimization problem at 

a time (Koza, 1992). To search for the global optimum, it first process starting 

from a small set of feasible solutions (population) and generating the new 

solutions in some random fashion. Performance of GA is problem dependent 

because the parameter setting and representation scheme depends on the 

nature of the problem (Aleisa, 2005). 

In (Lu, 2008), GA was implemented to optimize facility layout designs 

in the capital goods industry. The research study on the optimization (GA) to 

achieve minimized material movement for given schedule of work. Geometric 
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information on resources and building constraints was included in the model 

as well. In manufacturing layout, the design problems may be classified as 

either green field or brown field. These two classes were common constraints 

found in manufacturing layout planning. A green field problem involves the 

design of a new manufacturing facility. The designer was free to select 

processes, machines, transport, layout, building and infrastructure. Brown 

field problems relate to the redesign of a facility with existing buildings, 

machine tools and material handling equipment. Brown field problems were 

often highly constrained, whereas green field problems offer more design 

choice.  

At first stage, the Genetic Algorithm process involves encoding 

information on resources into chromosomes. Each chromosome is represented 

as an alphanumeric string that has three parts, the machine number, its 

rectangular size and location. Individual chromosomes are then randomly 

selected to produce a population of chromosomes (candidate solutions). 

Chromosomes are then randomly selected for crossover and mutation 

operations with the probabilities specified. Crossover combines the 

characteristics of two parents to produce an offspring, whereas mutation 

produces random changes in a single chromosome. A repair function then 

identifies and rectifies infeasible machine sequences. It starts by identifying if 

any genes produced by crossover are duplicated. Any duplicated genes are 

swapped between the offspring to ensure that each chromosome contains a 

gene associated with each resource. The fitness testing algorithm first 

translates the sequence of machines within the chromosome into a layout by 

using a placement algorithm. This GA is a construction algorithm as the 
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placement algorithm generates an entire layout from scratch.  

This implementation was tested in two case studies mentioned in  (Lu, 

2008) research paper. The green field problem mentioned in (Lu, 2008) 

showed that the solution converged and reduced 70% of the total rectilinear 

distance travelled. The results obtained when additional constraints were 

introduced to reflect a brown field design problem also converged. In this case 

there was an improvement of 30% compared to the company’s layout before. 

However, this research only optimized the layout of manufacturing facilities 

by minimizing material movement for given schedule of work. This research 

is still far from a real world factory layout problem. A factory layout problem 

consists of more constraints and thus causes the search to become more 

complex to be modeled in GA. 

 

2.2.3 FLP Approach Based on Genetic Programming (GP) 

 

 The first experiments with GP were reported by Stephen F. Smith in 

1980 and Nichael L. Cramer in 1985 (Koza, 1992). Later in the 1992, GP is 

being research further by Koza. The term GP (Koza, 1992) has two meanings. 

First, it is often used to subsume all evolutionary algorithms that have tree data 

structures as genotypes. Second, it is defined as the set of all evolutionary 

algorithms that breed algorithms using functional programming language, and 

similar constructs.  

For many problems, the most natural representation for a solution is a 

hierarchical computer program rather than a fixed-length character string. The 

size and the shape of the hierarchical computer program that will solve a given 
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problem are generally not known in advance, so the program should have the 

potential of changing its size and shape. It is difficult, unnatural, and 

constraining to represent hierarchical computer programs of dynamically 

varying sizes and shapes with fixed-length character strings. 

Representation schemes based on fixed-length character strings do not 

readily provide the hierarchical structure central to the organization of 

computer programs (into programs and subroutines) and the organization of 

behaviour (into tasks and subtasks). Representation schemes based on fixed-

length character strings do not provide any convenient way of representing 

arbitrary computational procedures or of incorporating iteration or recursion 

when these capabilities are desirable or necessary to solve a problem. 

Moreover, such representation schemes do not have dynamic variability. The 

initial selection of string length limits in advance the number of internal states 

of the system and limits what the system can learn. 

GP paradigm continues the trend of dealing with the problem of 

representation in GA by increasing the complexity of the structures 

undergoing adaptation (Riccardo, 2008). In particular, the structures 

undergoing adaptation in GP are general, hierarchical computer programs of 

dynamically varying size and shape. Varies seemingly different problems in 

artificial intelligence, symbolic processing, and machine learning can be 

viewed as requiring discovery of a computer program that produces some 

desired output for particular inputs. The search space for GP is the space of all 

possible expressions created by compositions of the available functions and 

available terminals for the problem. These are called programs and usually 

expressed as syntax trees rather than as lines of code. The variables and 
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constants in the program are leaves of the tree. In GP they are called terminals, 

whilst the arithmetic operations are internal nodes called functions. The sets of 

allowed functions and terminals together form the primitive set of a GP 

system. 

 The manipulation of GP and GA structure for operations such 

crossover and mutation is different. GP uses hierarchical structures while GA 

uses one-dimensional fixed-length linear strings, chromosome. In GP, terminal 

set and function set should be selected instead so that segmented sub tree is a 

set of GP system itself. 

Expression trees are built from a set of functions F and a set of 

terminals T Functions in F are an expression node that consists of binary or 

ternary arteries For example in Figure 2.1, binary function such as “+” and “-” 

operators and ternary function such as condition expression when x is equal to 

1, 2 or other values. 

 

𝑓(𝑥) = {
1 + 𝑥        𝑤ℎ𝑒𝑟𝑒 𝑥 = 1
1 − 𝑥        𝑤ℎ𝑒𝑟𝑒 𝑥 = 2
0                                𝑒𝑙𝑠𝑒

 

 

 

 

 

 

 

Figure 2.1 Expression tree 

There’s a great variety of possible program trees, in fact there is an 

infinite variety. The number of possible recursive compositions of functions 

+ 

1 x 

0 

x? 

- 

1 x 

x = 1 
x = 2 

else 
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and terminals is infinite if we do not limit the tree’s depth. In contrast the 

standard fixed chromosome-length encoding of most GA give a finite number 

of possible chromosomes. 

The evolutionary process starts with an initial population of randomly 

generated randomly generated computer expression trees composed. Genetic 

programming iteratively transforms a population of expression trees into a 

new generation by applying analogy of naturally occurring genetic operations. 

