Lim, Fang Nie (2024) Combination of generative artificial intelligence and deep reinforcement learning: performance comparison. Final Year Project, UTAR.
| PDF Download (3108Kb) | Preview |
Abstract
In this study, we explore the integration of Generative Adversarial Networks (GANs) and Deep Reinforcement Learning (DRL) methods, focusing on the performance comparison between different architectures of Sequence Generative Adversarial Networks (SeqGAN) and policy gradient algorithms. We address key challenges in text generation, such as maintaining narrative coherence over long sequences, reducing text repetition, and optimizing SeqGAN for diverse textual outputs. The study incorporates architectural innovations like Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) that enhance the ability of SeqGAN to capture long-range dependencies in sequences, while attention mechanisms improve contextual awareness by selectively focusing on relevant parts of the sequence. Through extensive experiments, we analyze the influence of various neural network configurations and regulatory mechanisms, including gradient penalties and regularization on the quality of the generated text. Our findings show a 15% increase in BLEU scores, highlighting significant improvements in text coherence and diversity across various datasets, demonstrating the effectiveness of integrating SeqGAN with policy gradient methods for automated content generation.
Item Type: | Final Year Project / Dissertation / Thesis (Final Year Project) |
---|---|
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QA Mathematics > QA76 Computer software T Technology > T Technology (General) |
Divisions: | Lee Kong Chian Faculty of Engineering and Science > Bachelor of Science (Honours) Software Engineering |
Depositing User: | Sg Long Library |
Date Deposited: | 21 Nov 2024 10:39 |
Last Modified: | 21 Nov 2024 10:39 |
URI: | http://eprints.utar.edu.my/id/eprint/6814 |
Actions (login required)
View Item |