

Factory Floor Planning Optimization using Metaheuristics

SIAH KUOK LIM

MASTER OF COMPUTER SCIENCE

FACULTYOF ENGINEERING AND SCIENCE
UNIVERSITI TUNKU ABDUL RAHMAN

JULY 2013

FACTORY FLOOR PLANNING OPTIMIZATION USING

METAHEURISTICS

By

SIAH KUOK LIM

A thesis submitted to the

Department of Internet Engineering and Computer Science,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Computer Science

July 2013

ii

ABSTRACT

FACTORY FLOOR PLANNING OPTIMIZATION USING

METAHEURISTICS

 SIAH KUOK LIM

 The factory operational performance is largely influenced by the layout

of manufacturing facilities. Factory layout is the science of arranging

equipment, space, and activities subject to the manufacturing operational rules

and policy for optimal line execution. Apart from maximizing the space

utilization, it is a challenging task to come up a feasible design optimizing all

other critical areas such as (1) process and work flow, (2) proper allocation of

space and resources, (3) ease of access to supply and materials, and (4)

manning ratio feasibility.

 Generating a feasible layout incorporating all the constraints is a

classic “NP-Hard problem”. In Intel, the layout industrial engineers manually

perform “what-if” exercises based on their best judgment to arrive at a better

solution among all other numerous possibilities. Not only is the method labor

intensive, it does not necessary guarantee them an optimal solution. In

addition, even the use of normal automation program to obtain the best

solution by generating all possible combination is impossible. Therefore, a

scientific way of finding the optimize solution will prove helpful. This model

will be able to help suggest a feasible layout or evaluate an existing layout

based on the fitness value.

 To search for the optimal solution, this research uses Fast Simulated

Annealing (FSA), Genetic Algorithm (GA) with conditional crossover and

Genetic Programming (GP). All three search algorithms are stochastic strategy

for searching an optimal state instead of exhaustively searching all possible

combinations. With the inputs and configuration parameters such machines’

dimension, quantity etc., the model will iterate until a feasible layout (optimal

solution) is found. The best layout searched will be kept in memory and will

be replaced until a better layout is found in later iteration. As more iteration

had run the confidence level of obtaining a more optimized layout increases.

 This research model was successfully used for “what-if” scenario

analysis for NCO6 factory, layout design for new catalyst machines. The

model was used to generate the best layout for catalyst relocation based on

changes impact to the existing layout design as well as cost for changes. With

the pros and cons of each layout suggested, the result had help in decision

making for catalyst re-layout effort. Changes are made as suggested in the

results analysis. As seen from the promising result from this model, it was

used to simulate various optimal full factory layout options for Intel Kulim

Microprocessor and Chipset Organization (KMCO) and the upcoming A9

factory in Intel Vietnam.

iii

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my advisor,

Associate Professor Tay Yong Haur from Computer Vision and Intelligent

Systems (CVIS) group for the continuous support of my Master study and

research, for his patience, motivation, enthusiasm, and immense knowledge.

His guidance helped me in all the time of research and writing of this thesis. I

could not have imagined having a better advisor and mentor for my Master

study.

Besides my advisor, I would like to thank the rest of my thesis committee for

their encouragement, insightful comments, and hard questions. This thesis is

more comprehensive and refine with their tactful advice.

In particular, I am grateful to Dr. Lee Wen Jau for enlightening me the first

glance of research. He had support the whole collaboration efforts between

Intel Technology Malaysia and Universiti Tunku Abdul Rahman (UTAR) as

my Master research.

A special thanks to Teoh Choo Wee and Lim Chen Beng, layout engineers

from Intel Corporation, Kulim to provide the domain knowledge in factory

floor planning. They helped in validation and provided valuable feedbacks to

improve the model. With their expertise in this domain, only then model

results are qualified for factory management endorsement.

Last but not least, I would like to thank my family: my parents Siah See Wah

and Lim Bee Leng, for giving birth to me at the first place and supporting me

spiritually throughout my life.

iv

APPROVAL SHEET

This dissertation/thesis entitled “FACTORY FLOOR PLANNING

OPTIMIZATION USING METAHEURISTICS” was prepared by SIAH

KUOK LIM and submitted as partial fulfillment of the requirements for the

degree of Master of Computer Science at Universiti Tunku Abdul Rahman.

Approved by:

(Assoc. Prof. Dr. Tay Yong Haur)

Date:…………………..

Supervisor

Department of Internet Engineering and Computer Science

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

v

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 19 JUNE 2013

SUBMISSION OF THESIS

It is hereby certified ______SIAH KUOK LIM (ID No: __06UEM02019)

has completed this thesis entitled “Factory Floor Planning Optimization using

Metaheuristics” under the supervision of Dr. Tay Yong Haur from the Department

of Internet Engineering and Computer Science, Faculty of Engineering and

Science.

I understand that University will upload softcopy of my thesis in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

Yours truly,

(SIAH KUOK LIM)

vi

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

Name ____SIAH KUOK LIM _______

Date __________12 July 2013 ______

vii

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENTS iii

APPROVAL SHEET iv

SUBMISSION SHEET v

DECLARATION vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER

1.0 INTRODUCTION 1

 1.1 Factory Floor Planning Criteria 2

 1.1.1 Optimization Goals 2

 1.1.2 Optimization Constraints 4

 1.2 Relevant Research 5

 1.3 Rationale 5

 1.4 Objectives 6

 1.5 Thesis Outline 7

2.0 LITERATURE REVIEW 8

 2.1 Overview of Facility Layout Problem (FLP) 8

 2.2 Metaheuristics Approach to FLP 10

 2.2.1 FLP Approach Based on Simulated Annealing (SA) 10

 2.2.2 FLP Approach Based on Genetic Algorithm (GA) 12

 2.2.3 FLP Approach Based on Genetic Programming (GP) 14

3.0 APPROACH AND ALGORITHMS 19

 3.1 Model Overview 19

 3.2 Layout Representation using B*-Tree 19

 3.3 Optimization Algorithm 21

 3.4 Fast Simulated Annealing (FSA) 21

 3.5 Genetic Algorithm (GA) 24

 3.5.1 GA Crossover 27

 3.5.2 GA Mutation 28

 3.6 Genetic Programming (GP) 29

 3.6.1 GP Crossover 31

 3.6.2 GP Mutation 32

 3.7 Optimization Goal 32

 3.7.1 Calculate Space Utilization and Overlap Placement 33

 3.7.2 Calculate Material Flow 34

 3.8 Obtaining Manning Ratio Arrangement 35

4.0 DATA PREPARATION 38

viii

 4.1 Case Studies Overview 38

 4.2 Case Study 1: Mock-up Data for Model Validation 38

 4.3 Case Study 2: Real Industrial Data 40

5.0 EXPERIMENTAL RESULTS AND ANALYSIS 44

 5.1 Experiments Overview 44

 5.2 Case Study 1: Results and Analysis 44

 5.3 Real industrial factory Retrofits 51

 5.4 Experiments Results Summary 59

6.0 CONCLUSIONS AND FUTURE WORKS 61

 6.1 Conclusions 61

 6.2 Future Works 62

ix

LIST OF TABLES

Table

4.1

Scaling factor configuration setting

Page

38

4.2 Case study 1 configuration setting

40

4.3 Input setting for experiment 6

41

4.4 Input setting for experiment 7

42

4.5 Input setting for experiment 8

43

5.1 Experiment 1 results with b = 1 and c = 0

45

5.2 Experiment 2 results with b = 0 and c = 1

46

5.3 Experiment 3 results with b = 1 and c = 179

47

5.4 Experiment 4 results with b = 1 and c = 89.5

48

5.5 Experiment 5 results with b = 1 and c = 268.5

49

5.6 GA benchmark result using different crossover rate

54

5.7 GP benchmark result using different crossover rate

55

5.8 Experiment 6 performance summary 56

5.9 Experiment 7 performance summary 58

x

LIST OF FIGURES

Figures

2.1

Expression tree

Page

16

3.1 Top view of a factory layout

20

3.2 B*-tree representing the placement

20

3.3 Three stages of FSA, temperature VS search time

22

3.4 Genetic Algorithm Structure

26

3.5 GA: Swapping between parent 1 and parent 2

27

3.6 Bad offspring generated from crossover

28

3.7 GP expression tree

31

3.8 GP: Swapping between parent 1 and parent 2

32

3.9 Factory layout design

33

3.10 Matrices representation of factory layout

34

3.11 Material flow (based on Euclidean distance)

34

3.12 Four machines and an operator cross box

arrangement

36

3.13 Arrangement that support flexibility manning ratio

of 1 operator to control 6 machines

36

4.1 Sample data of a perfect square

39

4.2 Manual suggested layout by engineers

42

5.1 Experiment 6 result using FSA 52

5.2 Search trend of the three stages FSA; fitness value

VS iteration (time)

53

5.3 Experiment 6 result using GA 53

5.4 Experiment 6 result using GP 55

5.5 Experiment 7 result using FSA, GA and GP 56

xi

5.6 Existing NCO6, Penang factory layout 59

5.7 NCO6, Penang suggested factory layout 59

xii

LIST OF ABBREVIATIONS

NP Non-deterministic polynomial time

FLP Facility Layout Problem

SA Simulated Annealing

FSA Fast Simulated Annealing

GA Genetic Algorithm

GP Genetic Programming

OP Overlapping Placement

OS Occupied Space

WS waste space

SU Space Utilization

MF Material Flow

FOL Front of Line

EOL End of Line

CHAPTER 1.0

INTRODUCTION

Laying out a factory involves deciding where to put all the facilities,

machines, equipment and staff in the manufacturing operation. Layout

determines the way in which materials and other materials flow through the

operation. Relatively small changes in the position of a machine in a factory

can affect the flow of materials considerably. This in turn can affect the costs

and effectiveness of the overall manufacturing operation. Getting it wrong can

lead to inefficiency, inflexibility, large volumes of inventory and work in

progress, high costs and inefficient space (Aleisa, 2005). Changing a layout

can be expensive and difficult, so it is best to get it right first time.