These operations are applied to individual(s) selected from the population. The 

individuals are probabilistically selected to participate in the genetic 

operations based on their fitness. The iterative transformation of the 

population is executed inside the main generational loop of the run of genetic 

programming.  The execution steps of genetic programming are summarized 

as follows: 

1. Randomly create an initial population (generation 0) of individual trees 

composed of the available functions and terminals. 

2. Iteratively perform the following sub-steps on the population until the 

termination criterion is satisfied: 

a. Execute each program in the population and ascertain its fitness 

(explicitly or implicitly) using the problem’s fitness measure. 

b. Select two individual trees from the population with a probability 

based on fitness (with reselection allowed) to participate in the genetic 

operations in (c). 

c. Create new individual program(s) for the population by applying the 

following genetic operations with specified probabilities: 
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i. Reproduction: Copy the selected individual program to the new 

population. 

ii. Crossover: Create new offspring program(s) for the new 

population by recombining randomly chosen parts from two 

selected programs. 

iii. Mutation: Create one new offspring program for the new 

population by randomly mutating a randomly chosen part of 

one selected program. 

iv. Architecture-altering operations: Choose an architecture-

altering operation from the available repertoire of such 

operations and create one new offspring program for the new 

population by applying the chosen architecture-altering 

operation to one selected program. 

3. After the termination criterion is satisfied, the single best program in the 

population produced during the run (the best-so-far individual) is 

harvested and designated as the result of the run. If the run is successful, 

the result may be a solution (or approximate solution) to the problem. 

  

The main evolutional operations of GP run exactly like GA. However 

the representation of expression trees from GP and chromosome from GA that 

set them apart. 
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CHAPTER 3.0 

 

APPROACH AND ALGORITHMS 

 

 

3.1 Model Overview 

 

In this chapter, we discuss on the design used by our model. Our model 

adopted three stochastic search algorithms for optimizing factory layout using 

FSA, GA and GP. Before we jump into the search algorithm design, we will 

show how a top down visual factory layout design is being translated to a  

B*-tree, chromosome and expression tree representation for FSA, GA and GP 

respectively.  

 

3.2 Layout Representation Using B*-Tree 

 

The tool adopts B*-Tree (Chang, 2000) representation for modeling 

cells layout planning as it is used in Chen and Chang research (Chen, 2006). 

Given a two dimensional factory layout (top view), a unique B*-tree in linear 

time to model the placement can be constructed. Given a B*-tree, a legal 

placement by packing the blocks in amortized linear time with a contour 

structure can be obtained as well. Figure 3.1 and 3.2 show the top view of a 

factory layout and its corresponding B*-tree. The B*-tree used was an ordered 

binary tree whose root corresponds to the block on the upper-left corner. B*-

tree is constructed from an admissible placement in a recursive fashion. 
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Starting from the root, then recursively constructs the left and right branches 

but never more than two branches. If the node branch out from the left means 

it is placed on the left of its parent node and right branch is placed on the right 

side of its parent node. 

 

Figure 3.1 Top view of a factory layout 

 

 

Figure 3.2 B*-tree representing the placement 

In a B*-tree, the root is the most top left block and thus the coordinate 

of the block as in Eq (1). 

          
0) (0,  )y ,(x rootroot     (1) 

If node nj is the right child of node ni, block bj is placed on the right-
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hand side and adjacent to block bi; example as in Eq (2) given that x, y, w and 

l denotes the block properties of its x-axis coordinate, y-axis coordinate, width 

and length respectively. The coordinate of nj is calculated by the properties of 

ni as in Eq (2).           

)l   y, w (x  ) y,(x iiiijj                                 (2) 

Otherwise, if node nj is the left child of ni, block bj is placed below of 

block bi, with the x-coordinate of bj equal to that of bi; i.e., xj = xi. Therefore, 

given a B*-tree, the x-coordinates of all blocks can be determined by 

traversing the tree from top to bottom and vice versa of obtaining y- 

coordinates. 

 

3.3 Optimization Algorithms 

 

In this research, we use FSA, GA with conditional crossover and GP. 

All three search algorithms are stochastic strategy for searching an optimal 

state instead of exhaustively searching all possible combinations. The 

performance of each implementation will be discussed later in chapter 5 

through our experiments observation. 

 

3.4 Fast Simulated Annealing (FSA)  

 

 Simulated Annealing (SA) is a stochastic strategy for searching the 

ground state. The SA algorithm derives its name from the fact that its behavior 

is controlled principally by the temperature T as in the thermal annealing 

process. It is an optimization scheme with non-zero probability for accepting 
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inferior (uphill) solutions. The probability depends on the difference of the 

solution quality and the temperature, P(A). The probability is typically defined 

as in Eq. (3). 

                       TCenAP /1)(             (3) 

n is a random number, ΔC is the difference of the cost of the neighboring state 

and that of the current state, and T is the current temperature (Chen, 2006). 

 However, the excessive running time is a significant drawback of the 

classical SA process. To reduce the running time of SA for searching for 

desired solutions more efficiently, several annealing schemes of controlling 

the temperature changes during the annealing process have been proposed. For 

instance, FSA is a semi-local search consists of occasional long jumps. The 

cooling schedule of the FSA algorithm is inversely linear in time which is fast 

compared with the classical simulated annealing which is strictly a local 

search and requires the cooling schedule to be inversely proportional to the 

logarithmic function of time. 

 The model is using FSA as the optimization engine proposed by (Chen, 

2006). The proposed FSA integrates random search with hill climbing more 

efficiently by manipulating the temperature to three stages as shown in figure 

3.3. The three stages of the annealing process are mentioned in chapter 2.2.1. 

 

Figure 3.3 Three stages of FSA, temperature VS search time 
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 In the first stage, the T is set to a very huge number, so that the 

probability of accepting an inferior solution approaches 1. The process is like a 

random search to find the best solution. In the second stage, T is set to 0. Since 

the temperature is very low, it can only accept a very small number of inferior 

solutions, which is like a greedy local search. This process is called the 

pseudo-greedy local search stage. The third stage is the hill climbing search 

stage. The temperature is raised again to facilitate the hill climbing search 

stage. Thus, it can escape from the local minimum and search for better 

solutions. The temperature reduces gradually, and very likely it finally 

converges to a global optimal solution. 

