

SOLVING THE MULTI-PERIOD VEHICLE ROUTING
PROBLEM WITH TIME WINDOWS AND DELAYED

SHIPMENTS USING DELAY ROUTES

SOO KUO YANG

MASTER OF COMPUTER SCIENCE

FACULTY OF ENGINEERING AND SCIENCE
UNIVERSITI TUNKU ABDUL RAHMAN

JULY 2013

SOLVING THE MULTI-PERIOD VEHICLE ROUTING

PROBLEM WITH TIME WINDOWS AND DELAYED SHIPMENTS

USING DELAY ROUTES

By

SOO KUO YANG

A thesis submitted to the

Department of Internet Engineering and Computer Science,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Computer Science

July 2013

ii

ABSTRACT

SOLVING THE MULTI-PERIOD VEHICLE ROUTING

PROBLEM WITH TIME WINDOWS AND DELAYED SHIPMENTS

USING DELAY ROUTES

 Soo Kuo Yang

This thesis presents a logistic real world problem which has not been

addressed in traditional vehicle routing problem with time windows. Here, we

present a new constraint to the problem known as clustering constraint. This

constraint states that the planner has a need to plan all customers’ stops within

the given time windows but only a selective number of them can be completed

on time for a day. The others have to be postponed. With such constraint in

place, typically the planner would choose to postpone orders in the same

cluster of areas. So here, we look at the problem across the temporal

dimension as well where conventional VRPTW only looks at the spatial

dimension of the problem. A typical logistics company would normally have

trouble planning trips when they are overloaded with customers’ orders that

they simply cannot finish all of them today and would have to decide to leave

some of them for tomorrow’s trip. This thesis presents a methodology to solve

this problem by introducing a delay route concept to help forecast the pattern

of tomorrow’s trip in order to best select the orders to fit into today’s trip and

also the orders to leave out from today’s trip to be postponed until tomorrow.

The experiment’s focus here is to show the effectiveness of using delay route

on an industry accepted algorithm used widely to solve daily logistics VRPTW

problem. The main focus of this thesis is on presenting the clustering

constraint problem and proposing a simple and yet reusable approach in

solving the problem which is to use a delay route approach. To prove this

concept, an algorithm that is capable of solving VRPTW effectively is

presented as well. As a result, a new way of testing VRPTW solvers is

presented with the use of multi day data from the conventional benchmark.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to the University, Universiti Tunku Abdul

Rahman (UTAR) for enrolling my research for this study and also Quintiq for

approving the use of their sole proprietary algorithm for the purpose of this

study. My gratitude extends to my supervisor Dr. Tay Yong Haur for his

continuous support and patience in guiding me to finally complete the research

work done here.

I would also like to take this opportunity to thank Victor Allis, CEO of Quintiq

for coming up with the idea of delay route and for his guidance to how we

could prove the effectiveness of the idea for a particular customer who came

up with the clustering constraint requirements.

Also, heart-felt thanks to Wim Nuijten, VP of optimization technology of

Quintiq for his publications on record breaking story and approval for the

high-level disclosure on some of the logic used in Path Optimization

Algorithm from Quintiq which are sole proprietary.

Also, special thanks to Kasper Kisjes who shared his findings and his model in

Sequential Insertion Heuristics algorithm to be used to generate good start

solution for VRPTW solvers.

Additionally, I would like to thank the authors of the reference lists of papers

I’ve referred to in this thesis. Without their work I would have never been able

to complete mine.

Also, to my wife and daughter for their moral support that motivates me to not

give up on this and continue to pursue this until the very end.

Last but not least I would like to thank the examiners and all the board of

director for Institute of Postgraduate Studies & Research department of

Universiti Tunku Abdul Rahman for their patience and continuous support in

my work until completion.

iv

APPROVAL SHEET

This dissertation/thesis entitled “SOLVING THE MULTI-PERIOD

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS AND

DELAYED SHIPMENTS USING DELAY ROUTES” was prepared by

SOO KUO YANG and submitted as partial fulfillment of the requirements for

the degree of Master of Computer Science at Universiti Tunku Abdul Rahman.

Approved by:

(Assoc. Prof. Dr. Tay Yong Haur)

Date:…………………..

Supervisor

Department of Internet Engineering and Computer Science

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

v

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 23 JULY 2013

SUBMISSION OF THESIS

It is hereby certified ______Raymond K. Y. Soo___________________________ (ID

No: __06UIM02020) has completed this thesis entitled “Solving The Multi-

Period Vehicle Routing Problem With Time Windows And Delayed Shipments

Using Delay Routes” under the supervision of Dr. Tay Yong Haur from the

Department of Internet Engineering and Computer Science, Faculty of

Engineering and Science.

I understand that University will upload softcopy of my thesis in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

Yours truly,

(Raymond K. Y. Soo)

vi

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

Name ____Soo Kuo Yang_______

Date ______23 July 2013______

vii

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENTS iii

APPROVAL SHEET iv

SUBMISSION SHEET v

DECLARATION vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

CHAPTER

1.0 INTRODUCTION 1

1.1 Motivation 1

1.2 Objectives 2

1.3 Outline 2

2.0 LITERATURE REVIEW 5

2.1 History of VRPTW 5

2.2 Why is it hard? 7

2.3 How to represent it mathematically? 9

2.4 Algorithms for standard VRPTW solver 11

3.0 THE MULTI-PERIOD VRPTW 13

3.1 Why multi-period VRPTW? 13

3.2 What is clustering constraint? 14

3.3 Adding delay routes to VRPTW 15

4.0 APPROACH AND ALGORITHMS 17

4.1 Selected approach to prove delay route concept 17

4.2 Selected algorithm to be used for standard VRPTW solver 18

4.3 Sequential Insertion Heuristics 19

4.4 Path Optimization Algorithm 26

4.5 Summary 29

5.0 DATA PREPARATION 30

5.1 Initial research work with Solomon R207 30

viii

5.2 Gehring and Homberger's extended VRPTW benchmark 32

5.3 Multiday data for clustering constraint 33

6.0 EXPERIMENTAL RESULTS AND ANALYSIS 36

6.1 Convergence test 36

6.2 Conventional VRPTW solver test 38

6.3 Delay route VRPTW solver test

 with delay penalty = 1000 41

6.4 Comparison between conventional VRPTW

vs. Delay route VRPTW 42

6.5 Additional runs for delay route VRPTW

with different penalties 48

6.6 Comparison between all runs 54

7.0 CONCLUSIONS AND FUTURE WORKS 57

7.1 Conclusions 57

7.2 Future works 58

REFERENCES 60

ix

LIST OF TABLES

Table

6.1

Results of convergence test for algorithm used in

C1_2_1

Page

36

6.2 Results of day 1 using conventional VRPTW

solver

39

6.3 Results of day 2 using conventional VRPTW

solver

40

6.4 Results of day 1 using delay route VRPTW

41

6.5 Results of day 2 using delay route VRPTW

42

6.6 Comparison between the results

43

6.7 Results of day 1 using delay route VRPTW with

2000 penalty

48

6.8 Results of day 2 using delay route VRPTW with

2000 penalty

49

6.9 Results of day 1 using delay route VRPTW with

500 penalty

52

6.10 Results of day 2 using delay route VRPTW with

500 penalty

52

6.11 Comparisons between all the results

55

6.12 Further analysis on the comparisons 55

x

LIST OF FIGURES

Figures

2.1

A diagram displaying a routing solution

Page

6

2.2 A diagram to demonstrate the time window limit

10

4.1 Steps in high level for approach used to build

VRPTW solver

19

4.2 Round 1 of Sequential Insertion Heuristics

20

4.3 Round 2 of Sequential Insertion Heuristics

21

4.4 Round 3 of Sequential Insertion Heuristics

22

4.5 Round 4 of Sequential Insertion Heuristics

23

4.6 POA’s actions flow chart

26

5.1 The pattern of R207 Solomon VRPTW benchmark

31

5.2 The pattern of C1_2_1 Gehring and Homberger’s

extended VRPTW benchmark

32

6.1 Day 1 of best solution for conventional VRPTW,

run#3

44

6.2 Day 2 of best solution for conventional VRPTW,

run#3

45

6.3 Day 1 of best solution for delay route VRPTW

(penalty=1000), run#20

46

6.4 Day 2 of best solution for delay route VRPTW

(penalty=1000), run#20

47

6.5 Day 1 of best solution for delay route VRPTW

(penalty=2000), run#23

50

6.6 Day 2 of best solution for delay route VRPTW

(penalty=2000), run#23

51

6.7 Day 1 of best solution for delay route VRPTW

(penalty=500), run#9

53

6.8 Day 2 of best solution for delay route VRPTW

(penalty=500), run#9

54

xi

LIST OF ABBREVIATIONS

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Window constraint

POA Path Optimization Algorithm

API Application Programming Interface

2OPT A local search operator that performs a swap of two

nodes to untangle the part of a route that crosses. (Croes,

1958)

RTDVRP Real-time dynamic vehicle routing problem

VRPPD Vehicle routing problem with Pickup and Delivery

PDP Pickup and Delivery Problem

CHAPTER 1.0

INTRODUCTION

1.1 Motivation

In logistics industry it is a very common case for a very large logistics

company, when the demand of customers’ deliveries can never be fully

committed and delivered on time in a same day. Some orders has to be

postponed and delivered a day or two later. This is especially true when the

orders are far away from the depot. In current practice and research, this

problem has not been deeply looked into with a good generic approach to

solve it. A conventional VRPTW solver does not effectively selects good

orders to postpone to the next day. An experienced logistics planner would

call this a cluster selection constraint or clustering constraint. This is because

typically based on their domain experience; they would choose to postpone a

group of orders that are geographically clustered in an area so their fleet of

vehicles do not need to go to the same area in two days. This will save some

travel distance overall across two days of costs measurement. This is the main

motivation for our work here. Thus, we want to propose a generic solution to

the problem without the need of making too complex design of algorithms

which is to simply add a delay route to the conventional VRPTW solver to

forecast the pattern of the travelling that is intended for the next day.