The first decision is to determine the type of manufacturing operation

that must be accommodated. Intel Assembly and Test Malaysia is a

semiconductor manufacturing. All products go through the same process flow,

assembly to testing and packaging. Hence this research, we follow the practice

of process layout. Process layout arrange similar manufacturing processes

(assembly, test area and packaging) are located together to improve utilisation.

It is a big challenge and time consuming for engineer to come out with

an optimize factory layout. Layout facilities optimization is categorized as NP-

hard problem in complexity theory (H’astad, 2003). As a result, this project

requires a high degree of difficulties to derive an optimal solution manually.

This will further elaborate in the literature review.

2

1.1 Factory Floor Planning Criteria

The major objective, when designing the factory layout is to design a

physical arrangement that most economically achieves the required output

quantity and quality. Achieving the required output (Aleisa, 2005), involves

the improvement of:

 process and work flow

 proper allocation of space and resources

 easier access to supplies and materials

 plant efficiency increase

 maximize the use of space

1.1.1 Optimization Goals

In this model, there are two optimization goals. Each goal is an

evaluation method which returns the fitness of the layout respective to that

particular goal. The priority of each goal is governed by a constant number as

the scaling factor. The sum of all the goals multiplied by its own scaling factor

will be the total fitness of the whole state. The objective function in this case is

minimizing the total fitness of the state. The optimization goals are stated as

below:

 Space Utilization:

Different machines will have different dimension in term of length and

width. The height of the machine is ignored because machines cannot

be stacked on top of each other. Hence, this research’s result is a two

3

dimensions (2D) optimized factory layout of a top down view. An

optimized layout will need to fit these different machines in the most

space-utilized way.

 Material Flow:

Material transfer from an operation area to another is critical to achieve

the minimum travelling distance for an operator between two locations.

This will result in better utilization of resources (operators/trolleys),

e.g. finished units to the exit.

 Arrangement to Accommodate Flexible Manning Ratio:

Arranging machines with their control facing the opposite machine

control (face-to-face) will ease operator of operating more machines.

Machines arrangement must have the shortest travelling distance from

one machine control to another and give a wide view sight of all

machines control. In a dynamic environment of a factory, manning

ratio can be increased or decreased depending on the available

resources and run rate. Hence, the arrangement of the machines is

critical in order to accommodate these dynamic changes.

 Overlapping placement avoidance:

In a factory environment, there are many existing areas that can’t be

further rearranged or having overlapping placements. For example,

existing areas such as meeting rooms, power supply areas, future

expansion areas or aisle path should not place any machines, work-in-

progress lots or routes.

4

1.1.2 Optimization Constraints

Optimization constraints are the rules of governing the solution which

never generate a layout that conflict with the constraints. Constraints do not

have any scaling factor as goal, it is modelled as rules imposing any states

must follow all the constraints defined. The optimization constraints are stated

as below:

 Machine clearance:

Machine clearance is a predefined distance gap of machines placed

side by side, front to front, or back to back. The predefined gap is for

module engineers’ movement during maintenance, wiring and facilities

installation, safety issue and reduces the heat generated from the

machines.

 Implement route in between different operations:

Routes in between operations are critical for lots movement, machine

relocation and safety issue for emergency escape. The main route is

defined as the aisle path located in the middle of the factory which

allows feasible movement of the whole factory. Unlike machines

clearance, routes have larger gap and the main purpose is for factory

movement activities.

 Same machines group together:

Same machines are important to get placed together due the fact that it

demands the same facilities such as poles, ventilation and wirings.

Splitting same machine into two different areas will create unnecessary

5

facilities changes, infeasible factory material flow and infeasible

manning ratio layout

1.2 Relevant Research

Related research for facility layout problem (FLP) for factory floor-

planning had been done and tested in the past recent years. There were many

techniques such as Genetic Algorithm (Lu, 2008)Simulated Annealing

(Laursen, 1993), Fuzzy Logic, Ant Colony optimization and etc. being

researched for FLP. However, techniques such as Genetic Algorithm and

Simulated Annealing are the more common techniques that used by most

researchers for facilities layout optimization (Aleisa, 2005). A survey on these

two techniques will be discussed further in literature review section.

The literature findings regarding related algorithm and techniques

explored to tackle FLP. Referring to (Chen, 2006) research, the approach of

using FSA and B*-tree for a NP-hard problem yield a faster and stable

convergence to desired solutions. B*-tree structure is used in Genetic

Algorithm (Lu, 2008) and Genetic Programming (Jaime, 1996) studies.

1.3 Rationale

This research aims to derive an optimal solution for factory layout

design. It is a collaboration effort done with Intel Assembly and Test

Malaysia, PG6 factory in Penang. All data and requirements are obtained from

engineers based on Intel safety guidelines for factory design. The

6

requirements include true machines dimension with clearance space, factory

design constraints, setup for optimization goals priority and design

specification.

B*-tree were used as representation for a layout design (Chang, 2000).

Different representation methods were use due the different search algorithms

studied in this research. Three models were developed using Fast Simulated

Annealing, Genetic Algorithm and Genetic Programming search. All these

search algorithms developed using VB.NET.

Experiments are conducted using Intel Manufacturing Factory in

NCO6, Penang NetComm and Chipset layout design (encrypted data). Data

are real machines dimension for assembly and test manufacturing. Solutions

derived from the models are verified by layout engineers. All iterations ran

converging to these solutions are used as benchmark data points against three

search algorithms.

1.4 Objectives

There are two main objectives for this research collaboration with Intel

Manufacturing. These objectives are as below:

1. Provides a clear way to scientifically measure the quality of a layout

solution for Intel Manufacturing.

2. Observe and benchmark against different search algorithms, FSA, GA

and GP for layout optimization.

7

1.5 Thesis Outline

This thesis structure will be separated as follows:

Literature review: We discuss on the nature of facilities layout problem

and the considerations of an optimal factory layout. It also surveys studies on

simulated annealing, fast simulated annealing, genetic algorithm and genetic

programming algorithms that were used for solving this problem.

Approach & Algorithm: In this chapter we shall discuss in depth of the

model design. This includes the optimization goals and constraints in general

for all three algorithms. Three algorithms design being introduced in our

model are FSA, GA and GP. Each algorithm has its respective layout

representation method.

Data preparation: This chapter serves as the introduction of the data

used for our experiments. The structure of our experiments being carried out is

defined in details in this chapter. There will be case study 1 using mock-up

data and case study 2 using real industrial data and problem statement.

Experiments & Results: Results of our experiments carried out are

shown here. Results from case study 1 serve as model validation and

observation purposes while case study 2 for industrial solution and algorithms

benchmarking.

Conclusions and Future Works: Conclusion from our analysis results

of this research based on the experiments’ results. To make the model

comprehensive, we will discuss on the extension works for this research. This

touches the area where the model still lacking and algorithm performance

issue to be tackle.

8

CHAPTER 2.0

LITERATURE REVIEW

2.1 Overview of Facility Layout Problem (FLP)

Facility Layout Problem (FLP) is a study of combinatorial

optimization problem which arises in a variety of problems such as layout

design of factory, hospitals, schools, and airports; printed circuit board design,

backboard wiring problems, typewriters, warehouses, hydraulic turbine

design, etc. (Singh, 2006). FLP has been generally formulated as a Quadratic

Assignment Problem (QAP) introduced by (Koopmans, 1957) which is NP-

hard (Garey, 1979), (Kusiak, 1987)

In complexity theory (Laursen, 1993), NP-hard problems are the most

difficult problems in NP (non-deterministic polynomial time) in the sense that

they are the smallest subclass of NP that could conceivably remain outside of

P, the class of deterministic polynomial-time problems. The reason is that a

deterministic, polynomial-time solution to any NP-hard problem would also be

a solution to every other problem in NP. A powerful computer cannot handle a

large instance of the problem. Hence, it is a big challenge and time consuming

for engineer to come out with an optimize factory layout.

The effectiveness and efficiency of factory performance is largely

influenced by the layout of its’ manufacturing facilities. Factory layout is the

arrangement of activities (operation, process and etc.), features and spaces in

9

consideration of the relationship that exists between them (H’astad, 2003).