 The prototype tool, adopts the B*-tree representation to model a 

factory layout. Each B*-tree corresponds to a factory layout. Hence, the search 

space consists of all B*-trees with the given nodes (blocks). The FSA 

algorithm begins with a random generated initial solution. To find a 

neighboring solution, we manipulate a B*-tree to get another B*-tree by the 

following operations: 

 Op1: Rotate a block 

We randomly select a node in the B*-tree and rotate the block, which 

does not affect the B*-tree structure. This is done through swapping 

the values between the width and length of that specific block. 

 

 Op2: Move a node/block to another place 

We randomly delete a node and move it to another place in the B*-tree. 

The random selection will only select the leaves in the tree. The 

selected node is move to another empty position in the tree. 
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 Op3: Swap two nodes/blocks 

We swap two nodes in the B*-tree. All the nodes in the tree will be 

randomly select for swapping with another random node without 

changing the width and length. 

 

 After generating a new neighboring state, the state will go through an 

evaluation function to obtain the fitness value. Based on the temperature, a 

worse neighboring state might be chosen instead. 

 

3.5 Genetic Algorithm (GA) 

 

 Genetic algorithms are search algorithms based on the mechanics of 

natural selection and natural genetics (Holland, 1992). GA behaves to imitate 

the development of new and better populations among different species during 

evolution (Tam, 1992). Unlike most of the heuristic search algorithms, GA 

conducts the search through the information of a population consisting of a 

subset of individual solutions. Each solution is evaluated by a fitness function 

to associate with a fitness value, which is the objective function value of the 

solution. In this case, we tried to minimize our fitness value which result in 

shorter travelling distance, less space wastage and less overlapping space. 

Solutions to optimization problems are coded to a finite B*-tree representation 

based on the machines quantities demand. The genetic algorithms work on 

these trees and encoding is done through the structure named chromosomes, 

where each chromosome is made up of units called genes. In the beginning of 
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the algorithm, each chromosome is generated randomly as the initial 

population. There are some determining factors that strongly affect the 

efficiency of genetic algorithms: 

 Evaluation functions algorithms. 

 The representation of the solutions. 

 The generation of the initial population. 

 The selection of individuals in an old population (parents) that will be 

allowed to affect the individuals of a new population. 

 The genetic operators that are used to recombine the genetic heritage 

from the parents to produce children (crossover and mutation). 

 

 The selection of individuals that will be allowed to affect the following 

generation is based on the fitness of the individuals. This is done in such a way 

that individuals with better fitness are more likely to be chosen to become 

parents. The three population controls are as below: 

1) Population control though candidate selection:  

It has proven very efficient to search for locally optimal solutions in 

the neighborhood of the children (Holland, 1992). If one is able to find 

a better solution then it will replace the original child as a member of 

the new population. 

2) Population control of new individuals:  

It is possible that a child to has a worse fitness than its parents. In such 

cases the child will not be accepted in the new generation. 

3) Population Elimination: 

For an ideal case, a new population should converge to a more optimal 



 

 

26 

 

solution from its previous population but this is not guarantee. In the 

worst scenario, the new population may result in having the same 

solution as its previous population. This shows that the search is trap in 

a local optimal and a new population initialization will be generate 

again. 

 Note that the GA implementation requires the specification of certain 

parameters such as population size, and number of generations and n control 

the size of the population. Then the genetic algorithm procedure can be 

described as in Figure 3.4. 

 

Figure 3.4 Genetic Algorithm Structure 

Input: A problem instance 

Output: A (sub-optimal) solution 

 

BestSolution; 

n = population size; 

P = initialize P, and evaluate the fitness of the individuals in P 

P2 = empty array for coming new population 

m = mutation rate 

cr = crossover rate 

 

do 

BestSolution = rank(P) 

 

   do 

      if probability(cr) 

         if fitness(crossover(ci1, ci2, P)) better than (ci1, ci2) 

             P2 add crossover(ci1, ci2, P) 

      if mutation(m, P) 

         mutate(ci) 

   until size(P2) equal to n 

 

   P=P2 

   NewOptimalSolution = rank(P)  

   if NewOptimalSolution equal to BestSolution 

      Terminate P 

      P = initialize P, and evaluate the fitness of the individuals in P             

   else 

      BestSolution= NewOptimalSolution (sub-optimal solution from 

the population) 

until (termination condition is not satisfied)  

 

Return BestSolution 
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3.5.1 GA Crossover 

 

By combining the encoded solution strings of two parents, two 

children are created. If one considers the biological origin of the genetic 

algorithms it makes sense to denote the coded solution string “genome” and 

look at this procedure as a result of mating.  

 1-point crossover is applied to perform a crossover operation as 

described in Figure 3.5. Firstly, a crossing point within the chromosome’s 

genes is chosen randomly. Then the new chromosomes get the header part and 

the tree structure from the first parent. The remaining genes will be obtained 

from the second parent in the order as they appear on the second parent. 

 

Figure 3.5 GA: Swapping between parent 1 and parent 2 

 To avoid chaotic behavior, in this work we introduce conditional 
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probability crossover method. Offspring generated from crossover can prompt 

poor fitness value due to infeasible machines layout as exhibited during 

experiments and results. Given a scenario where the offspring are worse than 

their parents as in Figure 3.6 crossover does not help to converge to the global 

solution. Hence, not all individuals in the new population are generated by this 

operator. The probability of applying this operator is controlled by a crossover 

rate which is a constant percentage respective to the next generation.  

 

Figure 3.6 Bad offspring generated from crossover 

 

3.5.2 GA Mutation 

 

 In order to give the populations new impulses some random changes in 

the genomes are allowed to occur. The mutation operator changes a “gene” in 

a solution with a probability of the mutation rate. By doing so, this reduce the 
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chances of the algorithm to behave as a greedy search and trap in a local 

optimal. Mutation are done by three different operations, these are: 

 

Op1: Rotate a block.  