2

1.2 Objectives

The objectives here can be categorized into three:

Firstly, it is to present the clustering constraint to VRPTW to show

case the real world problem of logistics companies that have too many orders

that needs to be delivered on a day and thus have the need to postpone some to

the next day. They would prefer to postpone a cluster of orders instead of

randomly scattered group of orders.

Secondly, it is to present a generic approach to solve the problem of

clustering constraints in VRPTW known as the delay route approach.

Third, it is to simulate the problem of having too many orders to

deliver on the same day that some has to be postponed for the next day. Then,

the next step is to experiment with two approaches to solving the problem to

prove the effectiveness of the delay route approach.

1.3 Outline

The structure of the thesis will be separated as follows:

Literature review: We discuss and look at the few previous problem

transformations that can be read from the literature to our relevant problem

statement. In order to achieve the third objective, we need to build an effective

conventional VRPTW solver to begin with. Therefore, we look at a few types

of algorithm used and disclose slightly in high-level how the chosen algorithm

and approach known as sequential insertion heuristics and path optimization

algorithm (POA) for our experiment works but it’s a sole proprietary

3

algorithm by Quintiq, (a software solution provider for advanced planning and

scheduling industry) that cannot be fully disclosed.

The multi period VRPTW and clustering constraint: In this chapter we

describe the multi period VRPTW variant and the clustering constraint which

is in-line with our first objective. Also discussed here is the approach that was

proposed to solve this new constraint found.

Approach and algorithms: In this chapter, we describe the selected

approach to prove the delay route concept. Then, we take a deeper look into

how the selected algorithm which combines Sequential Insertion Heuristics

and Path Optimization Algorithm (POA) works. Our POA implementation

uses Random Nearest Neighbour construction technique with a 2OPT local

search operator and some other destruction techniques. This chapter mainly

describes about the approach and algorithm chosen as our standard VRPTW

solver.

Data preparation: Next, we look into how we prepare the data for our

experiments. We explain how we had chosen the set of dataset from the huge

data benchmark from Solomon VRPTW benchmarks and why it is suitable for

our studies. Also disclosed in this chapter is how we set up the experiments for

proving this concept.

Experimental results and analysis: We report a few experimental steps

we designed before we ensure our conclusion in the studies is not biased or

null and void due to whatever invalidity of the decision we took in choosing

the dataset from benchmark and also in choosing the algorithm to use. Then,

we report the results of the experiments.

4

Conclusions and future works: We conclude and analytically translate

the results of our experiments for this research. We also highlight the

contributions of our work followed by a list of possible extensions for further

studies and other researcher’s path to continue the study of this new

transformation of the VRPTW and study the methodology of Delay Routes.

5

CHAPTER 2.0

LITERATURE REVIEW

2.1 History of VRPTW

In earlier academic research, the problem statement of Vehicle Routing

Problem (VRP) is commonly and actively research in many fields of

optimization algorithms including those motivated by Artificial Intelligence

and Operation Research. (Vladimir & Tarek, 2002) presented a clear story of

how Vehicle Routing Problem was explained. Based from their explanation in

Vehicle Routing Problem with Time Windows (Vladimir & Tarek, 2002)

VRPTW is an extension of VRP with time window constraints which makes

the problem more realistic and yet more complex to be solved. Vehicle routing

problem (VRP) was first introduced with a problem definition which is the

simplest variant with a goal to optimize and some side constraints like the

following:

a) Each customer is visited exactly once.

b) All routes start and end at the depot.

The goal was originally just to minimize the total travelling distance of

the route required to service all locations/customers. It’s actually a travelling

salesman problem only in a different context but with a fleet of vehicles

instead of a single salesman. So we have orders which we need to plan on a

6

route, and we want to optimize the travel distance of the routes we are going to

build.

Figure 2.1: A diagram displaying a routing solution.

Figure 2.1 shows a classic example of a solution of the vehicle routing

problem. The depot lies in the centre of the Cartesian grid. The orders are

scattered around the depot in different directions. Vehicles are assumed to start

from the depot to pick up or deliver orders that are scattered around the grid.

The example in the figure here shows three separate routes that are built where

each handles three different stops or orders. Eventually, the routes are

assumed to always return to the depot. This may not always be the case but for

the context of this thesis, we will assume that this is always true.

A more relevant variant was named capacitated vehicle routing

problem where the routes are limited to the capacity it is allowed to carry, so

the number of orders allowed per route will be limited instead of infinite. This

makes the problem closer to the real-world scenario of logistics distribution

and transportation industry. However, often there are different types of

logistics industry which has pickups and deliveries at different locations.

Some researchers name this type of variant the Vehicle routing problem with

Pickup and Delivery (VRPPD) or some simply name it Pickup and Delivery

problem (PDP) whereby the goal is to find optimal routes for a fleet of

7

vehicles to visit the pickup and drop-off locations. In this thesis, we will

discuss only on pure distribution variant of the problem thus only original

Vehicle routing problem (VRP) where the assumption is that all orders are

picked up in the same depot or distribution centre and eventually only sent to

deliveries stops. Typically a customer of the logistics company would require

the order to be delivered within a certain preferred time. We call this time

period the time window and thus the original VRP problem is transformed into

vehicle routing problem with time windows (VRPTW). We will now focus

only on this type of variant from the problem domain.

2.2 Why is it hard?

Firstly, to quote from (Wikipedia, n.d.) a description of VRP to the

layman observer, the vehicle routing problem does not seem to be very

difficult to be solved. Surely, it is just a case of trying all combinations of

visits and seeing which one is best to say the least? And the goal thus would

be one of these “shortest/fastest/cheapest/etc”.

(MJC
2
, n.d.) had documented a clear description and nice online

presentation with a clear example to present why is VRP difficult to solve. In

order for us to demonstrate just how difficult vehicle routing problems can be,

imagine a vehicle that has to deliver to 3 different locations X, Y and Z. The

problem is to decide which order the vehicle should visit each location to

minimise the overall travel distance. There are 6 possible solutions:

X followed by Y followed by Z

Or X folloed by Z followed by Y

8

Or Y followed by X followed by Z

Or Y followed by Z followed by X

Or Z followed by X followed by Y

Or Z followed by Y followed by X

So, the simplistic approach is to consider all 6 cases, work out the

distance travelled for each one and choose the shortest. Actually, often only 3

of the 6 cases need to be considered assuming the distance X->Y->Z is

probably going to be the same as the distance for Z->Y->X, unless one-way

streets or non symmetric distances are involved.

This sample simpler variant of the problem would take a modern

computer almost no time to solve. However, the complexity increases

extremely quickly as the number of stops increases:

4 stops would have 24 possible solutions

5 stops would have 120 possible solutions

6 stops would have 720 possible solutions

7 stops would have 5040 possible solutions and so forth

.

.

N stops have N x (N-1) x (N-2) x 3 x 2 x 1 solutions. This is known

as a factorial dependence. For a route which might make hundreds of stops for

deliveries in a day the number of possible routes/sequences is very large. Also,

to multiply that further with the number of routes we have in the problem it

becomes even larger. It gets even when it increases to thousands of stops, it

can be as large as the number of atoms in the universe. The typical

computation is simply too large for computer to compute within a reasonable

9

amount of time for planners to make a planning for the day in a typical

logistics company’s delivery plan per day.

To add to the complexity, we now are having more real world

constraints to the original VRP and thus the pruning of the possible solution

requires computation power as well. So not all sequencing is actually possible

as time window and capacity needs to be computed accumulatively depending

on the previous sequences choices made per route.

2.3 How to represent it mathematically?

To look into detail on the problem formulation of the puzzle we are

trying to solve, we first look at how (Li & Lim, 2003) defined the formulation

of the original VRPTW variation of the problem. A VRPTW problem can be

viewed as a digraph of nodes V and arcs A.

Let V = {v0, v1, v2, … vn} where v0 denotes the depot and v1,v2,…vn

denotes the stops for customer 1, 2 and so on until n-th number of customers.

Each node vi ∈ V has an associated customer demand qi (q0 = 0), a

service time si (s0 = 0) and a service-time window [ei, li] whereby ei denotes

the earliest service time can start for node vi while li denotes the latest it must

be serviced or in other words the due date of the order.

For each pair of nodes {vi, vj} (i ≠j, i, j = 0, 1, 2, . . . , n), a non-

negative distance dij and a nonnegative travel time tij are known. Due to the

time window constraints, arcs may not exist between some node pairs.

Therefore, the arc set can be defined as

A = {{vi, vj}| vi, vj ∈ V, vi ≠ vj, max(ei, t0i) + si + tij ≤ lj}

10

Figure 2.2: A diagram to demonstrate the time window limit.