Issues such as costs, work in process inventory, lead-times, productivity,

resource utilization (space, operates and etc.) and delivery performance are

significantly caused by layout of facilities. 30-75% of total manufacturing

costs are partly attributed by materials handling and layout (Mecklenburgh,

1985).

Factor layout planning constraints, includes global issues such as plant

location, building design, material handling, etc. In general, factory layout

analysis includes a study of the production line process flow charts, material

flow diagrams, product routings, processing times, development of from-to

charts(table containing. flow values from one department to another in a

form), relationship diagrams between different departments in the facility and

the cost of material movement (H’astad, 2003).

The major objective when designing the factor layout is to design a

physical arrangement that most economically achieves the required output

quantity and quality. Achieving the required output (Chen, 2006), involves the

improvement of:

 process and work flow

 proper allocation of space and resources

 easier access to supplies and materials

 plant efficiency increase

 maximize the use of space

 safety improvement

 cost savings

10

Others research such as Mecklenburgh (Chen, 2006) and Francis et al.

(Chang, 2000), minimizing the material handling cost is the most considered.

Reduced material movement (Holland, 1992) lowers work-in-process levels

and throughput times, less product damage, simplified material control and

scheduling, and less overall congestion. Hence, when minimizing material

handling cost, other objectives are achieved simultaneously (Yong, 1992).

2.2 Metaheuristics Approach to FLP

Metaheuristics are generally applied to problems for which there is no

satisfactory problem-specific algorithm, heuristic or when it is not practical to

implement both methods. Most commonly used Metaheuristics are targeted to

combinatorial optimization problems such as FLP. Various Metaheuristics such

as Simulated Annealing (SA) and Genetic Algorithm (GA) are currently used

to approximate the solution of the FLP large search space (Singh, 2006).

2.2.1 FLP Approach Based on Simulated Annealing (SA)

SA is a stochastic strategy for searching the ground state. The SA

algorithm derives its name from the fact that its behavior is controlled

principally by the temperature T as in the thermal annealing process. It is an

optimization scheme with non-zero probability for accepting inferior (uphill)

solutions. The probability depends on the difference of the solution quality and

the temperature. The probability is typically defined by 𝑚𝑖𝑛 {1, 𝑒−
Δ𝐶

T } where

∆𝐶 is the difference of the cost of the neighboring state and that of the current

11

state, and T is the current temperature as stated in (Chen, 2006).

However, the excessive running time is a significant drawback of the

classical SA process. To reduce the running time of SA for searching for

desired solutions more efficiently, several annealing schemes of controlling

the temperature changes during the annealing process have been proposed. For

instance, Fast Simulated Annealing (FSA) is a semi-local search and consists

of occasional long jumps (Chen, 2006). The cooling schedule of the FSA

algorithm is inversely linear in time which is fast compared with the classical

simulated annealing (CSA) which is strictly a local search and requires the

cooling schedule to be inversely proportional to the logarithmic function of

time.

A solution was proposed by (Chen, 2006) using a Fast Simulated

Annealing (Fast-SA) process to integrate the random search with hill climbing

more efficiently. The annealing process consists of three stages:

1) High-temperature random search stage

2) Pseudo greedy local search stage

3) Hill-climbing search stage

In the first stage, the T is set to infinity, so that the probability of accepting an

inferior solution approaches 1. The process is like a random search to find the

best solution. In the second stage, T is set to 0. Since the temperature is very

low, it can only accept a very small number of inferior solutions, which is like

a greedy local search. This process is called the pseudo-greedy local search

stage. The third stage is the hill climbing search stage. The temperature is

raises again to facilitate the hill climbing search stage. Thus, it can escape

from the local minimum and search for better solutions. The temperature

12

reduces gradually, and very likely it finally converges to a globally optimal

solution as mentioned in (Chen, 2006).

Since the new simulated annealing scheme save a lot of iterations to

explore the solution space, it could devote more time to finding better

solutions in the hill climbing stage. This makes the annealing much more

efficient and effective. From the experimental results, the new Fast-SA scheme

and the B*-tree representation have shown that it leads to faster and more

stable convergence to desired floor plan solutions. As claimed in the research

(Chen, 2006), Fast-SA is the best choice for the floor planning problem

addressed here (it achieved 13.9X speedup over classical SA for finding a

floor plan solution of less than 5% dead space for this case).

2.2.2 FLP Approach Based on Genetic Algorithm (GA)

In optimization problem, GA was normally used due to their well-

known strength of their robustness. GA robustness is mainly caused by the fact

that they deal with sample of candidate solutions to an optimization problem at

a time (Koza, 1992). To search for the global optimum, it first process starting

from a small set of feasible solutions (population) and generating the new

solutions in some random fashion. Performance of GA is problem dependent

because the parameter setting and representation scheme depends on the

nature of the problem (Aleisa, 2005).

In (Lu, 2008), GA was implemented to optimize facility layout designs

in the capital goods industry. The research study on the optimization (GA) to

achieve minimized material movement for given schedule of work. Geometric

13

information on resources and building constraints was included in the model

as well. In manufacturing layout, the design problems may be classified as

either green field or brown field. These two classes were common constraints

found in manufacturing layout planning. A green field problem involves the

design of a new manufacturing facility. The designer was free to select

processes, machines, transport, layout, building and infrastructure. Brown

field problems relate to the redesign of a facility with existing buildings,

machine tools and material handling equipment. Brown field problems were

often highly constrained, whereas green field problems offer more design

choice.

At first stage, the Genetic Algorithm process involves encoding

information on resources into chromosomes. Each chromosome is represented

as an alphanumeric string that has three parts, the machine number, its

rectangular size and location. Individual chromosomes are then randomly

selected to produce a population of chromosomes (candidate solutions).

Chromosomes are then randomly selected for crossover and mutation

operations with the probabilities specified. Crossover combines the

characteristics of two parents to produce an offspring, whereas mutation

produces random changes in a single chromosome. A repair function then

identifies and rectifies infeasible machine sequences. It starts by identifying if

any genes produced by crossover are duplicated. Any duplicated genes are

swapped between the offspring to ensure that each chromosome contains a

gene associated with each resource. The fitness testing algorithm first

translates the sequence of machines within the chromosome into a layout by

using a placement algorithm. This GA is a construction algorithm as the

14

placement algorithm generates an entire layout from scratch.

This implementation was tested in two case studies mentioned in (Lu,

2008) research paper. The green field problem mentioned in (Lu, 2008)

showed that the solution converged and reduced 70% of the total rectilinear

distance travelled. The results obtained when additional constraints were

introduced to reflect a brown field design problem also converged. In this case

there was an improvement of 30% compared to the company’s layout before.

However, this research only optimized the layout of manufacturing facilities

by minimizing material movement for given schedule of work. This research

is still far from a real world factory layout problem. A factory layout problem

consists of more constraints and thus causes the search to become more

complex to be modeled in GA.

2.2.3 FLP Approach Based on Genetic Programming (GP)

 The first experiments with GP were reported by Stephen F. Smith in

1980 and Nichael L. Cramer in 1985 (Koza, 1992). Later in the 1992, GP is

being research further by Koza. The term GP (Koza, 1992) has two meanings.

First, it is often used to subsume all evolutionary algorithms that have tree data

structures as genotypes. Second, it is defined as the set of all evolutionary

algorithms that breed algorithms using functional programming language, and

similar constructs.

For many problems, the most natural representation for a solution is a

hierarchical computer program rather than a fixed-length character string. The

size and the shape of the hierarchical computer program that will solve a given

15

problem are generally not known in advance, so the program should have the

potential of changing its size and shape. It is difficult, unnatural, and

constraining to represent hierarchical computer programs of dynamically

varying sizes and shapes with fixed-length character strings.

Representation schemes based on fixed-length character strings do not

readily provide the hierarchical structure central to the organization of

computer programs (into programs and subroutines) and the organization of

behaviour (into tasks and subtasks). Representation schemes based on fixed-

length character strings do not provide any convenient way of representing

arbitrary computational procedures or of incorporating iteration or recursion

when these capabilities are desirable or necessary to solve a problem.

Moreover, such representation schemes do not have dynamic variability. The

initial selection of string length limits in advance the number of internal states

of the system and limits what the system can learn.

GP paradigm continues the trend of dealing with the problem of

representation in GA by increasing the complexity of the structures

undergoing adaptation (Riccardo, 2008). In particular, the structures

undergoing adaptation in GP are general, hierarchical computer programs of

dynamically varying size and shape. Varies seemingly different problems in

artificial intelligence, symbolic processing, and machine learning can be

viewed as requiring discovery of a computer program that produces some

desired output for particular inputs. The search space for GP is the space of all

possible expressions created by compositions of the available functions and

available terminals for the problem. These are called programs and usually

expressed as syntax trees rather than as lines of code. The variables and

16

constants in the program are leaves of the tree. In GP they are called terminals,

whilst the arithmetic operations are internal nodes called functions. The sets of

allowed functions and terminals together form the primitive set of a GP

system.