We randomly select a node in the B*-tree and rotate the block, which does not 

affect the B*-tree structure. This is done through swapping the value between 

the width and length of that specific block. 

 

Op2: Move a node/block to another place. 

We will randomly delete a node and move it to another place in the B*-tree. 

The random selection will only select the leaves in the tree. The selected node 

is move to another empty position in the tree. 

 

Op3: Swap two nodes/blocks.  

We swap two nodes in the B*-tree. All the nodes in the tree will be randomly 

select for swapping with another random node without changing the width and 

length. 

 

3.6 Genetic Programming (GP) 

  

 Genetic Programming (GP) is an automated methodology inspired by 

biological evolution to find computer program that best performs a user-

defined task. It is therefore a particular machine learning technique that uses 

an evolutionary algorithm to optimize a population of computer programs 

according to a fitness landscape determined by a program's ability to perform a 
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given computational task. 

 In the early (and traditional) implementations of GP, program 

instructions and data values were organized in tree structure or known as 

expression tree (Koza, 1992). This method is adopted in Perez’s work in 

“Solving Facility Layout Problems Using Genetic Programming” (Jaime, 

1996). In this research on GP, the design of modeling our factory problem 

statement into GP will be using Perez’s work as reference. 

 Just as GA, GP search through the information of a population 

consisting of a subset of individual solutions. However, these individual are 

represented in expression tree, not chromosome. Expression tree is evaluated 

by a fitness function to associate it with a fitness value, which quantify the 

quality of a solution. Since the B*-tree design is an expression tree and it fits 

perfectly fine for GP design without translation method as GA did earlier. 

However, this does not change the efficiency factors of the search 

performance. These determining factors of GP performance are as mentioned 

in chapter 3.3 earlier.  

 In this research, the representation is the same as the expression 

tree/program being used by J Garces-Perez in facilities layout optimization 

using GP (Jaime, 1996). Both expression trees are programs that consist of 

operators, top, down, left and right that describe the position of the leaves 

which is the machines in our layout. Figure 3.7 is the representation used in 

our research with the top down machine layout being translated from a tree 

expression.  
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Figure 3.7 GP expression tree 

 In the beginning of the algorithm, each tree is generated randomly as 

the initial population The following generation is based on the fitness of the 

individuals (tournament). This is done in such a way that individuals with 

better fitness are more likely to be chosen to become parents. The combination 

of the population consists of the following four operations: 

 

3.6.1 GP Crossover 

  

Crossover is applied on an individual by simply switching one of its 

nodes with another node from another individual in the population. With a 

tree-based representation, replacing a node means replacing the whole branch. 

This adds greater effectiveness to the crossover operator. The expressions 

resulting from crossover are very much different from their initial parents. 

 1-point crossover is applied to perform a crossover operation as 

described in Figure 3.8. One of the nodes in both parents tree structure is 

chosen random for crossover. The new child gets the tree structure from the 

first parent but the crossover point node is replaced with the sub branches of 

the second parents.  
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Figure 3.8 GP: Swapping between parent 1 and parent 2 

 

3.6.2 GP Mutation 

  

As for mutation and population control design, there are the same as 

GA that we mentioned earlier in chapter 3.4. GP implementation requires the 

specification of certain parameters such as population size, and number of 

generations. The genetic programming algorithm procedure is same as Figure 

3.4. The difference lies in the crossover method due to GP representation of 

the optimal solution. 

 

3.7 Optimization Goal 

  

 In this research, optimal result is based on four main optimization 

goals. Space utilization (SU) and material flow (MF) goals can be adjusted in 



 

 

33 

 

the fitness function. As for Overlapping Placement (OP) goal is factor in the 

formula of SU and manning ratio is preprocessing of the data. In later section, 

we will discuss in detail on how to obtain SU, MF, OP and manning ratio. Eq. 

(6) is the formulated optimization fitness function adopt in our model. The 

goal is to minimize our fitness function. The priority of these two goals is 

controlled by two constant as scaling factors, b and c.  

minimize Fitness value =  (SU)b + (MF)c    (4) 

where b and c are constant. 

 

3.7.1 Calculate Space Utilization and Overlapping Placement 

  

 From a B*-tree, the factory layout can be mapped to a matrices 

representation. For each coordinate in the layout, it will be mapped to matrices 

which indicate whether that particular space is being occupied by a block or 

more than one blocks or it is empty. The mapping is done from coordinate (0, 

0) till the largest x-axis and y-axis coordinates which are occupied, max(x-

axis) and max(y-axis). The rows and columns of the matrices is equivalent to 

the x and y coordinates of the factory layout. The translation from a factory 

layout design to a matrices representation is shown in Figure 3.9 and 3.10. 

 

Figure 3.9 Factory layout design 
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Figure 3.10 Matrices representation of the factory layout 

The areas of overlapping placement (OP), occupied space (OS), waste space 

(WS) and space utilization (SU) are defined as in Eq. (7). 

OS) * (OP  (OS)  (WS)  (SU)

0)   valuesmatrices  theof (sum ) (WS

1)   valuesmatrices  theof (sum ) (OS

1)   valuesmatrices  theof (sum  (OP)









              (5) 

 

3.7.2 Calculating Material Flow 

  

 Material flow is the sum of all distance between related operation 

areas. The start and end points of the distance path are from the centroids of 

both operation areas. In this case, the distance is the Euclidean distance 

between two centroids as shown in Figure 3.11. 

 

Figure 3.11 Material flow (based on Euclidean distance) 

 The flow path of the whole factory has to be predefined earlier. Each 

operation can have more than one flow path flowing in or out. A scaling factor 
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can be set to define the material flow priority. High runner products induce 

higher material flow. A scaling factor (constant multiplier) can be set to each 

particular material flow path to model the priority of the material flow 

influence. The scaling factor will be used to multiply with the Euclidean 

distance of that particular flow which boosts up the effect to the total material 

flow. For example, given testers A, B and C with material flow from AB is 

higher priority (larger constant) and BC (smaller constant) is lower priority, 

the total material flow (MF) distances incurred is calculated with the Eq (6) 

below, 

 𝑀𝐹 = (𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐴, 𝐵) × 𝑔) + (𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐵, 𝐶) × ℎ)     (6) 

where both g and h are constants. As we are trying to minimize MF, larger 

scaling factors will amplify the respective calculated Euclidean distance more 

and has higher influence of the total MF. 