To better demonstrate the equation, Figure 2.2 helps to show the

rationale behind that equation. Assuming v0 is the depot, t0i is therefore the

travelling from the depot to the 1
st
 node vi. The arc going from 1

st
 node vi to

2
nd

 node vj only exists when max(ei, t0i) + si + tij ≤ lj where the first term in the

left hand side of the equation obtains the latest time of whichever is later;

whether we travel from depot to 1
st
 node vi thus the t0i is later or the earliest

start of node ei itself is later. The next term is the service time si itself for the

1
st
 node vi. The last term is the travel time of going from 1

st
 node vi to 2

nd
 node

vj. If the sum of all these terms results in a later time than the latest end

window or the due date lj of the 2
nd

 node vj, then this arc definitely need not to

exists as 2
nd

 node vj would therefore never be on time if such arc is selected in

the solution. If a vehicle reaches a customer vi before ei, it needs to wait until

ei in order to service the customer. The schedule time of a route is the sum of

the waiting time, the service time and the travel time. The objective of the

VRPTW is to service all customers without violating vehicle capacity

constraints and time window constraints with a minimum number of vehicles

11

and, for the same number of routes with the minimum travel distance,

followed by the minimum schedule time and the minimum waiting time.

2.4 Algorithms for standard VRPTW solver

A wide range of algorithms has been researched to solve the

conventional VRPTW problem.

Some used simulated annealing (Li & Lim, 2003) and (Yiqing & Xiao,

2007), some opt for Ant Colony Optimization a.k.a Ant System (Bullnheimer

& Strauss, 1997) while others used Genetic Algorithms (Qili, 2000) according

to a preliminary survey done in a survey of VRPTW progress paper (Soo &

Tay, 2009).

A thesis (Kisjes, 2012) also reported various construction techniques

used for generating efficient start solution and their performances for some

large scale VRPTW problems. There, they included construction techniques

like Sequential Insertion Heuristics, Savings Algorithm, Nearest Neighbour,

etc. From the conclusion of the research done there, the technique known as

Sequential Insertion Heuristics seems to give rather promising start solution to

the search problem of a standard VRPTW.

Sequential Insertion Heuristics is a construction technique widely used

for constructing a good start solution for VRPTW problem statements.

Quintiq, an organization specialized in advance planning and scheduling

software has conducted a research competition effort to find how well the

algorithm experts there can solve a large VRPTW benchmark instance from

the Gehring and Homberger benchmarks. It was found that techniques using

12

Sequential Insertion Heuristics combined with Path Optimization Algorithm is

able to get to world best known results of certain Gehring and Homberger

extension (Gehring & Homberger, 1999) of Solomon benchmark (Solomon,

1983) problem for VRPTW. Solomon benchmark set is a well-known set of

benchmark dataset that researchers used for evaluating their algorithms and

approaches to solving VRPTW. Quintiq (Quintiq, 2012) managed to publish

some new best known solutions as a result of that study using some similar

approaches.

Path Optimization Algorithm is a set of API available to help solve

problems which can be represented as sequencing a set of nodes on a set of

paths. In that competition the Sequential Insertion Heuristics is a specially

customized version developed by (Kisjes, 2012) specially designed for

clustered based VRPTW benchmark datasets from the Gehring and

Homberger’s extension of Solomon benchmarks. An example would be the

C1_10_4 problem instance of benchmark datasets.

Thus, in this research we decided to utilize similar approach in solving

a particular Solomon benchmark. This approach uses the new Sequential

Insertion Heuristics developed by (Kisjes, 2012) for generating an initial valid

solution for the problem. Then we use Path Optimization Algorithm (POA)

which is a built-in tool in the Quintiq software base that provides quick and

flexible tuning of some local search actions such as destructing a few nodes in

the solution and re-constructing them based on certain heuristics. A node here

represents a customer or a stop defined in the VRPTW problem statement.

13

CHAPTER 3.0

THE MULTI-PERIOD VRPTW

3.1 Why Multi-period VRPTW?

Traditional VRPTW was defined without a temporal dimension. Here

we present a multi period variant of the VRPTW which was seen in a practical

logistics industry business. In a normal logistic business, the problem of

having too many orders to be delivered in a particular day or the problem of

having some trucks break down and you cannot delivered all orders as planned

happens quite often. Conventional VRPTW solver’s approach solved the

problem statement ignoring the link between the multi period data across

multiple days of data. It does not take into account the temporal dimension

across days but rather the time windows within a certain day. In the real life

environment, you do not get tomorrow’s data today. Note that the term

“today” here means the day we are planning the data for; not exactly meaning

the exact day as of when the planning was to be made. For example we are

planning orders for Tuesday when we are in a Sunday, meaning we plan 2

days up front always. So “today” in this context means the data for Tuesday

and “tomorrow” means Wednesday. To keep the problem statement simple

here, we only look at 2 days of data. Today and tomorrow’s data. Typically,

we do not get tomorrow’s data today. According to the example used, on

Sunday we do not get data for Wednesday yet but we only get data for

14

Tuesday. So we can make a planning for Tuesday but not yet for Wednesday.

A conventional VRPTW solver will just solve Tuesday’s data and optimizing

locally based on data received on Tuesday. When we are in Monday, data for

Wednesday comes in and then we need optimize again based on the data then.

However, if Tuesday is a peak day or a peak holiday season where you get a

lot of delivery orders. We may not be able to deliver all orders for Tuesday

and may need to postpone some order to Wednesday. This was the link across

multi days of the problem statement that was not considered in conventional

VRPTW solvers.

3.2 What is clustering constraint?

Clustering constraint is when a logistic company has too many orders

to deliver on a particular day that it has no choice but to postpone some orders

to deliver on the next day. When this happens, typically, a logistics planner

would plan to postpone orders based on some heuristics from their domain

knowledge. A good example would be based on geographical information of

those orders. So if the orders can be grouped in clusters, an experienced

logistics planner would probably choose to postpone orders in clusters instead

of selecting those scattering around in a number of different clusters to make

efficient routing. In a real world typical logistics delivery service provider,

there can be a lot of other dimensions that they also may take into account

instead of purely looking at clusters of areas certain orders belong to. For

example they may consider priority customers that paid a premium price for

the delivery to have their orders delivered first instead of others. In this

15

research effort we make an assumption to ignore this priority favouring

constraint for a start to avoid complicating the problem statements. We first

want to be able to solve the constraint of wanting to deliver orders efficiently

today per clusters and also for selecting best sets of orders to postpone for

tomorrow so we can choose to postpone similar orders that are belonging to

certain cluster of area together instead of randomly selecting orders to

postpone.

3.3 Adding delay routes to VRPTW

In our earlier published work (Soo & Tay, 2011) a solution approach

was proposed to solve this constraint which is by simply adding a delay route

to the conventional VRPTW solver regardless of what algorithm used. Similar

to the new approach of adding delay routes in VRPTW in our earlier work, we

also introduced a new variable pi for a particular node vi to introduce

additional penalty scores if any customers are not serviced by the actual routes

but by the delay routes. Therefore if a node vi is reached by a delay route

vehicle then it will increment pi by a certain value to be experimented with

later. The new objective is therefore having the sum of this new term pi to be

minimized as well.

In order to allow us to experiment with this approach, we need to have

an effective VRPTW solver to begin with. Only with that, can we then add the

delay route to it and begin experimenting with the penalty and to compare its

effectiveness against without having it. The plan was to find a good VRPTW

solver first and then find a good benchmark to experiment with. After having

16

that, we need to modify the benchmark to make it a 2 days dataset. Next, we

can first compare how the conventional VRPTW solver performs across 2

days and then eventually experiment with adding delay routes to it and see if it

improves the measurements. After that, we can still fine tune the delay penalty

to experiment further to see what is the best value to assign to for optimum

performance.

17

CHAPTER 4.0

APPROACH AND ALGORITHMS

4.1 Selected approach to prove delay route concept

To achieve the third objective mentioned earlier in introduction, we

first use a standard VRPTW solver methodology to just run the algorithm for

the 2 days of orders separately and see what’s the total distance travelled.

Then, we introduce a new methodology that is generic to be easily applied to

any VRPTW solver known as a delay route methodology that we hypotheses

to be able to better select orders to be postpone compared to conventional

standard VRPTW solver methodology. This is the approach mentioned in the

second objective. The approach of delay route was proven successful in a

specific Quintiq project for a certain customer. It was done initially with the

customer’s data which is business specific. Unfortunately, due to non-

disclosure nature of the business we are not allowed to disclose any data

publicly. The aim here is to find out if such approach can be generic and also

can be proven to be effective on academic benchmark datasets as well like the

Solomon as well as the Gehring and Homberger benchmarks. With this

approach, we can finally achieve all the three objectives mentioned earlier in

the introduction chapter of this thesis. In order for us to be able to test the

approach of delay route, we first need to build a standard VRPTW solver that

can effectively solves standard VRPTW benchmark datasets.

18

4.2 Selected algorithm to be used for standard VRPTW solver

This section will focus and describe how we developed and build our

base standard VRPTW solver for that purpose. We first used a new sequential

insertion heuristics that was designed by (Kisjes, 2012) during the study for

Quintiq’s research for C1_10_4 which is an instance from the Gehring and

Homberger extension of the original Solomon benchmark for VRPTW

problems. C1_10_4 is a problem instance with 1000 orders and 200 routes. Its

best known solution was recently recorded by Quintiq (Quintiq, 2012).