 The manipulation of GP and GA structure for operations such

crossover and mutation is different. GP uses hierarchical structures while GA

uses one-dimensional fixed-length linear strings, chromosome. In GP, terminal

set and function set should be selected instead so that segmented sub tree is a

set of GP system itself.

Expression trees are built from a set of functions F and a set of

terminals T Functions in F are an expression node that consists of binary or

ternary arteries For example in Figure 2.1, binary function such as “+” and “-”

operators and ternary function such as condition expression when x is equal to

1, 2 or other values.

𝑓(𝑥) = {
1 + 𝑥 𝑤ℎ𝑒𝑟𝑒 𝑥 = 1
1 − 𝑥 𝑤ℎ𝑒𝑟𝑒 𝑥 = 2
0 𝑒𝑙𝑠𝑒

Figure 2.1 Expression tree

There’s a great variety of possible program trees, in fact there is an

infinite variety. The number of possible recursive compositions of functions

+

1 x

0

x?

-

1 x

x = 1
x = 2

else

17

and terminals is infinite if we do not limit the tree’s depth. In contrast the

standard fixed chromosome-length encoding of most GA give a finite number

of possible chromosomes.

The evolutionary process starts with an initial population of randomly

generated randomly generated computer expression trees composed. Genetic

programming iteratively transforms a population of expression trees into a

new generation by applying analogy of naturally occurring genetic operations.

These operations are applied to individual(s) selected from the population. The

individuals are probabilistically selected to participate in the genetic

operations based on their fitness. The iterative transformation of the

population is executed inside the main generational loop of the run of genetic

programming. The execution steps of genetic programming are summarized

as follows:

1. Randomly create an initial population (generation 0) of individual trees

composed of the available functions and terminals.

2. Iteratively perform the following sub-steps on the population until the

termination criterion is satisfied:

a. Execute each program in the population and ascertain its fitness

(explicitly or implicitly) using the problem’s fitness measure.

b. Select two individual trees from the population with a probability

based on fitness (with reselection allowed) to participate in the genetic

operations in (c).

c. Create new individual program(s) for the population by applying the

following genetic operations with specified probabilities:

18

i. Reproduction: Copy the selected individual program to the new

population.

ii. Crossover: Create new offspring program(s) for the new

population by recombining randomly chosen parts from two

selected programs.

iii. Mutation: Create one new offspring program for the new

population by randomly mutating a randomly chosen part of

one selected program.

iv. Architecture-altering operations: Choose an architecture-

altering operation from the available repertoire of such

operations and create one new offspring program for the new

population by applying the chosen architecture-altering

operation to one selected program.

3. After the termination criterion is satisfied, the single best program in the

population produced during the run (the best-so-far individual) is

harvested and designated as the result of the run. If the run is successful,

the result may be a solution (or approximate solution) to the problem.

The main evolutional operations of GP run exactly like GA. However

the representation of expression trees from GP and chromosome from GA that

set them apart.

19

CHAPTER 3.0

APPROACH AND ALGORITHMS

3.1 Model Overview

In this chapter, we discuss on the design used by our model. Our model

adopted three stochastic search algorithms for optimizing factory layout using

FSA, GA and GP. Before we jump into the search algorithm design, we will

show how a top down visual factory layout design is being translated to a

B*-tree, chromosome and expression tree representation for FSA, GA and GP

respectively.

3.2 Layout Representation Using B*-Tree

The tool adopts B*-Tree (Chang, 2000) representation for modeling

cells layout planning as it is used in Chen and Chang research (Chen, 2006).

Given a two dimensional factory layout (top view), a unique B*-tree in linear

time to model the placement can be constructed. Given a B*-tree, a legal

placement by packing the blocks in amortized linear time with a contour

structure can be obtained as well. Figure 3.1 and 3.2 show the top view of a

factory layout and its corresponding B*-tree. The B*-tree used was an ordered

binary tree whose root corresponds to the block on the upper-left corner. B*-

tree is constructed from an admissible placement in a recursive fashion.

20

Starting from the root, then recursively constructs the left and right branches

but never more than two branches. If the node branch out from the left means

it is placed on the left of its parent node and right branch is placed on the right

side of its parent node.

Figure 3.1 Top view of a factory layout

Figure 3.2 B*-tree representing the placement

In a B*-tree, the root is the most top left block and thus the coordinate

of the block as in Eq (1).

0) (0,)y ,(x rootroot (1)

If node nj is the right child of node ni, block bj is placed on the right-

21

hand side and adjacent to block bi; example as in Eq (2) given that x, y, w and

l denotes the block properties of its x-axis coordinate, y-axis coordinate, width

and length respectively. The coordinate of nj is calculated by the properties of

ni as in Eq (2).

)l y, w (x) y,(x iiiijj (2)

Otherwise, if node nj is the left child of ni, block bj is placed below of

block bi, with the x-coordinate of bj equal to that of bi; i.e., xj = xi. Therefore,

given a B*-tree, the x-coordinates of all blocks can be determined by

traversing the tree from top to bottom and vice versa of obtaining y-

coordinates.

3.3 Optimization Algorithms

In this research, we use FSA, GA with conditional crossover and GP.

All three search algorithms are stochastic strategy for searching an optimal

state instead of exhaustively searching all possible combinations. The

performance of each implementation will be discussed later in chapter 5

through our experiments observation.

3.4 Fast Simulated Annealing (FSA)

 Simulated Annealing (SA) is a stochastic strategy for searching the

ground state. The SA algorithm derives its name from the fact that its behavior

is controlled principally by the temperature T as in the thermal annealing

process. It is an optimization scheme with non-zero probability for accepting

22

inferior (uphill) solutions. The probability depends on the difference of the

solution quality and the temperature, P(A). The probability is typically defined

as in Eq. (3).

 TCenAP /1)((3)

n is a random number, ΔC is the difference of the cost of the neighboring state

and that of the current state, and T is the current temperature (Chen, 2006).

 However, the excessive running time is a significant drawback of the

classical SA process. To reduce the running time of SA for searching for

desired solutions more efficiently, several annealing schemes of controlling

the temperature changes during the annealing process have been proposed. For

instance, FSA is a semi-local search consists of occasional long jumps. The

cooling schedule of the FSA algorithm is inversely linear in time which is fast

compared with the classical simulated annealing which is strictly a local

search and requires the cooling schedule to be inversely proportional to the

logarithmic function of time.

 The model is using FSA as the optimization engine proposed by (Chen,

2006). The proposed FSA integrates random search with hill climbing more

efficiently by manipulating the temperature to three stages as shown in figure

3.3. The three stages of the annealing process are mentioned in chapter 2.2.1.

Figure 3.3 Three stages of FSA, temperature VS search time

23

 In the first stage, the T is set to a very huge number, so that the

probability of accepting an inferior solution approaches 1. The process is like a

random search to find the best solution. In the second stage, T is set to 0. Since

the temperature is very low, it can only accept a very small number of inferior

solutions, which is like a greedy local search. This process is called the

pseudo-greedy local search stage. The third stage is the hill climbing search

stage. The temperature is raised again to facilitate the hill climbing search

stage. Thus, it can escape from the local minimum and search for better

solutions. The temperature reduces gradually, and very likely it finally

converges to a global optimal solution.

 The prototype tool, adopts the B*-tree representation to model a

factory layout. Each B*-tree corresponds to a factory layout. Hence, the search

space consists of all B*-trees with the given nodes (blocks). The FSA

algorithm begins with a random generated initial solution. To find a

neighboring solution, we manipulate a B*-tree to get another B*-tree by the

following operations:

 Op1: Rotate a block

We randomly select a node in the B*-tree and rotate the block, which

does not affect the B*-tree structure. This is done through swapping

the values between the width and length of that specific block.

 Op2: Move a node/block to another place

We randomly delete a node and move it to another place in the B*-tree.

The random selection will only select the leaves in the tree. The

selected node is move to another empty position in the tree.

24

 Op3: Swap two nodes/blocks

We swap two nodes in the B*-tree. All the nodes in the tree will be

randomly select for swapping with another random node without

changing the width and length.

 After generating a new neighboring state, the state will go through an

evaluation function to obtain the fitness value. Based on the temperature, a

worse neighboring state might be chosen instead.

3.5 Genetic Algorithm (GA)

 Genetic algorithms are search algorithms based on the mechanics of

natural selection and natural genetics (Holland, 1992). GA behaves to imitate

the development of new and better populations among different species during

evolution (Tam, 1992). Unlike most of the heuristic search algorithms, GA

conducts the search through the information of a population consisting of a

subset of individual solutions. Each solution is evaluated by a fitness function

to associate with a fitness value, which is the objective function value of the

solution. In this case, we tried to minimize our fitness value which result in

shorter travelling distance, less space wastage and less overlapping space.

Solutions to optimization problems are coded to a finite B*-tree representation

based on the machines quantities demand. The genetic algorithms work on

these trees and encoding is done through the structure named chromosomes,

where each chromosome is made up of units called genes. In the beginning of

25

the algorithm, each chromosome is generated randomly as the initial

population. There are some determining factors that strongly affect the

efficiency of genetic algorithms:

 Evaluation functions algorithms.