 

3.8 Obtaining Manning Ratio Arrangement 

  

 The layout arrangement of the machines dictates the manning ratio that 

can be supported; e.g. one operator control 2, 3 or 4 machines. Arrangement 

that allows flexible manning ratio is by placing machines with their controller 

facing each other (cross box) as shown in Figure 3.12. A cross box 

arrangement allows equivalent distances for an operator travel from one 

machine controller to another. This arrangement exhibits feasible manning 

ratio flexibility for one operator to control 2 or 4 machines. 
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Figure 3.12 Four machines and an operator cross box arrangement. 

 The number of machines dictates the numbers of cross box 

arrangement that is needed. Cross box can be expended to allow more 

manning ratio feasibility as shown in Figure 3.13. 

 

Figure 3.13 Arrangement that support flexibility manning ratio of 1 

operator to control 6 machines 

 Manning ratio is a prefix requirement imposed the input data before 

sending to the model. Since this model is developed for Intel Manufacturing 

usage, every machine type is configured to a defined manning ratio number 
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and need to be followed exactly. For instance, given machine with quantity of 

8 and manning ratio is define as 1 to 4 (an operator is able to control up to 4 

machines), this machine is configured into the model as two square dimension 

of 2 X 2 of the specified machine type.  



 

 

38 

 

CHAPTER 4.0 

 

DATA PREPARATION 

 

 

4.1 Case Studies Overview 

 

Two case studies are used to validate our models. In case study 1, 

mock-up data is created to observe the model result based on different scaling 

factors setting of the fitness function. In case study 2, real industrial data from 

Intel Manufacturing is used. The results shown in case study 2 are verified by 

layout industrial engineers from Intel Manufacturing. 

 

4.2 Case Study 1: Mock-up Data for Model Validation 

 

In Case study 1, five experiments are conducted to test the effect of 

different scaling factors of the fitness function as mentioned in chapter 3. The 

scaling factors of b and c as mentioned in chapter 3.7, Eq 6, was configured 

according to Table 4.1. This observation helped us to understand the effect 

balancing the optimization goal priority with the right setting. 

Scaling 

Factor 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

b 1 0 1 1 1 

c 0 1 179 89.5 268.5 

Table 4.1 Scaling Factor Configuration Setting 

 Both experiment 1 and 2 are extreme cases where we only considered 

space utilization and material flow respectively. With the fitness value derived 
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from experiment 1 and 2, we calculated the degree of differences between 

them and use the value in experiment 3. In chapter 5, fitness value for 

experiment 1 is 16 X 10
4
 and fitness value for experiment 2 is 896. This means 

that space utilization value is 179 times larger than material flow value in 

rough estimation. Hence in experiment 3, c is set to 179. In experiment 4 and 

5, we create a lower and upper bound using half of 179 as reference which is 

89.5 and 268.5 respectively. 

 Sample data used in case studies 1 are rectangles that can be combines 

back to a square. A square is sliced into 7 smaller rectangles as shown in 

Figure 4.1. This helped us to validate the model and suggest the most optimal 

layout based on space utilization without considering the process flow of 

connected rectangles. The process flow of each connected rectangles are listed 

in Table 4.2 with equal priority with value 2 and 0 means that it is an 

independent component without any process flow to another component. 

 

Figure 4.1 Sample data of a perfect square 

 

Rectangle Width Length Connected Rectangles  Priority Value 

A 130 318 B 2 

B 82 400 A 2 

C 93 140 D 2 
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D 93 130 C 2 

E 160 185 F 2 

F 65 270 E 2 

G 85 160  0 (independent rectangle) 

Table 4.2 Case study 1 configuration setting 

  

4.3 Case Study 2: Real Industrial Data 

 

In case study 2, we used real industrial data based on Intel 

Manufacturing NCO6, Penang NetComm and Chipset factory layout. These 

data are based on real layout challenges faced by engineers and managements.  

Often, what is the best decision to decide the best factory layout retrofit is 

common for an existing factory. Through manual layout design there is no 

scientific way to measurement a layout quality. Hence, in this case study, three 

experiments, i.e. experiment 6, 7 and 8, took place in giving a suggested 

layout with a fitness value as quality indicator.  

In experiment 6, data is obtained from capacity engineers to provide 

maximum machines quantities needed to fit into a factory under extreme 

production condition. In this experiment, we shall observe how a suggested 

layout is able to fit all machines into a limit empty space without jeopardizing 

the process flow. Such layout will serve as a guideline for future layout 

planning. The input setting for the experiment run is as in Table 4.3 

Tester Width Length Controller location Quantity Priority 

Value to 

FOL 

A 9 11 Length 46 6 

B 19 22 Width 16 5 
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C 22 24 Length 5 4 

D 15 18 Width 4 3 

E 19 26 Width 14 2 

F 14 20 Width 10 1 

Table 4.3 Input Setting For Experiment 6 

In experiment 7, data is obtained from layout engineers where 

machines retrofit took place. A total of 11 new machines for tester A and tester 

B respectively, need to be arranged in an existing layout. There was existing 

tester B which already in place. Hence, it is best if new tester B is placed next 

to the existing tester B. It is a simple machine arrangement allocation. 

However, what visually look good in a layout design doesn't mean there’s no 

better alternative. This experiment helps to validate the quality of the manual 

design and provide another alternative suggestion. The manual designs 

suggested by engineers are as in Figure 4.2. The input setting for the 

experiment run is as in Table 4.4.  

This is a simple experiment but it was a real scenario happened in 

NCO6, Penang factory for Catalyst and CMT machines retrofit effort. Since 

machines retrofit is a high costing task, management requires scientific data to 

prove the best course of action. In the end, management accepted the solution 

from the model instead of the manual layout. 
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Figure 4.2 Manual suggested layout by engineers 

 

Tester Width Length Controller 

Location 

Quantity Material  

Flow 

Priority 

Value 

 

A 15 18 Width 11 Tester A 3 

B 15 18 Width 11 FOL 2 

Table 4.4 Input setting for experiment 7 

 In experiment 8, data is obtained from layout engineers where the 

machines quantities are exactly the same as the existing factory. The purpose 

of the experiment is to evaluate the existing layout quality and provide a better 

layout if available. Through the fitness value, we shall calculate the 

improvement of a suggested layout compare to the existing layout. The input 

setting for the experiment run is as in Table 4.5. The graphical representation 

is print screen image of each particular machine from AutoCAD instead of 

using plain colored buttons. Note that the different visual representation in this 

section does not dictate the model differently than the previous experiment. 