Quintiq organized an internal competition for its algorithm experts to attempt

to solve this problem instance in the most efficient way. Kisjes’s design was

not the winner of the competition but was widely used by participants and was

also used by the 2
nd

 place winner whom had also set a new best known from

the previously published record but only a few points worse than the absolute

best solution found throughout the whole competition. After we used

Sequential Insertion Heuristics to generate a start solution, we used the Path

Optimization Algorithm (POA) which is a sole proprietary technology from

Quintiq which contains a rich set of API for local search operators tailored-

made for similar problems to these. It can be used to solve any problems

which can be represented as sequencing optimally a sequence of nodes on

paths. The following diagram shows in high level the approach steps we took

in attempt to build a valid VRPTW solver as our first step for our experiment:

19

Figure 4.1: Steps in high level for approach used to build VRPTW

solver.

Figure 4.1 illustrates how our approach for solving VRPTW works.

First we start from an empty state where all orders are not planned on any

routes. We use sequential insertion heuristics which builds a valid initial start

solution one route by one route, then pass in this solution into POA to perform

further improvements on it before reaching the final solution. Next, we look

into details on the two selected algorithms described which is the sequential

insertion heuristics followed by path optimization algorithm. Note that the

latter is a sole proprietary algorithm component of Quintiq and thus cannot be

disclosed in too detailed way.

4.3 Sequential Insertion Heuristics

The sequential insertion heuristic was made popular by Solomon and is

widely used for creating decent starting solutions for meta-heuristics for

20

vehicle routing problems. In Kisjes’s implementation, the heuristic creates one

route at a time, in four rounds. Firstly, the problem is clustered into clusters of

orders. Orders are considered to belong to the same cluster if the distance

between them is within a certain amount of distance unit. This is measured by

looking at the 2D map which plots the x, y coordinate of the orders, and then

calculating a nice threshold to nicely cluster them into groups that are

obviously apart from one another. For our case, this value was assumed to be

15 after we did some analysis on the data that we are using to experiment with.

First round: all clusters with exactly the sum of demands equivalent to the

maximum capacity of the routes. For the problem instances of the benchmark

for VRPTW that we are experimenting, these sum up to be exactly 200

capacities. These can probably be efficiently combined into one route.

Figure 4.2: Round 1 of Sequential Insertion Heuristics.

In Figure 4.2, we can see an example of a route that was build in round

1 of the sequential insertion heuristic. In this round, Phase1: Tries to insert as

much of orders within the same cluster into one route. This route travels to

only one cluster as the cluster will have a sum of capacity 200 only by having

the orders within it planned.

21

Second round: all clusters with exactly the sum of demands filling up

95% of the routes’ capacity. For our case here they need to sum up to be

exactly 190 demands. Same story with first round here, but now they require a

pickup with demand size of 10 to fill up the 5% balance of the routes’

capacities. These are relatively scarce and are best assigned as fillers for route

with only 10 slacks.

Figure 4.3: Round 2 of Sequential Insertion Heuristics.

In Figure 4.3, we can see an example of a route that was build in round

2 of the sequential insertion heuristic. In this round, Phase1: Tries to insert as

much of orders within the same cluster into one route. Phase2: Tries to insert

as much as possible other orders while avoiding large detours. This route

needs to travel to 2 clusters, one having exactly the sum of capacity 190 but

the other fits as an extra order of exact fit with exactly 10 demands to the

route.

Then in the third round, new seed routes are selected based on a

'Priority' expression that includes both distance to depot and relative angle to

the last seed, filtering out the most centrally located orders).

22

Figure 4.4: Round 3 of Sequential Insertion Heuristics.

In Figure 4.4, we can see an example of a route that was build in round

3 of the sequential insertion heuristic. In this round, Phase1: Tries to insert as

much of orders within the same cluster into one route. Phase2: Tries to insert

as much as possible other orders while avoiding large detours. This route

needs to travel to 3 clusters as the sum of orders’ demand from it is not 200

and not 190. The sum of the capacity in the clusters can be either more than

200 or less than 190. When it is more than 200, some orders in the cluster will

be left out and the route will need to travel to other clusters as shown in the

example to get other their smaller orders. Similarly when it’s less than 190, the

route also needs to travel to other clusters to pick up their smaller orders that

still fit for its capacity.

In the fourth and last round, remaining orders close to the depot are

combined into some last routes.

23

Figure 4.5: Round 4 of Sequential Insertion Heuristics.

In Figure 4.5, we can see an example of a route that was build in round

4 of the sequential insertion heuristic. In this final round, no more clustering

priority logic runs so Phase 1 and 2 is no longer needed, thus only Phase 3 is

run. Phase3: Select orders close to the depot remaining to construct efficient

routes based on heuristics. This route needs to travel to a few clusters but they

are all nearby to the depot.

Each time after selecting a new seed (in either round), the seed route is

filled up as much as possible. Adding unplanned orders to the route until this

is no longer possible. In the first three rounds, a route is constructed during

two sequential phases. In phase 1, the heuristic attempts to insert as many as

possible of the other orders within the cluster that the seed order belongs to.

When this is no longer possible, phase 2 attempts to fill up the route with other

orders, avoiding large detours as much as possible. Phase 1 and 2 iterate until

the full clockwise sweep has been completed (end of round 3), leaving only

some orders close to the depot. Those are assigned to routes in round 4

(construction phase 3 in the implementation). All three phases use different

combinations of selection measures and weights.

24

The heuristic or selection weight and measures or the ‘Priority’

expression is calculated based on:

1. Additional distance (AD) - cost measure, used in all three phases.

2. Distance between the order and the depot (DTD) - static regret

measure, used in phase 2 and 3.

3. Effective time window width of the order (TWW) - static regret

measure, used in all three phases but with an additional multiplier in

phase 1 and 2.

4. Demand/load size of the order (L) - static regret measure, used in

phase 1.

5. Exact fit (this order is exactly large enough to fill up the vehicle thus

we introduce a bonus preference score to it (EF) - dynamic regret

measure, used in all three phases but with more emphasis in phase 2

for filling up the exact 5% balance of the route capacity, 10 in our case.

6. Distance to seed - semi-static regret measure, used in phase 1.

7. Alignedness (relative angle between seed and order) - semi-static

regret measure, used in phase 2.

25

8. Isolatedness (number of unplanned orders within cluster-threshold-

distance (here we used 15 distance unit)) - dynamic regret measure,

used in phase 1 and 2.

The values for these weights that we used to set up our experiment

runs were the following:

AD = 1.0

DTD = 2.0

TWW = 0.15

L = 0.15

EF = 0.5

Distance to seed = 0.15

Alignedness = 0.15

Isolatedness = 1.0

Note that the value suggested and used in this research is completely

randomly picked and experimented with for a few times to see which set of

values can generate a reasonably good initial solution with no constraint

violation thus a valid initial solution for C1_2_1. C1_2_1 is a much smaller

problem compared to C1_10_4. It has only 50 routes to plan 200 orders in

total as compared to C1_10_4’s 200 routes to plan 1000 orders. Both of them

have routes capped at 200 maximum capacities too and both of them are

clustered data variants from the set of Gehring and Homberger benchmark

problems. Kisjes’s (Kisjes, 2012) original implementation was intended on

C1_10_4 and his design allows tuning of these heuristics to match different

problem instance of the benchmark. In our work, we have fine tuned it

26

preliminary to get a good initial solution for C1_2_1 which is the problem

instance we picked to use for the purpose of our study. More details about why

C1_2_1 was picked will be discussed in the next chapter of this thesis.

4.4 Path Optimization Algorithm

 After Sequential Insertion Heuristics generates a valid initial solution,

we run Path Optimization Algorithm (POA) which is a sole proprietary

algorithm designed by Quintiq which has a rich set of API for local search

operators. The concept behind it is removing a few nodes from the constructed

initial solution and then re-constructs them back randomly.

Figure 4.6: POA’s actions flow chart.

Figure 4.6 shows a logical flow of the steps of actions took in Path

Optimization Algorithm. When received the initial solution from Sequential

Insertion Heuristics the first step is to unplan the shortest routes to reach the

27

number of route used to be equivalent to that of the best known solution (this

number is a setting that can be tuned manually). Then, it randomly performs

Random destruction, Random Segment destruction or Random Area stop

destruction with the same probability. After which, a random nearest

neighbour construction takes place followed by a 2OPT and then repeats the

destructions again and loops until the end. Periodically, it jumps out and does

a greedy destruction instead and calls a fast reconstruction doing a random

nearest neighbour as well and followed by a 2OPT. Then again repeats the

same steps of destruction and reconstruction until it times out.

 To explain in a little more detailed, let’s look at each of the actions

mentioned in details, the destruction heuristics are simple, here we combined a

few of them so we did one third of the time a pure random destruction, one

third of the time we do a random segment destruction and remaining one third

of the time we do random area stop destruction.

Random destruction – completely randomly selects x nodes out of the current

solution and unplan them. It was set here to also distribute the destruction of

the nodes to be distributed across paths/routes. So this ensures that we do not

delete x nodes from the same path. For our experiments here we set x = 3.

Random segment destruction – randomly pick a “Segment” of the solution

defined by a certain expression based on the travel time between the nodes.