 The representation of the solutions.

 The generation of the initial population.

 The selection of individuals in an old population (parents) that will be

allowed to affect the individuals of a new population.

 The genetic operators that are used to recombine the genetic heritage

from the parents to produce children (crossover and mutation).

 The selection of individuals that will be allowed to affect the following

generation is based on the fitness of the individuals. This is done in such a way

that individuals with better fitness are more likely to be chosen to become

parents. The three population controls are as below:

1) Population control though candidate selection:

It has proven very efficient to search for locally optimal solutions in

the neighborhood of the children (Holland, 1992). If one is able to find

a better solution then it will replace the original child as a member of

the new population.

2) Population control of new individuals:

It is possible that a child to has a worse fitness than its parents. In such

cases the child will not be accepted in the new generation.

3) Population Elimination:

For an ideal case, a new population should converge to a more optimal

26

solution from its previous population but this is not guarantee. In the

worst scenario, the new population may result in having the same

solution as its previous population. This shows that the search is trap in

a local optimal and a new population initialization will be generate

again.

 Note that the GA implementation requires the specification of certain

parameters such as population size, and number of generations and n control

the size of the population. Then the genetic algorithm procedure can be

described as in Figure 3.4.

Figure 3.4 Genetic Algorithm Structure

Input: A problem instance

Output: A (sub-optimal) solution

BestSolution;

n = population size;

P = initialize P, and evaluate the fitness of the individuals in P

P2 = empty array for coming new population

m = mutation rate

cr = crossover rate

do

BestSolution = rank(P)

 do

 if probability(cr)

 if fitness(crossover(ci1, ci2, P)) better than (ci1, ci2)

 P2 add crossover(ci1, ci2, P)

 if mutation(m, P)

 mutate(ci)

 until size(P2) equal to n

 P=P2

 NewOptimalSolution = rank(P)

 if NewOptimalSolution equal to BestSolution

 Terminate P

 P = initialize P, and evaluate the fitness of the individuals in P

 else

 BestSolution= NewOptimalSolution (sub-optimal solution from

the population)

until (termination condition is not satisfied)

Return BestSolution

27

3.5.1 GA Crossover

By combining the encoded solution strings of two parents, two

children are created. If one considers the biological origin of the genetic

algorithms it makes sense to denote the coded solution string “genome” and

look at this procedure as a result of mating.

 1-point crossover is applied to perform a crossover operation as

described in Figure 3.5. Firstly, a crossing point within the chromosome’s

genes is chosen randomly. Then the new chromosomes get the header part and

the tree structure from the first parent. The remaining genes will be obtained

from the second parent in the order as they appear on the second parent.

Figure 3.5 GA: Swapping between parent 1 and parent 2

 To avoid chaotic behavior, in this work we introduce conditional

28

probability crossover method. Offspring generated from crossover can prompt

poor fitness value due to infeasible machines layout as exhibited during

experiments and results. Given a scenario where the offspring are worse than

their parents as in Figure 3.6 crossover does not help to converge to the global

solution. Hence, not all individuals in the new population are generated by this

operator. The probability of applying this operator is controlled by a crossover

rate which is a constant percentage respective to the next generation.

Figure 3.6 Bad offspring generated from crossover

3.5.2 GA Mutation

 In order to give the populations new impulses some random changes in

the genomes are allowed to occur. The mutation operator changes a “gene” in

a solution with a probability of the mutation rate. By doing so, this reduce the

29

chances of the algorithm to behave as a greedy search and trap in a local

optimal. Mutation are done by three different operations, these are:

Op1: Rotate a block.

We randomly select a node in the B*-tree and rotate the block, which does not

affect the B*-tree structure. This is done through swapping the value between

the width and length of that specific block.

Op2: Move a node/block to another place.

We will randomly delete a node and move it to another place in the B*-tree.

The random selection will only select the leaves in the tree. The selected node

is move to another empty position in the tree.

Op3: Swap two nodes/blocks.

We swap two nodes in the B*-tree. All the nodes in the tree will be randomly

select for swapping with another random node without changing the width and

length.

3.6 Genetic Programming (GP)

 Genetic Programming (GP) is an automated methodology inspired by

biological evolution to find computer program that best performs a user-

defined task. It is therefore a particular machine learning technique that uses

an evolutionary algorithm to optimize a population of computer programs

according to a fitness landscape determined by a program's ability to perform a

30

given computational task.

 In the early (and traditional) implementations of GP, program

instructions and data values were organized in tree structure or known as

expression tree (Koza, 1992). This method is adopted in Perez’s work in

“Solving Facility Layout Problems Using Genetic Programming” (Jaime,

1996). In this research on GP, the design of modeling our factory problem

statement into GP will be using Perez’s work as reference.

 Just as GA, GP search through the information of a population

consisting of a subset of individual solutions. However, these individual are

represented in expression tree, not chromosome. Expression tree is evaluated

by a fitness function to associate it with a fitness value, which quantify the

quality of a solution. Since the B*-tree design is an expression tree and it fits

perfectly fine for GP design without translation method as GA did earlier.

However, this does not change the efficiency factors of the search

performance. These determining factors of GP performance are as mentioned

in chapter 3.3 earlier.

 In this research, the representation is the same as the expression

tree/program being used by J Garces-Perez in facilities layout optimization

using GP (Jaime, 1996). Both expression trees are programs that consist of

operators, top, down, left and right that describe the position of the leaves

which is the machines in our layout. Figure 3.7 is the representation used in

our research with the top down machine layout being translated from a tree

expression.

31

Figure 3.7 GP expression tree

 In the beginning of the algorithm, each tree is generated randomly as

the initial population The following generation is based on the fitness of the

individuals (tournament). This is done in such a way that individuals with

better fitness are more likely to be chosen to become parents. The combination

of the population consists of the following four operations:

3.6.1 GP Crossover

Crossover is applied on an individual by simply switching one of its

nodes with another node from another individual in the population. With a

tree-based representation, replacing a node means replacing the whole branch.

This adds greater effectiveness to the crossover operator. The expressions

resulting from crossover are very much different from their initial parents.

 1-point crossover is applied to perform a crossover operation as

described in Figure 3.8. One of the nodes in both parents tree structure is

chosen random for crossover. The new child gets the tree structure from the

first parent but the crossover point node is replaced with the sub branches of

the second parents.

32

Figure 3.8 GP: Swapping between parent 1 and parent 2

3.6.2 GP Mutation

As for mutation and population control design, there are the same as

GA that we mentioned earlier in chapter 3.4. GP implementation requires the

specification of certain parameters such as population size, and number of

generations. The genetic programming algorithm procedure is same as Figure

3.4. The difference lies in the crossover method due to GP representation of

the optimal solution.

3.7 Optimization Goal

 In this research, optimal result is based on four main optimization

goals. Space utilization (SU) and material flow (MF) goals can be adjusted in

33

the fitness function. As for Overlapping Placement (OP) goal is factor in the

formula of SU and manning ratio is preprocessing of the data. In later section,

we will discuss in detail on how to obtain SU, MF, OP and manning ratio. Eq.

(6) is the formulated optimization fitness function adopt in our model. The

goal is to minimize our fitness function. The priority of these two goals is

controlled by two constant as scaling factors, b and c.

minimize Fitness value = (SU)b + (MF)c (4)

where b and c are constant.

3.7.1 Calculate Space Utilization and Overlapping Placement

 From a B*-tree, the factory layout can be mapped to a matrices

representation. For each coordinate in the layout, it will be mapped to matrices

which indicate whether that particular space is being occupied by a block or

more than one blocks or it is empty. The mapping is done from coordinate (0,

0) till the largest x-axis and y-axis coordinates which are occupied, max(x-

axis) and max(y-axis). The rows and columns of the matrices is equivalent to

the x and y coordinates of the factory layout. The translation from a factory

layout design to a matrices representation is shown in Figure 3.9 and 3.10.

Figure 3.9 Factory layout design

34

Figure 3.10 Matrices representation of the factory layout

The areas of overlapping placement (OP), occupied space (OS), waste space

(WS) and space utilization (SU) are defined as in Eq. (7).

OS) * (OP (OS) (WS) (SU)

0) valuesmatrices theof (sum) (WS

1) valuesmatrices theof (sum) (OS

1) valuesmatrices theof (sum (OP)

 (5)

3.7.2 Calculating Material Flow

 Material flow is the sum of all distance between related operation

areas. The start and end points of the distance path are from the centroids of

both operation areas. In this case, the distance is the Euclidean distance

between two centroids as shown in Figure 3.11.