Tester Graphical 

Representati

on 

Width Length Controller 

Location 

Quantity Priority 

Value to 

FOL & 

EOL 

A 
 

9 11 Length 22 6 

B 
 

19 22 Width 11 5 

Tester A               

B  A 

  

FOL               
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C 
 

22 24 Length 7 4 

D 

 

15 18 Width 17 3 

E 

 

19 26 Width 6 2 

F 

 

14 20 Width 8 1 

Table 4.5 Input setting for experiment 8 
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CHAPTER 5.0 

 

EXPERIMENTAL RESULTS AND ANALYSIS 

 

 

5.1 Experiments Overview 

 

In this chapter, we will discuss on the analysis results with experiments 

defined from chapter 4. Experiments defined are split into to two case studies. 

Case study 1 is experiments ran using mockup data to analyze the scaling 

factors setting of the fitness function. In case study 2, experiments ran using 

real industrial problem and data from Intel Manufacturing. 

 

5.2 Case Study 1: Results and Analysis 

 

 In case study 1, our models ran with mock-up data specified in chapter 

4.1. The results of our model are as in Table 5.1, 5.2, 5.3, 5.4 and 5.5 for 

experiment 1, 2, 3, 4 and 5 as mentioned in chapter 4. The table shows the 

fitness value as our indicator of a layout quality. 
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Layout Algorithm Fitness Value 

 

FSA 16 X 10
4 

 

GA 16 X 10
4 

 

GP 16 X 10
4 

Table 5.1 Experiment 1 results with b = 1 and c = 0 
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Layout Algorithm Fitness Value 

 

FSA 896
 

 

GA 896
 

 

GP 896
 

Table 5.2 Experiment 2 results with b = 0 and c = 1 
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Layout Algorithm Fitness Value 

 

FSA 27.0 X 10
4 

 

GA 33.6 X 10
4 

 

GP 29.3 X 10
4 

Table 5.3 Experiment 3 results with b = 1 and c = 179 
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Layout Algorithm Fitness Value 

 

FSA 29.3 X 10
4 

 

GA 35.1 X 10
4 

 

GP 30.8 X 10
4 

Table 5.4 Experiment 4 results with b = 1 and c = 89.5 
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Layout Algorithm Fitness Value 

 

FSA 40.6 X 10
4
 

 

GA 42.8 X 10
4
 

 

GP 42.8X 10
4
 

Table 5.5 Experiment 5 results with b = 1 and c = 268.5 
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In experiment 1, b is set to 1 and c is set 0 which means only the space 

utilization goal is considered and not material flow. All algorithms converged 

to the same result where fitness value equal to 16 × 104. The result showed 

the best layout orientation for space utilization due to the reason that no empty 

space existing in between the rectangles. All rectangles are fit perfectly back 

to the original square that we sliced out. 

 In experiment 2, b is set to 0 and c is set to 1 where only material flow 

goal is considered but not space utilization. All algorithms converged to the 

same result with fitness value equal to 896. All connected rectangles with 

material flow set in the configuration and being placed side by side. This 

experiment is used to estimate the most optimal solution for material flow as 

reference. Both fitness value from experiment 1 and 2 are used to estimate the 

scaling factors of b and c in later experiments, 3, 4 and 5. Since space 

utilization value is estimated to be 179 times larger than material flow, hence 

in experiment 3, c is set to 179. 

Experiment 3 exhibits the best optimal solution for our case study with 

FSA algorithm when b is set to 1 and c is set to 179. The result from FSA 

showed a fitness value of 27 × 104 which is best compare to GA and GP with 

33.6 × 104 and 29.3 × 104 respectively. Layout from FSA result showed all 

connected rectangles are lay side by side and it managed to derive the best 

space utilization solution as in experiment 1. 

In experiment 4 and 5, b is set to 1 and c is set to 89.5 as the lower 

limit and b is set to 1 and c is set to 268.5 as upper limit respectively. Though 

all optimal results showed the connected rectangles are placed side by side, the 

fitness value indicates that FSA result in experiment 3 is the better one.  
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This shows the important of setting the right balance which reduce the 

bias between two optimization goals. However, in this experiment we are only 

running with seven rectangles as input data. This allows our model to 

converge to a consistent result of both extreme case for space utilization and 

material flow. In real industrial data, obtaining such result with a large 

numbers of input data required a long processing time.  

Process flow is deprioritized when compared to space utilization in 

Intel Manufacturing practice. Having a healthy material flow is a nice to have 

practice but it is not as important as space utilization. Since Intel Malaysia is 

an assembly and test manufacturing, materials travel within the factory does 

not incurred cost as claimed in this respective industrial environment. 

However, space utilization can be translated to cost as every empty space in 

factory is capacity of factory to store materials, machine and etc. As a result, 

having fair scaling factors setting in the fitness function does not always 

guarantee the best solution rather it should be adjusted to business need. 

 

5.3 Real Industrial Factory Retrofits 

 

 Experiments were done on Intel Manufacturing Factory in NCO6, 

Penang NetComm and Chipset, where the machine types, machine quantity, 

machine dimension, machine controller location, material flow, and existing 

area are given as inputs. NCO6 is high mix low volume factory that consist of 

more constraints compare to CPU factory due to CPU factory has less process 

flow routes. These results were analysis through observation in term of space 

utilization, material flow, manning ratio and overlapping placement avoidance. 
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 In experiment 6, given an existing factory floor, the front of line (FOL) 

dimension is 194 x 79 at location (0, 0).  From FOL, materials flow to tester A, 

B, C, D, E and F. Tester A is the highest product runner with the most material 

flow activities and followed by tester B, C, D, E and F according. The details 

of the testers are shown in Table 4.3. 