Each segment contains nodes close to each other, but between the segments

there is relative much distance. A threshold of d distance unit is used here to

define a segment. Also, we need to set x number of segments of at most y

28

number of nodes to be destructed. Here it was tuned to have d = 40, x = 3 and

y = 4. This means 3 segments of at most 4 nodes each which have 40 distance

unit apart from each other will be destructed.

Random area stop destruction – randomly picks an area in the coordinates with

a certain predefined radius of d distance unit, and destructs all nodes that are

in that area. A threshold of 20 distance unit was used here, so d was set to 20

here.

In the re-construction, a Random Nearest Neighbour construction

selects nodes from the destructed pool of nodes, and then constructs them in a

sequence based on the distance from the last planned node. It first starts with a

completely random selection of the seed node to construct and then selects the

nearest neighbour node of this seed node to construct and this newly

constructed node will be the reference of the next node and the logic follows

until all nodes are constructed.

Following that a 2OPT operator will act on the resulting solution.

2OPT is a basic local search operator that takes a route that crosses over itself

and reorder it so that it does not. It was first proposed by Croes in 1958

(Croes, 1958) for solving the travelling salesman problem. All of these are

readily available in the POA sets of API.

After POA has run for m minutes, the algorithm then runs a greedy

destruction which is not provided in the standard API of POA. Here the logic

un-plans any overloaded routes by removing all visits in them, also if any

orders are late then they will be unplanned. Next, for visits that requires

29

travelling more than d distance unit, we also un-plan the destination visit. This

is continuously iterated until there is no longer any visit that requires travelling

longer than d distance unit. Similarly, any visits that result in a waiting of d

time unit will be removed iteratively until there are no such occurrences. Here

we set m = 2 and d = 150, so every 2 minutes of POA run, these greedy

destruction will occur to remove travelling and waiting of more than 150

distance unit.

After these greedy destructions, a quick simple POA re-construct is

called again to perform random nearest neighbour and 2OPT operator on the

solution. Then the standard POA is called again to perform the random

destruction and re-construction again. Then the algorithm continues to run for

as long as we set it to run.

4.5 Summary

After designing the standard VRPTW solver using the two mentioned

algorithm and approach discussed, we are now ready to prepare our data for

the experiments. We first need to test if our VRPTW solver is good enough to

solve a conventional VRPTW benchmark dataset by checking if it can find the

best known solution published thus far. Only then we can be convinced that it

is a good VRPTW solver to use to continue to prove our concept of delay

route with our selected approach to experiment with 2 days version of the data.

The next chapter describes our earlier work done with the delay route concept

and also why we feel we need a new approach to justify it followed by how we

design this new approach.

30

CHAPTER 5.0

DATA PREPARATION

5.1 Initial research work with Solomon R207

As mentioned in the literature, Solomon’s benchmark (Solomon, 1983)

is a widely used common benchmark dataset for solving VRPTW. Thus, it

makes perfect sense to reuse such common dataset for the purpose of this

study. In an earlier work (Soo & Tay, 2011) we studied the delay route

concept on a smaller dataset in the Solomon benchmark R207. R207 is a

dataset which has 100 orders and 50 routes to plan them. The best known

solution was 890.61 on total travel distance and was planned on only 2 routes.

In the study, we duplicated the dataset and tested the delay route concept by

adding an additional delay route to study but found out the problem statement

has a tight window constraint which causes the solution unable to be solved

with just an additional delay route. Thus we needed two delay routes to

eventually solve the problem. In that study, we used only POA and did not use

Sequential Insertion Heuristics at all thus using only pure Random Nearest

Neighbour construction from POA to generate a full initial solution randomly.

After finishing the study, we found out the work was not very conclusive and

later it was found that a clustered based data will be deemed more suitable for

the purpose of studying this concept. R207 was instead a random based data

31

and thus does not show clearly an example of clustering constraint which was

the main motivation for studying the delay route approach in the first place.

Figure 5.1: The pattern of R207 Solomon VRPTW benchmark.

Figure 5.1 shows how the pattern of R207 dataset looks like, the orders

are randomly scattered around the plane and thus is not really reflecting the

clustering constraint definition of our problem here. To better present our

work we have selected instead C1_2_1 from the Gehring and Homberger’s

extension of the VRPTW benchmark.

32

Figure 5.2: The pattern of C1_2_1 in Gehring and Homberger’s

extended VRPTW benchmark.

Figure 5.2 shows how the pattern of C1_2_1 dataset looks like, this

time the orders are clearly clustered and thus suits our first objective to present

the clustering constraint problem of the VRPTW problem statement.

5.2 Gehring and Homberger's extended VRPTW benchmark

This time, we have selected C1_2_1 from the instances of Gehring and

Homberger's extended VRPTW benchmark (Gehring & Homberger, 1999) to

be used for the purpose of this research. C1_2_1 is just a slightly larger dataset

than R207 by 100 orders. It also has 50 routes to plan these 200 orders. It was

intentionally selected for this study because we do not want one that is too

33

large of a problem to be solved. This is to avoid unnecessary timely tuning

effort needed to ensure we can solve the problem good enough or even get to

the best known solution after running for a very long time. We keep the size

small so a simple algorithm would be able to solve the problem good enough

(for example within less than 1% of the best known published) and in the best

case, to be able to converge to the best known solution consistently. Also, it

was kept simple so more tweaks and steps can be taken to study a multi day

problem statement. Note that this experiment is carried out to study the

effectiveness on academic benchmark problem sets to check if the approach is

generic enough to be proven with also academic data. The approach was

already proven in a Quintiq project for a specific customer when this problem

statement was introduced with purely customers’ data of 1 week. The delay

route approached has been proven to be able to provide much more costs

savings for the customer’s planning of vehicles and drivers. However

sometimes, customer’s real-world data is business specific and thus we want

to experiment here if the same approach is generic enough that it can also be

proven with academic standard benchmark problems dataset. Then this

approach can be made generic for future works to be researched on multi day

problem statement which is what we want to discuss next.

5.3 Multiday data for clustering constraint

Here we introduce a multi day version of the problem which was seen

in a practical logistics industry business. A multi day problem is suitable to

display the problem of having too many orders to be delivered in a particular

34

day or the problem of having some trucks break down and you cannot

delivered all orders as planned. This supports our first objective to present the

problem of clustering constraint and also our third objective that is to simulate

the problem to be experimented with to prove the approach of delay route. The

design we used to create a multi day problem with C1_2_1 is as follows:

We had checked in the latest website (Gehring & Homberger, 1999)

publishing the Gehring and Homberger benchmark’s the current best known

solution to the problem C1_2_1. It has a total travel distance of 2704.57 and

uses only 20 routes. Since the best solution is known to have utilized 20

routes, we simulate our day 1 data to have only 19 routes so to ensure we do

not have enough to perform all the orders and some needs to be postponed.

Day 2 data is simulated as a fresh copy of C1_2_1 again but with additional

orders that are postponed from day 1. Orders that are postponed from day 1

are assumed to have still the same preferred time window or location opening

hours for delivery. For example, if an order is due at 16:00 for day 1, and it

was planned late or was not planned by the optimizer in day 1, it will be

postponed to day 2 but still having its due set as 16:00 but of day 2. This is

simulating a preferred time window for the order or perhaps simulating the

location’s opening hours per day. If a location is only opened until 16:00 in

day 1 it is likely that it also opens only until 16:00 in the next day. In day 2 we

try to give as many routes as possible as we want the algorithm to really

optimize the result and then we can compare the total distance travelled in

both days using the same amount of trucks in total. The motivation behind this

study is suppose a logistics company has a truck break down and has to

postpone some orders, the conventional VRPTW vs. the delay route VRPTW

35

is tested to see if the delay route approach can help gives a better selection on

which orders to postpone to the next day. In the next day, since there are many

orders to be delivered, typically a logistics company would either rent a few

extra trucks as back up for this day or outsource some of the work to other

companies. In the former case, an improvement of the conventional VRPTW’s

optimization solution would mean significant savings of costs for the logistic

company.

36

CHAPTER 6.0

EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Convergence test

To ensure our chosen algorithm, which is a combination of sequential

insertion heuristics followed by the path optimization algorithm can solve the

problem efficiently and most importantly can find the best known solution as

published; we first tested it on solely the pure C1_2_1 VRPTW problem

statement.

The result of running it for 50 times is as follows:

Table 6.1: Results of convergence test for algorithm used in C1_2_1.