Figure 3.11 Material flow (based on Euclidean distance)

 The flow path of the whole factory has to be predefined earlier. Each

operation can have more than one flow path flowing in or out. A scaling factor

35

can be set to define the material flow priority. High runner products induce

higher material flow. A scaling factor (constant multiplier) can be set to each

particular material flow path to model the priority of the material flow

influence. The scaling factor will be used to multiply with the Euclidean

distance of that particular flow which boosts up the effect to the total material

flow. For example, given testers A, B and C with material flow from AB is

higher priority (larger constant) and BC (smaller constant) is lower priority,

the total material flow (MF) distances incurred is calculated with the Eq (6)

below,

 𝑀𝐹 = (𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐴, 𝐵) × 𝑔) + (𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐵, 𝐶) × ℎ) (6)

where both g and h are constants. As we are trying to minimize MF, larger

scaling factors will amplify the respective calculated Euclidean distance more

and has higher influence of the total MF.

3.8 Obtaining Manning Ratio Arrangement

 The layout arrangement of the machines dictates the manning ratio that

can be supported; e.g. one operator control 2, 3 or 4 machines. Arrangement

that allows flexible manning ratio is by placing machines with their controller

facing each other (cross box) as shown in Figure 3.12. A cross box

arrangement allows equivalent distances for an operator travel from one

machine controller to another. This arrangement exhibits feasible manning

ratio flexibility for one operator to control 2 or 4 machines.

36

Figure 3.12 Four machines and an operator cross box arrangement.

 The number of machines dictates the numbers of cross box

arrangement that is needed. Cross box can be expended to allow more

manning ratio feasibility as shown in Figure 3.13.

Figure 3.13 Arrangement that support flexibility manning ratio of 1

operator to control 6 machines

 Manning ratio is a prefix requirement imposed the input data before

sending to the model. Since this model is developed for Intel Manufacturing

usage, every machine type is configured to a defined manning ratio number

37

and need to be followed exactly. For instance, given machine with quantity of

8 and manning ratio is define as 1 to 4 (an operator is able to control up to 4

machines), this machine is configured into the model as two square dimension

of 2 X 2 of the specified machine type.

38

CHAPTER 4.0

DATA PREPARATION

4.1 Case Studies Overview

Two case studies are used to validate our models. In case study 1,

mock-up data is created to observe the model result based on different scaling

factors setting of the fitness function. In case study 2, real industrial data from

Intel Manufacturing is used. The results shown in case study 2 are verified by

layout industrial engineers from Intel Manufacturing.

4.2 Case Study 1: Mock-up Data for Model Validation

In Case study 1, five experiments are conducted to test the effect of

different scaling factors of the fitness function as mentioned in chapter 3. The

scaling factors of b and c as mentioned in chapter 3.7, Eq 6, was configured

according to Table 4.1. This observation helped us to understand the effect

balancing the optimization goal priority with the right setting.

Scaling

Factor

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

b 1 0 1 1 1

c 0 1 179 89.5 268.5

Table 4.1 Scaling Factor Configuration Setting

 Both experiment 1 and 2 are extreme cases where we only considered

space utilization and material flow respectively. With the fitness value derived

39

from experiment 1 and 2, we calculated the degree of differences between

them and use the value in experiment 3. In chapter 5, fitness value for

experiment 1 is 16 X 10
4
 and fitness value for experiment 2 is 896. This means

that space utilization value is 179 times larger than material flow value in

rough estimation. Hence in experiment 3, c is set to 179. In experiment 4 and

5, we create a lower and upper bound using half of 179 as reference which is

89.5 and 268.5 respectively.

 Sample data used in case studies 1 are rectangles that can be combines

back to a square. A square is sliced into 7 smaller rectangles as shown in

Figure 4.1. This helped us to validate the model and suggest the most optimal

layout based on space utilization without considering the process flow of

connected rectangles. The process flow of each connected rectangles are listed

in Table 4.2 with equal priority with value 2 and 0 means that it is an

independent component without any process flow to another component.

Figure 4.1 Sample data of a perfect square

Rectangle Width Length Connected Rectangles Priority Value

A 130 318 B 2

B 82 400 A 2

C 93 140 D 2

40

D 93 130 C 2

E 160 185 F 2

F 65 270 E 2

G 85 160 0 (independent rectangle)

Table 4.2 Case study 1 configuration setting

4.3 Case Study 2: Real Industrial Data

In case study 2, we used real industrial data based on Intel

Manufacturing NCO6, Penang NetComm and Chipset factory layout. These

data are based on real layout challenges faced by engineers and managements.

Often, what is the best decision to decide the best factory layout retrofit is

common for an existing factory. Through manual layout design there is no

scientific way to measurement a layout quality. Hence, in this case study, three

experiments, i.e. experiment 6, 7 and 8, took place in giving a suggested

layout with a fitness value as quality indicator.

In experiment 6, data is obtained from capacity engineers to provide

maximum machines quantities needed to fit into a factory under extreme

production condition. In this experiment, we shall observe how a suggested

layout is able to fit all machines into a limit empty space without jeopardizing

the process flow. Such layout will serve as a guideline for future layout

planning. The input setting for the experiment run is as in Table 4.3

Tester Width Length Controller location Quantity Priority

Value to

FOL

A 9 11 Length 46 6

B 19 22 Width 16 5

41

C 22 24 Length 5 4

D 15 18 Width 4 3

E 19 26 Width 14 2

F 14 20 Width 10 1

Table 4.3 Input Setting For Experiment 6

In experiment 7, data is obtained from layout engineers where

machines retrofit took place. A total of 11 new machines for tester A and tester

B respectively, need to be arranged in an existing layout. There was existing

tester B which already in place. Hence, it is best if new tester B is placed next

to the existing tester B. It is a simple machine arrangement allocation.

However, what visually look good in a layout design doesn't mean there’s no

better alternative. This experiment helps to validate the quality of the manual

design and provide another alternative suggestion. The manual designs

suggested by engineers are as in Figure 4.2. The input setting for the

experiment run is as in Table 4.4.

This is a simple experiment but it was a real scenario happened in

NCO6, Penang factory for Catalyst and CMT machines retrofit effort. Since

machines retrofit is a high costing task, management requires scientific data to

prove the best course of action. In the end, management accepted the solution

from the model instead of the manual layout.

42

Figure 4.2 Manual suggested layout by engineers

Tester Width Length Controller

Location

Quantity Material

Flow

Priority

Value

A 15 18 Width 11 Tester A 3

B 15 18 Width 11 FOL 2

Table 4.4 Input setting for experiment 7

 In experiment 8, data is obtained from layout engineers where the

machines quantities are exactly the same as the existing factory. The purpose

of the experiment is to evaluate the existing layout quality and provide a better

layout if available. Through the fitness value, we shall calculate the

improvement of a suggested layout compare to the existing layout. The input

setting for the experiment run is as in Table 4.5. The graphical representation

is print screen image of each particular machine from AutoCAD instead of

using plain colored buttons. Note that the different visual representation in this

section does not dictate the model differently than the previous experiment.

Tester Graphical

Representati

on

Width Length Controller

Location

Quantity Priority

Value to

FOL &

EOL

A

9 11 Length 22 6

B

19 22 Width 11 5

Tester A

B A

FOL

43

C

22 24 Length 7 4

D

15 18 Width 17 3

E

19 26 Width 6 2

F

14 20 Width 8 1

Table 4.5 Input setting for experiment 8

44

CHAPTER 5.0

EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Experiments Overview

In this chapter, we will discuss on the analysis results with experiments

defined from chapter 4. Experiments defined are split into to two case studies.

Case study 1 is experiments ran using mockup data to analyze the scaling

factors setting of the fitness function. In case study 2, experiments ran using

real industrial problem and data from Intel Manufacturing.

5.2 Case Study 1: Results and Analysis

 In case study 1, our models ran with mock-up data specified in chapter

4.1. The results of our model are as in Table 5.1, 5.2, 5.3, 5.4 and 5.5 for

experiment 1, 2, 3, 4 and 5 as mentioned in chapter 4. The table shows the

fitness value as our indicator of a layout quality.

45

Layout Algorithm Fitness Value

FSA 16 X 10
4

GA 16 X 10
4

GP 16 X 10
4

Table 5.1 Experiment 1 results with b = 1 and c = 0

46

Layout Algorithm Fitness Value

FSA 896

GA 896

GP 896

Table 5.2 Experiment 2 results with b = 0 and c = 1

47

Layout Algorithm Fitness Value

FSA 27.0 X 10
4

GA 33.6 X 10
4

GP 29.3 X 10
4

Table 5.3 Experiment 3 results with b = 1 and c = 179

48

Layout Algorithm Fitness Value

FSA 29.3 X 10
4

GA 35.1 X 10
4

GP 30.8 X 10
4

Table 5.4 Experiment 4 results with b = 1 and c = 89.5

49

Layout Algorithm Fitness Value

FSA 40.6 X 10
4

GA 42.8 X 10
4

GP 42.8X 10
4

Table 5.5 Experiment 5 results with b = 1 and c = 268.5

50

In experiment 1, b is set to 1 and c is set 0 which means only the space

utilization goal is considered and not material flow. All algorithms converged

to the same result where fitness value equal to 16 × 104. The result showed

the best layout orientation for space utilization due to the reason that no empty

space existing in between the rectangles. All rectangles are fit perfectly back

to the original square that we sliced out.