 With the input parameters passed to the prototype tool the result are 

shown in figure 5.1 with fitness value of 4592.7 X 10
4
. Every iteration, the 

search will converge to an optimal solution. The best optimal solution will be 

stored until a better optimal solution is found in the next iteration. 

 

Figure 5.1 Experiment 6 result using FSA 

 The convergence of the search characteristic is shown in Figure 5.2. In 

the first stage 1, the temperature is set to high and decrease overtime. During 

this stage, the search behaves as random search. In the stage 2, the temperature 

had decreased to very low. The search behaves as a pseudo-greedy local search 

and converges to a local optimal. Lastly in stage 3 the temperature rises again 

and force search behaves as a hill climbing search. This will allow the search 

to escape from local optimal and having higher chances to converge to a better 

solution. 

Tester D 

Tester B 

Tester A 

Tester C 

Tester E 

Tester F 
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Figure 5.2 Search trend of the three stages FSA; fitness value VS iteration 

(time) 

 With the input parameters passed to the prototype tool using GA. The 

result is shown in Figure 5.3 after running 625 generations with 10% 

crossover probability rate. The algorithm performance was tested using 

different crossover rate. The algorithm is stopped when it reaches the 

approximately similar results in term of fitness level as shown in Table 5.6. 

 

Figure 5.3 Experiment 6 result using GA 

 

Crossover Rate Numbers of 

Generation  

Fitness Value 

100% 2171 4593.9 X 10
4
 

50% 1184 4594.1 X 10
4
 

Tester D 

Tester B 

Tester A 

Tester C 

Tester E 

Tester F 

  

FOL               
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10.00% 625 4593.5 X 10
4
 

Table 5.6 GA benchmark result using different crossover rate 

Result from the prototype tool shows that: 

 

Space utilization: 

Although the result exhibit minimum waste space, all testers are able to fit 

inside the given empty space.  The space utilization is optimal since there are 

empty existing on the outer side on the factory and only a small empty area (in 

the middle of tester yellow, blue and red) surrounded by testers. 

 

Material flow: 

The solution suggest managed to place tester red, yellow and green side by 

side with the FOL living pink, blue and purple on the outer side. This 

arrangement is optimal since the priority defined are red, yellow and green as 

the top three priorities and only follow by pink, blue and purple. 

 

Manning ratio: 

By using the cross box as guideline, the manning ratio is feasible for all tester 

respectively to their total machine. No arrangement prohibits the manning 

ratio that can be support. 

 

Overlapping placement avoidance: 

The result shows no overlapping space which is valid since the overlapping 

space scaling factor is set with a very large constant. This will enforce the goal 

to be as a rule instead of a goal.  



 

 

55 

 

 In our second run using the same input parameters, result derived was 

as shown in Figure 5.4 using GP.  The algorithm performance was tested using 

different crossover rate. The algorithm is stopped when it reaches the 

approximately similar results in term of fitness level as shown in Table 5.7. 

After running 483 generations with 10% crossover probability rate, it showed 

the best fitness value of 4593.5 X 10
4
.  Interestingly, result obtained from GP 

is exactly the same as GA but converge faster than GA. Both GP and GA 

showed that a trend of lower crossover rate help in converging to a better 

solution. 

 

Figure 5.4 Experiment 6 result using GP 

 

Crossover Rate Numbers of 

Generation  

Fitness Value 

100% 1520 4593.9 X 10
4
 

50% 1462 4593.7 X 10
4
 

10.00% 483 4593.5 X 10
4
 

Table 5.7 GP benchmark result using different crossover rate 

 Result from the prototype tool shows that space utilization, material 

flow, manning ratio and overlapping placement avoidance are optimized as 

mentioned in earlier analysis for GA. 

 The summary of all three algorithms for experiment 6 is as shown in 

Tester D 

Tester B 

Tester A 

Tester C 

Tester E 

Tester F 

  

FOL               
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Table 5.8. FSA found a better optimal solution and faster as compared to GP 

and GA. GP and GA converged to the same optimal solution but GP found the 

solution with lesser generations as compared to GA. 

Algorithm Fitness Value Frequency Time per cycle (50 

samples) 

FSA 4592.7 X 10
4
 365263(iterations) 0.711 sec 

GA 4593.5 X 10
4
 625(generations) 6.36 mins 

GP 4593.5 X 10
4
 483 (generations) 8.05 mins 

Table 5.8 Experiment 6 performance summary 

 In experiment 7, the existing factory floor had already occupied by 

existing tester B and other non-related testers. In this experiment, limited 

empty space and only two machines types were re-layout, A and B tester. 

Space utilization, material flow and manning ratio constraints could easier 

observe in this case study. The details of the testers are shown in Table 4.4. 

 The results from all three algorithms are the same and shown in figure 

5.5. FSA converge to the optimal solution at 136 iterations, GA after running 

13 generations and GP after 8 running generations. The numbers of iterations 

to converge to an optimal solution was less compared to experiment 6. This 

was due to the search space reduces as complexity reduce. 

 

Figure 5.5 Experiment 7 result using FSA, GA and GP 

  

FOL               
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Result from the prototype tool shows that: 

 

Space utilization: 

The space utilization is optimal but not fully utilized since one empty machine 

area was created in each tester yellow and red areas. This was due to the 

priority for manning ratio and material flow constraints have higher priority 

than space constraint. 

 

Material flow: 

Suggested solution showed that the 22 remaining tester red and blue were 

place at the available space which was closest to existing tester blue area. 

Material flow constraint was fully satisfied in this case study. 

 

Manning ratio: 

The manning ratio arrangement was feasible since both types of testers were 

arranged in a cross box manner. Manning ratio constraint was fully satisfied in 

this case study. 

 The summary of all three algorithms for experiment 7 is as shown in 

table 5.9. All three algorithms converge to the same optimal solution.  FSA 

found the optimal solution the fastest and followed by GP and GA 

respectively.  