RunNr ActualTimeRun Distance

1 00:33:21 2704.57

2 00:33:20 2704.57

3 00:33:20 2704.57

4 00:33:26 2785.63

5 00:33:20 2704.57

6 00:33:20 2805.86

7 00:33:19 2704.57

8 00:33:19 2704.57

9 00:33:20 2704.57

10 00:33:21 2704.57

11 00:33:21 2704.57

12 00:33:20 2704.57

13 00:33:21 2704.57

14 00:33:22 2714.59

15 00:33:21 2704.57

16 00:33:21 2704.57

17 00:33:21 2704.57

18 00:33:21 2704.57

19 00:33:21 2704.57

20 00:33:21 2704.57

37

21 00:33:21 2704.57

22 00:33:21 2704.57

23 00:33:21 2714.59

24 00:33:21 2704.57

25 00:33:21 2704.57

26 00:33:21 2805.86

27 00:33:21 2704.57

28 00:33:20 2704.57

29 00:33:20 2704.57

30 00:33:21 2704.57

31 00:33:21 2704.57

32 00:33:20 2704.57

33 00:33:19 2704.57

34 00:33:18 2704.57

35 00:33:20 2704.57

36 00:33:19 2807.24

37 00:33:19 2704.57

38 00:33:19 2704.57

39 00:33:16 2704.57

40 00:33:18 2704.57

41 00:33:19 2707.42

42 00:33:17 2704.57

43 00:33:19 2704.57

44 00:33:21 2704.57

45 00:33:20 2704.57

46 00:33:20 2704.57

47 00:33:20 2807.24

48 00:33:20 2704.57

49 00:33:20 2704.57

50 00:33:20 2704.57

On average we can find the best known in less than 34 minutes. In

Table 6.1; the first column shows a run number that uniquely identifies the

separate runs made. The second column shows the total duration of the run

respectively, followed by the goal score or the total travel distance of the final

solution of that run. All final solutions of the runs planned all 200 orders on

time and used only 20 routes. Thus, all of them are valid solutions and uses the

minimum number of routes equivalent to the best known solution which is 20

routes.

38

 The results was promising as out of all these 50 runs, only 8 of the runs

did not converge to the best known solution. On average we get a distance of

2715.02 which is less than 0.4% away from the best known 2704.57. Looking

in details, most of them converge to best known solution in less than 30

minutes and just get stuck in the final 3 minutes doing nothing. To conclude

this study, we are confident that running for 34 minutes of the algorithm is

sufficient to get a converged best solution out from the problem statement with

a success rate of at least 84%. So this means if we run about 10 times, we

should be able to get at least 8 times converged to the best known solution.

Motivated by the success of this first step, we proceed to model the

experiment as mentioned in the previous “Data preparation” chapter of the

thesis earlier. From the results we observe in this first test, this means we

should do the next step for 66 minutes because we need 33 minutes for each

day’s data. The assumption made here is that this should allow us to converge

at not less than 84% success rate.

6.2 Conventional VRPTW solver test

First we ran the conventional VRPTW solver thus utilizing only the

algorithm we mentioned which is Sequential Insertion Heuristics for creating a

start solution then improving it with Path Optimization Algorithm (POA). To

limit the sequential insertion heuristics from generating 20 routes, the

algorithm first run with unlimited number of routes until a valid solution is

created. Next, it is reduced by selecting the route with least number of orders

on them and removes this route from the solution. This is iterated until the

39

solution has only 19 routes remaining. Note that this step is different from the

logic mentioned in the “Approach and algorithms” chapter previously. There,

we only reduced the number of routes to the best known solution’s number of

routes used but instead here, we reduce to 1 route less than that. Then, we

proceed directly to POA’s destruction and construction steps with a solution

that is not yet valid and consists of only 19 routes.

The result of 10 runs of the day 1 data (C1_2_1 with limit of 19 routes

only) is shown in Table 6.2:

Table 6.2: Results of day 1 using conventional VRPTW solver.

First column shows the run number which uniquely identifies each run

from one another, second reports the score of the optimizer, third shows the

number of orders, followed by those that are planned, and then those that are

on time. Next, it shows the number of routes generated at start followed by

number of routes used and those that are within the capacity limit. The last

column shows the distance travelled in the solution. From the results, it seems

that we are not really always converging at a consistent result as the algorithm

is still having difficulties in selecting which orders to sacrifice to be postponed

to next day. All the orders that are not on time will be postponed to the day 2

run.

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance

1 1502795.70 200 185 185 19 19 19 2795.70

2 902706.29 200 191 191 19 19 19 2706.29

3 1002591.71 200 190 190 19 19 19 2591.71

4 1002696.47 200 190 190 19 19 19 2696.47

5 1202797.99 200 188 188 19 19 19 2797.99

6 1002614.30 200 190 190 19 19 19 2614.30

7 1202673.25 200 188 188 19 19 19 2673.25

8 802763.82 200 192 192 19 19 19 2763.82

9 902896.61 200 191 191 19 19 19 2896.61

10 902615.06 200 191 191 19 19 19 2615.06

40

We first designed the day 2 data to have only 21 routes, because best

known solution consist of 20 routes for C1_2_1 and we thought having 1 extra

should be enough to cater for the postponed orders. However from a first few

experimental runs we found out 21 is still insufficient. Sometimes more than

10 orders were postponed and thus they may not fit in just 1 extra route. So to

make the problem realistic, we added 2 extra routes to ensure day 2 data is a

valid VRPTW that can still be solved. Typically that is how a logistic

company would have estimated how many extra trucks to rent for the second

day anyway.

The result of 10 runs of the day 2 data (C1_2_1 with limit of 22 routes

only) is shown in Table 6.3:

Table 6.3: Results of day 2 using conventional VRPTW solver.

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance Feasible nr of late total

distance

1 5008.80 215 215 213 22 22 22 3188.47 violated 2 5984.17

2 3004.85 209 209 209 22 22 22 3004.85 satisfied 0 5711.14

3 2898.02 210 210 210 22 22 22 2898.02 satisfied 0 5489.73

4 2900.37 210 210 210 22 22 22 2900.37 satisfied 0 5596.84

5 6259.84 212 212 209 22 22 22 3298.31 violated 3 6096.30

6 2974.53 210 210 210 22 22 22 2974.53 satisfied 0 5588.83

7 3026.02 212 212 212 22 22 22 3026.02 satisfied 0 5699.27

8 2964.48 208 208 208 22 22 22 2964.48 satisfied 0 5728.30

9 3009.77 209 209 209 22 22 22 3009.77 satisfied 0 5906.38

10 2899.63 209 209 209 22 22 22 2899.63 satisfied 0 5514.69

As the result shown, despite having 2 extra routes on the second day

sometimes the conventional VRPTW may still be unable to solve the problem

completely and leaves some orders still un-planned. The first and fifth run

shows the case when this happens. There are still 2 orders late in the first run

41

while there were still 3 orders late in the fifth. Instead of trying to increase

further the number of routes to use for this day, we proceed to try with the

delay route approach first to see if it can consistently solves the problem

instead.

6.3 Delay route VRPTW solver test with delay penalty = 1000

Next, we moved on the experiment with the delay route approach. To

do this, we did not change anything at all in the Sequential Insertion Heuristics

but only in POA we added an extra “virtual” delayed route that is computed in

the algorithm for scoring but any nodes planned in this path is not actually

planned in the actual result when POA returns the solution. We first

experimented this with a delay penalty of 1000 points each time an order is

planned on the delay route.

The result of 10 runs of the day 1 data (C1_2_1 with limit of 19 routes

only) is shown in Table 6.4:

Table 6.4: Results of day 1 using delay route VRPTW.

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance

11 802741.93 200 192 192 19 19 19 2741.93

12 1102690.09 200 189 189 19 19 19 2690.09

13 702698.95 200 193 193 19 19 19 2698.95

14 702708.42 200 193 193 19 19 19 2708.42

15 1202828.92 200 188 188 19 19 19 2828.92

16 702684.65 200 193 193 19 19 19 2684.65

17 902780.20 200 191 191 19 19 19 2780.20

18 2002721.05 200 180 180 19 19 19 2721.05

19 702730.32 200 193 193 19 19 19 2730.32

20 702635.22 200 193 193 19 19 19 2635.22

42

From the result, it shows that even in day 1 data’s result alone, having

the delay route already postpone less number of orders to the second day.

Similarly, for each of those runs we have a corresponding day 2 run.

The result of 10 runs of the day 2 data (C1_2_1 with limit of 22 routes

only) is shown in Table 6.5:

 Table 6.5: Results of day 2 using delay route VRPTW.

From the result, it proves introducing the delay route approach

managed to consistently solve the problem and at times even reduced the need

of that extra route by solving the problem of day 2 data with only 21 routes

used. The 18th run shows we postponed 20 orders from the first day and even

with that large amount of postponed orders, it still manages to find a feasible

solution with only 22 routes in day 2.

6.4 Comparison between conventional VRPTW vs. Delay route VRPTW.

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance Feasible nr of late total

distance

11 2909.18 208 208 208 22 22 22 2909.18 satisfied 0 5651.11

12 2879.23 211 211 211 22 22 22 2879.23 satisfied 0 5569.32

13 2825.20 207 207 207 21 21 21 2825.2 satisfied 0 5524.15

14 2934.95 207 207 207 22 22 22 2934.95 satisfied 0 5643.37

15 2987.33 212 212 212 22 22 22 2987.33 satisfied 0 5816.25

16 2819.73 207 207 207 22 21 21 2819.73 satisfied 0 5504.38

17 3000.55 209 209 209 22 22 22 3000.55 satisfied 0 5780.75

18 3069.72 220 220 220 22 22 22 3069.72 satisfied 0 5790.77

19 2819.73 207 207 207 21 21 21 2819.73 satisfied 0 5550.05

20 2819.73 207 207 207 22 21 21 2819.73 satisfied 0 5454.95

43

After some analysis are done, in order to compare the two approaches,

we had tabulated the summarized data in Table 6.6:

 Table 6.6: Comparison between the results.

In term of distance coverage, the conventional VRPTW loses out by at

least 100 distance unit on average and has more inconsistent results by the

looks of its standard deviation. Also, since all its solution uses 22 routes, the

delay route VRPTW wins also in this number on average by 0.4 route count.