 In experiment 2, b is set to 0 and c is set to 1 where only material flow

goal is considered but not space utilization. All algorithms converged to the

same result with fitness value equal to 896. All connected rectangles with

material flow set in the configuration and being placed side by side. This

experiment is used to estimate the most optimal solution for material flow as

reference. Both fitness value from experiment 1 and 2 are used to estimate the

scaling factors of b and c in later experiments, 3, 4 and 5. Since space

utilization value is estimated to be 179 times larger than material flow, hence

in experiment 3, c is set to 179.

Experiment 3 exhibits the best optimal solution for our case study with

FSA algorithm when b is set to 1 and c is set to 179. The result from FSA

showed a fitness value of 27 × 104 which is best compare to GA and GP with

33.6 × 104 and 29.3 × 104 respectively. Layout from FSA result showed all

connected rectangles are lay side by side and it managed to derive the best

space utilization solution as in experiment 1.

In experiment 4 and 5, b is set to 1 and c is set to 89.5 as the lower

limit and b is set to 1 and c is set to 268.5 as upper limit respectively. Though

all optimal results showed the connected rectangles are placed side by side, the

fitness value indicates that FSA result in experiment 3 is the better one.

51

This shows the important of setting the right balance which reduce the

bias between two optimization goals. However, in this experiment we are only

running with seven rectangles as input data. This allows our model to

converge to a consistent result of both extreme case for space utilization and

material flow. In real industrial data, obtaining such result with a large

numbers of input data required a long processing time.

Process flow is deprioritized when compared to space utilization in

Intel Manufacturing practice. Having a healthy material flow is a nice to have

practice but it is not as important as space utilization. Since Intel Malaysia is

an assembly and test manufacturing, materials travel within the factory does

not incurred cost as claimed in this respective industrial environment.

However, space utilization can be translated to cost as every empty space in

factory is capacity of factory to store materials, machine and etc. As a result,

having fair scaling factors setting in the fitness function does not always

guarantee the best solution rather it should be adjusted to business need.

5.3 Real Industrial Factory Retrofits

 Experiments were done on Intel Manufacturing Factory in NCO6,

Penang NetComm and Chipset, where the machine types, machine quantity,

machine dimension, machine controller location, material flow, and existing

area are given as inputs. NCO6 is high mix low volume factory that consist of

more constraints compare to CPU factory due to CPU factory has less process

flow routes. These results were analysis through observation in term of space

utilization, material flow, manning ratio and overlapping placement avoidance.

52

 In experiment 6, given an existing factory floor, the front of line (FOL)

dimension is 194 x 79 at location (0, 0). From FOL, materials flow to tester A,

B, C, D, E and F. Tester A is the highest product runner with the most material

flow activities and followed by tester B, C, D, E and F according. The details

of the testers are shown in Table 4.3.

 With the input parameters passed to the prototype tool the result are

shown in figure 5.1 with fitness value of 4592.7 X 10
4
. Every iteration, the

search will converge to an optimal solution. The best optimal solution will be

stored until a better optimal solution is found in the next iteration.

Figure 5.1 Experiment 6 result using FSA

 The convergence of the search characteristic is shown in Figure 5.2. In

the first stage 1, the temperature is set to high and decrease overtime. During

this stage, the search behaves as random search. In the stage 2, the temperature

had decreased to very low. The search behaves as a pseudo-greedy local search

and converges to a local optimal. Lastly in stage 3 the temperature rises again

and force search behaves as a hill climbing search. This will allow the search

to escape from local optimal and having higher chances to converge to a better

solution.

Tester D

Tester B

Tester A

Tester C

Tester E

Tester F

53

Figure 5.2 Search trend of the three stages FSA; fitness value VS iteration

(time)

 With the input parameters passed to the prototype tool using GA. The

result is shown in Figure 5.3 after running 625 generations with 10%

crossover probability rate. The algorithm performance was tested using

different crossover rate. The algorithm is stopped when it reaches the

approximately similar results in term of fitness level as shown in Table 5.6.

Figure 5.3 Experiment 6 result using GA

Crossover Rate Numbers of

Generation

Fitness Value

100% 2171 4593.9 X 10
4

50% 1184 4594.1 X 10
4

Tester D

Tester B

Tester A

Tester C

Tester E

Tester F

FOL

54

10.00% 625 4593.5 X 10
4

Table 5.6 GA benchmark result using different crossover rate

Result from the prototype tool shows that:

Space utilization:

Although the result exhibit minimum waste space, all testers are able to fit

inside the given empty space. The space utilization is optimal since there are

empty existing on the outer side on the factory and only a small empty area (in

the middle of tester yellow, blue and red) surrounded by testers.

Material flow:

The solution suggest managed to place tester red, yellow and green side by

side with the FOL living pink, blue and purple on the outer side. This

arrangement is optimal since the priority defined are red, yellow and green as

the top three priorities and only follow by pink, blue and purple.

Manning ratio:

By using the cross box as guideline, the manning ratio is feasible for all tester

respectively to their total machine. No arrangement prohibits the manning

ratio that can be support.

Overlapping placement avoidance:

The result shows no overlapping space which is valid since the overlapping

space scaling factor is set with a very large constant. This will enforce the goal

to be as a rule instead of a goal.

55

 In our second run using the same input parameters, result derived was

as shown in Figure 5.4 using GP. The algorithm performance was tested using

different crossover rate. The algorithm is stopped when it reaches the

approximately similar results in term of fitness level as shown in Table 5.7.

After running 483 generations with 10% crossover probability rate, it showed

the best fitness value of 4593.5 X 10
4
. Interestingly, result obtained from GP

is exactly the same as GA but converge faster than GA. Both GP and GA

showed that a trend of lower crossover rate help in converging to a better

solution.

Figure 5.4 Experiment 6 result using GP

Crossover Rate Numbers of

Generation

Fitness Value

100% 1520 4593.9 X 10
4

50% 1462 4593.7 X 10
4

10.00% 483 4593.5 X 10
4

Table 5.7 GP benchmark result using different crossover rate

 Result from the prototype tool shows that space utilization, material

flow, manning ratio and overlapping placement avoidance are optimized as

mentioned in earlier analysis for GA.

 The summary of all three algorithms for experiment 6 is as shown in

Tester D

Tester B

Tester A

Tester C

Tester E

Tester F

FOL

56

Table 5.8. FSA found a better optimal solution and faster as compared to GP

and GA. GP and GA converged to the same optimal solution but GP found the

solution with lesser generations as compared to GA.

Algorithm Fitness Value Frequency Time per cycle (50

samples)

FSA 4592.7 X 10
4
 365263(iterations) 0.711 sec

GA 4593.5 X 10
4
 625(generations) 6.36 mins

GP 4593.5 X 10
4
 483 (generations) 8.05 mins

Table 5.8 Experiment 6 performance summary

 In experiment 7, the existing factory floor had already occupied by

existing tester B and other non-related testers. In this experiment, limited

empty space and only two machines types were re-layout, A and B tester.

Space utilization, material flow and manning ratio constraints could easier

observe in this case study. The details of the testers are shown in Table 4.4.

 The results from all three algorithms are the same and shown in figure

5.5. FSA converge to the optimal solution at 136 iterations, GA after running

13 generations and GP after 8 running generations. The numbers of iterations

to converge to an optimal solution was less compared to experiment 6. This

was due to the search space reduces as complexity reduce.

Figure 5.5 Experiment 7 result using FSA, GA and GP

FOL

57

Result from the prototype tool shows that:

Space utilization:

The space utilization is optimal but not fully utilized since one empty machine

area was created in each tester yellow and red areas. This was due to the

priority for manning ratio and material flow constraints have higher priority

than space constraint.

Material flow:

Suggested solution showed that the 22 remaining tester red and blue were

place at the available space which was closest to existing tester blue area.

Material flow constraint was fully satisfied in this case study.

Manning ratio:

The manning ratio arrangement was feasible since both types of testers were

arranged in a cross box manner. Manning ratio constraint was fully satisfied in

this case study.

 The summary of all three algorithms for experiment 7 is as shown in

table 5.9. All three algorithms converge to the same optimal solution. FSA

found the optimal solution the fastest and followed by GP and GA

respectively.

Algorithm Fitness Value Frequency Time per cycle (50

samples)

FSA 3.2 X 10
3
 136(iterations) 0.711 sec

GA 3.2 X 10
3
 13(generations) 6.36 mins

58

GP 3.2 X 10
3
 8 (generations) 8.05 mins

Table 5.9 Experiment 7 performance summary

 Based on Figure 4.2, the fitness value calculated is 3.5 X 10
3
. This

means the solution found by the model is actually better alternative to the

manual layout design. This simple experiment shows that although a layout

design visually looks good but without a method of measurement we may

overlook other better option.

 Both experiments 6 and 7, show that the model is able to optimize the

multiple constraints problem faced by factory floor planning. The numbers of

machines and types drastically affect the search space since factory floor

planning is a NP-complete problem.

The finally experiment 8 is done using real data from existing NCO6

factory layout. Table 4.5 shows the breakdown of all machines in quantities.