Algorithm Fitness Value Frequency Time per cycle (50 

samples) 

FSA 3.2 X 10
3
 136(iterations) 0.711 sec 

GA 3.2 X 10
3
 13(generations) 6.36 mins 
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GP 3.2 X 10
3
 8 (generations) 8.05 mins 

Table 5.9 Experiment 7 performance summary 

 Based on Figure 4.2, the fitness value calculated is 3.5 X 10
3
. This 

means the solution found by the model is actually better alternative to the 

manual layout design. This simple experiment shows that although a layout 

design visually looks good but without a method of measurement we may 

overlook other better option.  

 Both experiments 6 and 7, show that the model is able to optimize the 

multiple constraints problem faced by factory floor planning. The numbers of 

machines and types drastically affect the search space since factory floor 

planning is a NP-complete problem. 

The finally experiment 8 is done using real data from existing NCO6 

factory layout. Table 4.5 shows the breakdown of all machines in quantities. 

This experiment is to test this model result against the existing layout which 

was done through many rounds of layout retrofit designed manually. To 

evaluate the quality of layout the fitness value is computed using the 

evaluation functions.  

Based on the modal evaluation, it shows that the existing NCO6 layout 

in Figure 5.6 having the fitness value of 3694.7 X 10
4
 and the fitness value for 

the suggested layout in figure 5.7 is 2519.93 X 10
4
 using FSA. The different of 

both fitness values is 117484.64 and translated as 31% better than the existing 

layout in term of fitness value since we are minimizing our fitness value.  

By visual inspection, Figure 5.6 showed testers A, B, C and F are 

scattered around. The layout of these testers with empty spaces creates 

inefficiency material flow, space utilization and manning ratio. Contrary from 
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Figure 5.6, Figure 5.7 group up all testers which waste space and provide an 

optimal manning ratio arrangement as defined in chapter 3.8. Lastly, the 

material flow was well arranged as the top priority testers are placed next by 

the FOL & EOL. 

 

Figure 5.6 Existing NCO6, Penang factory layout 

 

 

Figure 5.7 NCO6, Penang suggested factory layout  

 

5.4 Experiments Results Summary 

 

 In case study 1, the model shows that it is able to reorganize a sliced 

square from seven rectangular components back to its original shape when 

space utilization is the only priority concerned. When material flow is the only 

priority concerned, all three algorithms converge to the same optimal solution. 

Occupied 

Space 
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With the two fitness value calculated from space utilization and material flow, 

we had derive a normalize scaling factors for b and c. It is observed that in 

experiment 3, the results obtained show a well balance of space utilization and 

material flow. 

 In case study 2, the optimal results obtained from the model are 

verified and endorsed by layout industrial engineers and manufacturing 

workgroup. In experiment 7 and 8, results found are better than initial solution 

from manual design in term of fitness value. These solutions are used for 

decision making and future improvement guidelines. 

 In term of algorithms performance, FSA shows better results in term of 

fitness value consistently compared to GA and GP as in Table 5.3, 5.8 and 5.9. 

As shown in Table 5.8 and 5.9, FSA has the fastest processing time followed 

by GP and GA.  
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CHAPTER 6.0 

 

CONCLUSIONS AND FUTURE WORKS 

 

 

6.1 Conclusions 

 

In this research, we had developed and observed the performance 

between FSA, GA and GP on facilities layout optimization. The experiments 

proved that the prototype tools are able to improve a given initial solution 

using the proposed methodologies. Results generated in our experiments are 

verified and endorsed by experienced layout industrial engineers from Intel 

Manufacturing, Penang. The model allows flexibility in layout planning for 

new factory start up as well as existing factory with existing objects. 

From our case study 1, we had showed the importance of setting the 

right scaling factor to avoid bias between different optimization goals. By 

using the extreme scenario for each optimization goals, the values derived can 

be used to estimate normalization scaling factors. Upon deriving all 

normalized scaling factors a more accurate optimization results can be 

archived with fine tuning. 

However, interestingly FSA converges to an optimal solution with less 

iteration as compared to GP and GA. GP converged to an equivalent or better 

optimal solution found by GA with less generations being generated. Based on 

our hypothesis, GA did not perform as comparatively with the rest of the two 

algorithms due to chromosome encoding. Having our layout representation 
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design in expression tree it does not work well after translating to chromosome 

representation. The crossover method in GA after encoding to chromosome 

exhibit worse fitness state candidate from its parents and better off with less 

crossover rate. A suitable layout representation and crossover method will 

need to be research in order to make the GA or GP for improvement. 

FSA had consistently performance better than GA and GP in both case 

studies. This helped us to conclude that our model is suitable to run with FSA 

than GA and GP, since both evolutionary searches are more random. By 

observing the time per cycle, GA and GP are slower than FSA since both 

evolution search methods are computational intensive.  

 

6.1 Future Works 

 

This research presented a two dimensional layout optimization 

specifically for semiconductor factory. This research did not consider three 

dimensional constraints. In new factory design, it may have walkable ceiling, 

air ventilation and etc. Certain machine has piping connected to the ceiling. At 

such situation, the model requires to factor in void area at the ceiling as well 

and not just the empty spaces of the factory floor.   

In addition, the optimization goal’s scaling factors used in the objective 

function can be improved by establishing an estimation function to predict 

normalized weights. The tuning of the optimization goals priority is an 

optimization research itself where it can be adopted by all general 

optimization models usage. This will be future work to study on multiple 

objectives function for SA (Sanghamitra, 2008), GA (Abdullah, 2006)  and GP 
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(Lavinia, 2009). 

As shown in our experiment 2, 3, 4, 6 and 7, the best optimal solution 

found is by FSA, followed by GP and GA respectively. This shows that our 

model implementation is suitable to run with a greedy search algorithm. 

Improvement for GA and GP, require a better representation structure for 

layout and crossover operator. The crossover operation can be improved to 

generate more feasible offspring. The new offspring are important as they help 

the new generation to converge to an optimal solution.  

In our modal, mutation rate and crossover rate is a constant setting. 

Mutation rate for both GA and GP is set to 10% and crossover rate is set from 

10%, 50% and 100%. As for future research, these two operations can be 

further refined with an optimal setting based on the problem statement. 

Through calculating the error threshold of the selection process, there’s a 

correlation between the mutation and crossover rate (Gabriela, 2000). 
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