The conventional VRPTW solver also loses out in term of average number of

orders that still end up late after the day 2 optimization, by an average of 1

order having the risk of being late still compared to a guaranteed on time

solution using the delay route VRPTW. There was about 1.8% improvement

in term of the quality of the results (measured in average distance) obtained

with delay route compared to the conventional VRPTW. Meanwhile,

consistency was improved by 36.2% with the delay routes.

We have only looked at numbers and figures so far, how bout

geographical difference between the conventional VRPTW versus the delay

route VRPTW? To answer this question we captured the screenshot from our

Quintiq application’s model made for this purposes in Figure 5.1 to show the

two best results of both days’ run for comparison.

 average distance std dev average route used average nr of late orders

conventional VRPTW 5731.57 203.56 22 1

with delay route VRPTW 5628.51 129.77 21.6 0

44

Figure 6.1: Day 1 of best solution for conventional VRPTW, run#3

From the screenshot in Figure 5.1 we can see that the chosen orders to

postpone are somewhat clustered but still scattered around 2 clusters of orders

and one more that is a sole order that can be easily picked up for the route that

is on the way up to the top right corner clusters of orders. The dots represent

the order or customer locations while the arrows and lines shows a travel for a

particular route, the routes are colour-coded alternatively between red and blue

to distinguish individual routes. The colour choice of red and blue is merely

randomly picked for helping users distinguish routes when 2 or more are

selected to be shown in the component. They carry completely no meaning for

the purpose of this research and can be ignored totally.

45

 Figure 6.2: Day 2 of best solution for conventional VRPTW, run#3

From the screenshot we still see some travelling across clusters which

show inefficient travelling planned on the second day. These are screenshot of

the best run found out of the 10 reported for the conventional VRPTW which

is the run with runNr=3 that has a total distance of 5489.73 (day 1 = 2591.71,

day 2 = 2898.02) and has 10 orders that was late in the first day which is

postponed to second day to plan which eventually all get planned on time in

second day. Day 2 utilized all 22 routes generated at the start also in the final

solution.

46

Figure 6.3: Day 1 of best solution for delay route VRPTW

(penalty=1000), run#20

This time with delay route of delay penalty set to 1000, we see the best

case scenario’s day 1 pattern is clearly much more efficient by having a clear

cluster chosen to be postponed. However, that one order is still cannot be

picked up by that top right corner cluster, however it is now considerably a

close by order to the cluster chosen to be postponed.

47

Figure 6.4: Day 2 of best solution for delay route VRPTW

(penalty=1000), run#20

These are the best solution for the delay route VRPTW with penalty

1000 which is the final run with runNr=20. We see also still there are

travelling cross region but however the results was much better in numbers

with total distance at 5454.95 (day 1 = 2635.22, day 2 = 2819.73) and has only

7 orders that was postponed from day 1 to day 2. Day 2 only utilizes 21 routes

from the 22 generated at start solution. This saves 1 route in day 2 in

comparison to the conventional VRPTW.

48

6.5 Additional runs for delay route VRPTW with different penalties

After the experiments concluded delay route can get better results as

compared to conventional VRPTW, the next question is how much should the

delay penalty be? To be able to answer that, we have to continue further

experiments with first a higher penalty set at 2000 and followed by again on a

lower penalty set at 500 to see their difference as compared to 1000.

First we look at the results with penalty set to 2000.

The result of 10 runs of the day 1 data (C1_2_1 with limit of 19 routes

only) is as follows:

 Table 6.7: Results of day 1 using delay route VRPTW with 2000

penalty

It seems in general, the number of orders that are postponed has

reduced as compared to our initial gut feeling of setting delay penalty to 1000.

We set it to 1000 initially because the best known score for the C1_2_1

problem was 2704.57. We do not want it to be too significant that it overtakes

the whole solution’s distances while at the same time we do not want it to be

too low. So just taking about 1000 seems like a good start. However from the

results, it seems that having 2000 as the penalty is a much better choice. All

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance

21 702710.3 200 193 193 19 19 19 2710.28

22 702691.2 200 193 193 19 19 19 2691.21

23 702613 200 193 193 19 19 19 2613

24 702704.5 200 193 193 19 19 19 2704.51

25 702709.5 200 193 193 19 19 19 2709.52

26 802747.8 200 192 192 19 19 19 2747.84

27 902822.9 200 191 191 19 19 19 2822.88

28 702705 200 193 193 19 19 19 2705

29 702723 200 193 193 19 19 19 2722.97

30 702667.6 200 193 193 19 19 19 2667.57

49

its’ runs’ results showed that orders that are postponed to next day are not

more than 9 and majority being at 7 which was the number we found in the

best known solution so far.

The result of 10 runs of the day 2 data (C1_2_1 with limit of 22 routes

only) is shown in Table 6.8:

 Table 6.8: Results of day 2 using delay route VRPTW with 2000

penalty

From these runs, we managed to find a new best solution with total

distance of 5432.73 from the third run of this version, which is runNr=23.

Similar to the run with 1000 penalty, most of the results in day 2 only require

21 routes to be used.

Next, we look at the screenshots of the new best found solution in

Figure 5.5 for day 1 and Figure 5.6 for day 2 respectively:

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance Feasible nr of late total

distance

21 2819.73 207 207 207 22 21 21 2819.73 satisfied 0 5530.01

22 2819.73 207 207 207 22 21 21 2819.73 satisfied 0 5510.94

23 2819.73 207 207 207 22 21 21 2819.73 satisfied 0 5432.73

24 2955.09 207 207 207 22 22 22 2955.09 satisfied 0 5659.6

25 2818.55 207 207 207 22 21 21 2818.55 satisfied 0 5528.07

26 2931.98 208 208 208 22 22 22 2931.98 satisfied 0 5679.82

27 2867.84 209 209 209 22 22 22 2867.84 satisfied 0 5690.72

28 2843.96 207 207 207 22 21 21 2843.96 satisfied 0 5548.96

29 2819.73 207 207 207 22 21 21 2819.73 satisfied 0 5542.7

30 2819.73 207 207 207 21 21 21 2819.73 satisfied 0 5487.3

50

Figure 6.5: Day 1 of best solution for delay route VRPTW

(penalty=2000), run#23

From the looks of it, there seem to be not much difference as compared

to Figure 6.3. The same cluster of orders was left out to be postponed.

51

Figure 6.6: Day 2 of best solution for delay route VRPTW

(penalty=2000), run#23

Again, there seems to be not much difference from Figure 6.4 which

was the results obtained with penalty 1000. Next, just out of curiosity we do

again 10 runs with smaller penalty at this time 500. We do not expect to see

any better results here. The purpose was just to confirm the hypothesis to be

100% sure.

The result of 10 runs of the day 1 data (C1_2_1 with limit of 19 routes

only) is as follows:

52

 Table 6.9: Results of day 1 using delay route VRPTW with 500

penalty

It seems to have similar results to the run with penalty set to 1000 with

less consistent result in term of the number of orders that gets delayed.

The result of 10 runs of the day 2 data (C1_2_1 with limit of 22 routes

only) is as follows:

 Table 6.10: Results of day 2 using delay route VRPTW with 500

penalty

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance

1 2102754 200 179 179 19 19 19 2754.04

2 702616 200 193 193 19 19 19 2615.99

3 1002839 200 190 190 19 19 19 2838.52

4 802759.6 200 192 192 19 19 19 2759.55

5 702676.5 200 193 193 19 19 19 2676.46

6 802607.8 200 192 192 19 19 19 2607.77

7 702753.4 200 193 193 19 19 19 2753.42

8 702675.9 200 193 193 19 19 19 2675.89

9 702592.3 200 193 193 19 19 19 2592.26

10 702738.7 200 193 193 19 19 19 2738.69

RunNr Score NrOrders NrOrders

Planned

NrOrders

OnTime

NrRoutes NrRoutes

Used

NrRoutes

WithinCapacity

Distance Feasible nr of late total

distance

1 8195.7 221 221 215 22 22 22 3071.89 violated 6 5825.93

2 2838.27 207 207 207 22 21 21 2838.27 satisfied 0 5454.26

3 4255.71 210 210 208 22 22 22 3264.29 violated 2 6102.81

4 2937.83 208 208 208 22 22 22 2937.83 satisfied 0 5697.38

5 2819.73 207 207 207 21 21 21 2819.73 satisfied 0 5496.19

6 2835.93 208 208 208 21 21 21 2835.93 satisfied 0 5443.7

7 2838.27 207 207 207 21 21 21 2838.27 satisfied 0 5591.69

8 2838.84 207 207 207 21 21 21 2838.84 satisfied 0 5514.73

9 2819.73 207 207 207 21 21 21 2819.73 satisfied 0 5411.99

10 2819.73 207 207 207 22 21 21 2819.73 satisfied 0 5558.42

53

The result surprises us as it seems like we have found another new best

solution with the settings of delay penalty at 500. This time we found a

solution with 5411.99 as total travel distance. This is runNr = 9. Note that

runNr was reset in this run due to the RAM on the experiment machine ran out

of memory for the application to be able to hold the results of the runs.

Next we took screenshot of the best known solution again.