This experiment is to test this model result against the existing layout which

was done through many rounds of layout retrofit designed manually. To

evaluate the quality of layout the fitness value is computed using the

evaluation functions.

Based on the modal evaluation, it shows that the existing NCO6 layout

in Figure 5.6 having the fitness value of 3694.7 X 10
4
 and the fitness value for

the suggested layout in figure 5.7 is 2519.93 X 10
4
 using FSA. The different of

both fitness values is 117484.64 and translated as 31% better than the existing

layout in term of fitness value since we are minimizing our fitness value.

By visual inspection, Figure 5.6 showed testers A, B, C and F are

scattered around. The layout of these testers with empty spaces creates

inefficiency material flow, space utilization and manning ratio. Contrary from

59

Figure 5.6, Figure 5.7 group up all testers which waste space and provide an

optimal manning ratio arrangement as defined in chapter 3.8. Lastly, the

material flow was well arranged as the top priority testers are placed next by

the FOL & EOL.

Figure 5.6 Existing NCO6, Penang factory layout

Figure 5.7 NCO6, Penang suggested factory layout

5.4 Experiments Results Summary

 In case study 1, the model shows that it is able to reorganize a sliced

square from seven rectangular components back to its original shape when

space utilization is the only priority concerned. When material flow is the only

priority concerned, all three algorithms converge to the same optimal solution.

Occupied

Space

60

With the two fitness value calculated from space utilization and material flow,

we had derive a normalize scaling factors for b and c. It is observed that in

experiment 3, the results obtained show a well balance of space utilization and

material flow.

 In case study 2, the optimal results obtained from the model are

verified and endorsed by layout industrial engineers and manufacturing

workgroup. In experiment 7 and 8, results found are better than initial solution

from manual design in term of fitness value. These solutions are used for

decision making and future improvement guidelines.

 In term of algorithms performance, FSA shows better results in term of

fitness value consistently compared to GA and GP as in Table 5.3, 5.8 and 5.9.

As shown in Table 5.8 and 5.9, FSA has the fastest processing time followed

by GP and GA.

61

CHAPTER 6.0

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this research, we had developed and observed the performance

between FSA, GA and GP on facilities layout optimization. The experiments

proved that the prototype tools are able to improve a given initial solution

using the proposed methodologies. Results generated in our experiments are

verified and endorsed by experienced layout industrial engineers from Intel

Manufacturing, Penang. The model allows flexibility in layout planning for

new factory start up as well as existing factory with existing objects.

From our case study 1, we had showed the importance of setting the

right scaling factor to avoid bias between different optimization goals. By

using the extreme scenario for each optimization goals, the values derived can

be used to estimate normalization scaling factors. Upon deriving all

normalized scaling factors a more accurate optimization results can be

archived with fine tuning.

However, interestingly FSA converges to an optimal solution with less

iteration as compared to GP and GA. GP converged to an equivalent or better

optimal solution found by GA with less generations being generated. Based on

our hypothesis, GA did not perform as comparatively with the rest of the two

algorithms due to chromosome encoding. Having our layout representation

62

design in expression tree it does not work well after translating to chromosome

representation. The crossover method in GA after encoding to chromosome

exhibit worse fitness state candidate from its parents and better off with less

crossover rate. A suitable layout representation and crossover method will

need to be research in order to make the GA or GP for improvement.

FSA had consistently performance better than GA and GP in both case

studies. This helped us to conclude that our model is suitable to run with FSA

than GA and GP, since both evolutionary searches are more random. By

observing the time per cycle, GA and GP are slower than FSA since both

evolution search methods are computational intensive.

6.1 Future Works

This research presented a two dimensional layout optimization

specifically for semiconductor factory. This research did not consider three

dimensional constraints. In new factory design, it may have walkable ceiling,

air ventilation and etc. Certain machine has piping connected to the ceiling. At

such situation, the model requires to factor in void area at the ceiling as well

and not just the empty spaces of the factory floor.

In addition, the optimization goal’s scaling factors used in the objective

function can be improved by establishing an estimation function to predict

normalized weights. The tuning of the optimization goals priority is an

optimization research itself where it can be adopted by all general

optimization models usage. This will be future work to study on multiple

objectives function for SA (Sanghamitra, 2008), GA (Abdullah, 2006) and GP

63

(Lavinia, 2009).

As shown in our experiment 2, 3, 4, 6 and 7, the best optimal solution

found is by FSA, followed by GP and GA respectively. This shows that our

model implementation is suitable to run with a greedy search algorithm.

Improvement for GA and GP, require a better representation structure for

layout and crossover operator. The crossover operation can be improved to

generate more feasible offspring. The new offspring are important as they help

the new generation to converge to an optimal solution.

In our modal, mutation rate and crossover rate is a constant setting.

Mutation rate for both GA and GP is set to 10% and crossover rate is set from

10%, 50% and 100%. As for future research, these two operations can be

further refined with an optimal setting based on the problem statement.

Through calculating the error threshold of the selection process, there’s a

correlation between the mutation and crossover rate (Gabriela, 2000).

64

REFERENCES

Abdullah, K. ,. D. W. C. &. A. E. S., 2006. Multi-objective Optimization using

Genetic Algorithms. Reliability Engineering and System Safety, September,

pp. 992-1007.

Aleisa, E. E. &. L. L., 2005. For Effective Facilities Planning: Layout
Optimization then Simulation, or Vice Verse. s.l., Proceedings of Winter

Simulation Conference.

Chang, Y. C. ,. C. Y. W. ,. W. G. M. &. W. S. W., 2000. B*-trees: A New
Presentation for Non-slicing Floorplans. Los Angeles, Proceedings of

ACM/IEEE Design Automation Conference.

Chen, T. C. &. C. Y. W., 2006. Modern Floorplanning Based on B*-trees and

Fast Simulated Annealing. IEEE Trans. Computer-Aided Design, 26(4).

Chiang, W. C. &. K. P., 1996. Improved Tabu Search Heuristic for Solving

Facility Layout Design Problems. International Journal of Production
Research, Volume 34, pp. 2565-2585.

Gabriela, O. ,. I. H. &. H. B., 2000. Optimal Mutation Rates and Selection
Pressure. s.l., Proceedings of the Genetic and Evolutionary Computation

Conference.

Garey, M. R. &. J. D. S., 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: WH Freemen.

H’astad, J., 2003. Inapproximability– Some History and Some Open

Problems. Proceedings 18th IEEE Annual Conference, Volume 18, pp. 265-

266.

Holland, J. H., 1992. Adaptation in Natural and Artificial Systems.
Cambridge: MIT Press.

Jaime, G. P. D. A. S. &. R. L. W., 1996. Solving Facility Layout Problems using
Genetic Programming. Massachusetts, GECCO Proceeding of the First

Annual Conference on Genetic Programming.

Koopmans, T. C. &. B. M., 1957. Assignment Problems and the Location of

Economic Activities. Econometrica, Volume 25, pp. 53-76.

Koza, J. R., 1992. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge: A Bradford Book.

Kusiak, A. &. H. S., 1987. The Facility Layout Problem. Eur J Operational
Research, Volume 29, pp. 229-251.

Laursen, P. S., 1993. Simulated Annealing for the QAP-Optimal Tradeoff

Between Simulation Time and Solution Quality. Eur J Operational Research,
Volume 69, pp. 238-243.

65

Lavinia, F. &. A. P., 2009. Multiobjective Genetic Programming for Nonlinear

System Identification. Springer Link Adaptive and Natural Computing
Algorithms, Volume 5495, pp. 233-242.

Lin, W. Y. &. L. W. Y., 2003. Adapting Crossover and Mutation Rates. Journal
of Information Science and Engineering, Volume 19, pp. 889-903.

Lu, H. C. &. H. C., 2008. Using a Genetic Algorithm Layout Design Tool to

Optimise Facility Layout Designs in the Capital Goods Industry. Conference
Name: The Second International Conference on Operations and Supply Chain
Management, pp. 273-278.

Mecklenburgh, J. C., 1985. Process Plant Layout. New York: Longman.

Riccardo, P. ,. W. B. L. &. N. F. M., 2008. A Field Guide to Genetic
Programming. s.l.:Creative Common.

Sanghamitra, B. &. S. S., 2008. A Simulated Annealing-Based Multiobjective.

IEEE Transactions on Evolutionary Computation, 12(3), pp. 269-283.

Singh, S. P. &. S. R. R. K., 2006. A Review of Different Approaches to the

Facility Layout Problems. The International Journal of Advanced
Manufacturing Technology, 30(September), pp. 5-6.

Tam, K. Y., 1992. Genetic Algorithms, Function, Optimization and Facility

Layout Design. European Journal of Operational Research, Volume 63, pp.

322-346.

Yong, L., 1992. Heuristic and Exact Algorithms for the Quadratic Assignment
Problem. Pennsylvania: Pennsylvania State University University Park.

	CHAPTER 1.0
	CHAPTER 3.0
	CHAPTER 4.0
	CHAPTER 5.0
	CHAPTER 6.0
	REFERENCES