Figure 6.7: Day 1 of best solution for delay route VRPTW

(penalty=500), run#9

There seems to be again not much difference with the screenshot of the

coordinate representation of the solution that can be seen obvious with naked

eye. The same cluster was chosen to be postponed again as well in this new

best solution found.

54

Figure 6.8: Day 2 of best solution for delay route VRPTW

(penalty=500), run#9

Also, similarly in day 2 the pattern from the screenshot looks exactly

the same, this is rather expected as the score for day 2 was indeed exactly the

same. However, this result makes it interesting to make further analysis to

compare all the results that was gathered so far.

6.6 Comparison between all results

Using similar comparison analysis done between conventional

VRPTW against delay route VRPTW we now look at how each settings is

doing:

55

 Table 6.11: Comparisons between all the results.

By looking at only these numbers it is fair to draw conclusion that with

the penalty value set largest we get most consistency out of the solver however

in term of average distance obtain has to be a give and take.

All the runs with delay route, regardless of its penalty value, have a

better average distance against conventional VRPTW solver. Also all of them

reports a better average number of route used. In term of the average number

of orders that eventually still ends up late after day 2, it seems with delay

penalty set to only 500 is not significant enough to help guarantee the

consistency that all runs can solve the problem. This setting of penalty at 500

seems to give worst consistency against all others.

With further analysis done, we tabulate another summarized table of

data after looking into more detailed information on the results in Table 6.12:

 Table 6.12: Further analysis on the comparisons.

 penalty value std dev average distance average route

used

average nr of late

 orders

conventional VRPTW 0 203.56 5731.57 22 1

with delay route VRPTW 500 214.29 5609.71 21.3 0.8

with delay route VRPTW 1000 129.77 5628.51 21.6 0

with delay route VRPTW 2000 86.66 5561.09 21.3 0

 penalty value #solutions with

total distance < 5.5k

range of #orders

postponed from day1

average #orders

postponed from day1

conventional VRPTW 0 1 8 to 15 10.4

with delay route VRPTW 500 4 7 to 21 8.9

with delay route VRPTW 1000 1 7 to 20 9.5

with delay route VRPTW 2000 2 7 to 9 7.3

56

In Table 6.12, we reported the number of solutions with total distance

less than the threshold of 5500 (since we know current best is at 5411.99), we

want to see how consistently each solver can converge as close as possible to

this best result’s range. Then, we also report the range and the average of the

number of orders that was postponed from day 1 to day 2. What we now see is

that with delay route set to lowest (in our case it was 500) the number of times

it can converge close to best known solution range at below total distance of

less than 5500 is much more. It was also confirmed that in these 4 solutions

that met the condition, none of them was among the 2 reported from Table

6.10 that still has orders that eventually ends up late. This makes it very

difficult to conclude which delay penalty is the best setting and it depends up

to the domain functional decision of the business to decide if extra travelling

means worse or having the risk of orders that ends up still late being worse.

57

CHAPTER 7.0

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

This thesis has presented a new business problem that happens often in

real world implementation of VRPTW in logistics planning problem. This new

problem is known as a clustering constraint problem which happens in multi

days data. Clustering constraints here states that suppose if we cannot deliver

all orders on time on day 1 we want to postpone orders to day 2 in clusters. A

proposed approach known as using the delay route approach has been

researched and extensively experimented to prove its effectiveness.

From the results of the experiments run, it is proven that conventional

VRPTW cannot solve this problem statement well enough and it is a clear

conclusion that utilizing delay route approach solves the problem of having

clustering constraint much better. However, in the attempt to find the best

settings to use in the penalty for the approach, it was inconclusive on what was

the best value to set for delay penalty to be used together in the proposed delay

route approach here. Nonetheless, a few conclusions can be drawn out from

the experiments’ results.

We can conclude that if suppose a logistic company wants to focus in

delivering their orders on time to the opening hours or time window of the

order in a daily bucket, then using very large delay penalty will be a good

58

strategy as they tend to give consistent results that only very few orders will be

postponed from day 1 to day 2. In this case, the company can rest assure that

not much of orders will be left in the backlogs daily and eventually cause a

huge problem when this backlogs reached a level where they may need more

routes to deliver all of them.

On the other hand, suppose the logistics company has a very good IT /

development team that can run the algorithms on a really hi-tech hi-end server

machine, then, they can actually use small delay penalty to ensure they can

obtain minimized travel distance with parallel runs of the algorithm and

picking the best out of 10 will ensure they get the best known solution thus far.

This will ensure the inconsistency problem with having delay penalty set too

low is taken care of as they can run parallel runs and pick the best solution

found out of the 10 parallel runs.

As part of the contribution, this thesis has also presented a new

approach to test effectiveness of VRPTW solvers in the temporal dimension.

This is achieved by using the multi day data approach for measuring the

clustering constraint of VRPTW. This approach is also generic and can reuse

the full sets of currently available VRPTW benchmark datasets from Solomon

as well as Gehring and Homberger’s extension of those.

7.2 Future works

This thesis presented a new real world problem that presents a new

dimension to the classic VRPTW problem statement. The new dimension

introduced here is the temporal dimension, whereby 2 days of data was taken

59

into account. This opens up a whole new area of research where many future

research directions can be done to experiment with multi day data benchmark

versions of the classic Solomon (1983) as well as Gehring and Homberger

(1999) benchmarks.

It was presented here a single instance of the benchmark used in

Gehring and Homberger benchmark being C1_2_1, a next step to this is to

create a whole set of benchmark that duplicates the standard classic VRTPW

benchmark and later possibly combining a few benchmark data to represent

the dynamic nature of logistics problem whereby you do not have the same set

of orders every day.

The experiment presented also used a single approach in solving the

VRPTW problem instance. The approach selected was using Sequential

Insertion Heuristics + Path Optimization Algorithm. The is another dimension

of possible future work from here on which is to test with different sets of

algorithm and conventional VRPTW solvers to easily extend by adding the

delay route approach into them. The idea presented with delay route is generic

and independent of algorithms used. The idea can be easily added to any

conventional VRPTW solvers by adding an additional route to it and adding

an equation that penalize orders being planned on this additional route. The

goal should then also be modified to fit in this new term into it for minimizing.

Another future work would be to extend the problem to add in

complexity of order prioritization or customer prioritization to influence the

choice of orders to postpone and also to come up with a standard way of

measuring this and applying it into the goal function of the solvers.

60

REFERENCES

Bullnheimer, R. H. B. & Strauss, C., 1997. Applying the Any System to the
Vehicle Routing Problem. Austria, 2nd International Conference on

Metaheuristics-MIC97.

Croes, G., 1958. A method for solving traveling salesman problems.

Operations Res. 6, Volume 6, pp. 791-812.

Gehring & Homberger, 1999. Extended Solomon's VRPTW instances. [Online]

Available at: http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-

benchmark/

Kisjes, K., 2012. A Quantitative Comparison of Generalized Fast Construction
Heuristics for the Vehicle Routing Problem with Time Windows, Rotterdam,

Netherland: Erasmus University.

Li, H. & Lim, A., 2003. Local search with annealing-like restarts to solve the
VRPTW. Singapore, European Journal of Operational Research 150, pp. 115-

127.

MJC2, n.d. Why is logistics planning hard?. [Online]

Available at: http://www.mjc2.com/logistics-planning-complexity.htm

[Accessed 2012].

Pisinger, D. & Ropke, S., 2007. A general heuristic for vehicle routing

problems. In: Computers & Operations Research Volume 34. s.l.:s.n., pp.

2403-2435.

Qili, K. Z., 2000. A New Genetic Algorithm for VRPTW. Singapore,

Proceedings of the International Conference on Artificial Intelligence.

Quintiq, 2012. Quintiq sets new record for Vehicle Routing Problem with
Time Windows. [Online] Available at: http://www.quintiq.com/news-

2012/quintiq-sets-new-record-for-vehicle-routing-problem-with-time-

windows.aspx

[Accessed October 2012].

Solomon, M. M., 1983. VRPTW Benchmark Problems. [Online]

Available at: http://www.sintef.no/Projectweb/TOP/VRPTW/Solomon-

benchmark/

Soo, R. K. & Tay, Y. H., 2009. A Survey on the Progress of Research on Vehicle
Routing Problem with Time Window Constraints. Kuala Lumpur, Malaysia,

Symposium on Progress in Information and Communication Technology

(SPICT), pp. 142-146.

Soo, R. K. & Tay, Y. H., 2011. Solving VRPTW with Delay Route to Satisfy
Clustering Constraint. Kuala Lumpur, Malaysia, 2011 IEEE Conference on

Sustainable Utilization and Development in Engineering and Technology.

61

Vladimir, V. & Tarek, S. M., 2002. Vehicle Routing Problem with Time
WIndows. Bridgeport, USA: Department of Computer Science and

Engineering, University of Bridgeport.

Wikipedia, n.d. Vehicle Routing Problem - Why is it hard?. [Online]

Available at: http://en.wikipedia.org/wiki/Vehicle_routing_problem

[Accessed 2012].

Yiqing, Z. & Xiao, P., 2007. A Hybrid Optimization Solution to VRPTW Based
on Simulated Annealing. Jinan, China, Proceedings of the IEEE International

Conference on Automation and Logistics.

Zhu, K. Q. & Ong, K.-L., 2000. A Reactive Method for Real Time Dynamic
Vehicle Routing Problem. Singapore, 12th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI'00).

